L(s) = 1 | − 0.688·2-s − 1.52·4-s + 0.0401i·5-s − 0.246i·7-s + 2.42·8-s − 0.0276i·10-s + 2.30i·13-s + 0.169i·14-s + 1.38·16-s − 4.27·17-s − 6.20i·19-s − 0.0612i·20-s + 6.79i·23-s + 4.99·25-s − 1.58i·26-s + ⋯ |
L(s) = 1 | − 0.486·2-s − 0.763·4-s + 0.0179i·5-s − 0.0932i·7-s + 0.858·8-s − 0.00872i·10-s + 0.638i·13-s + 0.0454i·14-s + 0.345·16-s − 1.03·17-s − 1.42i·19-s − 0.0136i·20-s + 1.41i·23-s + 0.999·25-s − 0.310i·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.384 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.384 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7941804466\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7941804466\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + 0.688T + 2T^{2} \) |
| 5 | \( 1 - 0.0401iT - 5T^{2} \) |
| 7 | \( 1 + 0.246iT - 7T^{2} \) |
| 13 | \( 1 - 2.30iT - 13T^{2} \) |
| 17 | \( 1 + 4.27T + 17T^{2} \) |
| 19 | \( 1 + 6.20iT - 19T^{2} \) |
| 23 | \( 1 - 6.79iT - 23T^{2} \) |
| 29 | \( 1 + 5.59T + 29T^{2} \) |
| 31 | \( 1 - 4.79T + 31T^{2} \) |
| 37 | \( 1 + 4.03T + 37T^{2} \) |
| 41 | \( 1 - 9.60T + 41T^{2} \) |
| 43 | \( 1 - 1.03iT - 43T^{2} \) |
| 47 | \( 1 - 11.1iT - 47T^{2} \) |
| 53 | \( 1 - 8.96iT - 53T^{2} \) |
| 59 | \( 1 - 2.78iT - 59T^{2} \) |
| 61 | \( 1 - 8.48iT - 61T^{2} \) |
| 67 | \( 1 - 7.94T + 67T^{2} \) |
| 71 | \( 1 - 3.32iT - 71T^{2} \) |
| 73 | \( 1 - 11.8iT - 73T^{2} \) |
| 79 | \( 1 - 3.01iT - 79T^{2} \) |
| 83 | \( 1 + 5.29T + 83T^{2} \) |
| 89 | \( 1 - 8.54iT - 89T^{2} \) |
| 97 | \( 1 + 3.02T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.749590656697379537345782249528, −9.151847031324253111812193096987, −8.661944624461309309707127280918, −7.53239586995472275178768725296, −6.93045106611899315665111024350, −5.71183822392350844525876943205, −4.69493841996800004765734577326, −4.03858853264800273785022775858, −2.61713481083898514510419594548, −1.11819915132474521782161659814,
0.51408885130907543948359990438, 2.07359307152150981892691724188, 3.53231076987696099132894774539, 4.48285572926991813837212151585, 5.35012247395157256996385435979, 6.37408112398852213898326472885, 7.40735584071940610329828522591, 8.341813322465757819307096544023, 8.740319946165314148553589741992, 9.709259270341238189946421873510