L(s) = 1 | − 0.688·2-s − 1.52·4-s + 0.0401i·5-s − 0.246i·7-s + 2.42·8-s − 0.0276i·10-s + 2.30i·13-s + 0.169i·14-s + 1.38·16-s − 4.27·17-s − 6.20i·19-s − 0.0612i·20-s + 6.79i·23-s + 4.99·25-s − 1.58i·26-s + ⋯ |
L(s) = 1 | − 0.486·2-s − 0.763·4-s + 0.0179i·5-s − 0.0932i·7-s + 0.858·8-s − 0.00872i·10-s + 0.638i·13-s + 0.0454i·14-s + 0.345·16-s − 1.03·17-s − 1.42i·19-s − 0.0136i·20-s + 1.41i·23-s + 0.999·25-s − 0.310i·26-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)(0.384−0.923i)Λ(2−s)
Λ(s)=(=(1089s/2ΓC(s+1/2)L(s)(0.384−0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
1089
= 32⋅112
|
Sign: |
0.384−0.923i
|
Analytic conductor: |
8.69570 |
Root analytic conductor: |
2.94884 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1089(1088,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1089, ( :1/2), 0.384−0.923i)
|
Particular Values
L(1) |
≈ |
0.7941804466 |
L(21) |
≈ |
0.7941804466 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+0.688T+2T2 |
| 5 | 1−0.0401iT−5T2 |
| 7 | 1+0.246iT−7T2 |
| 13 | 1−2.30iT−13T2 |
| 17 | 1+4.27T+17T2 |
| 19 | 1+6.20iT−19T2 |
| 23 | 1−6.79iT−23T2 |
| 29 | 1+5.59T+29T2 |
| 31 | 1−4.79T+31T2 |
| 37 | 1+4.03T+37T2 |
| 41 | 1−9.60T+41T2 |
| 43 | 1−1.03iT−43T2 |
| 47 | 1−11.1iT−47T2 |
| 53 | 1−8.96iT−53T2 |
| 59 | 1−2.78iT−59T2 |
| 61 | 1−8.48iT−61T2 |
| 67 | 1−7.94T+67T2 |
| 71 | 1−3.32iT−71T2 |
| 73 | 1−11.8iT−73T2 |
| 79 | 1−3.01iT−79T2 |
| 83 | 1+5.29T+83T2 |
| 89 | 1−8.54iT−89T2 |
| 97 | 1+3.02T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.749590656697379537345782249528, −9.151847031324253111812193096987, −8.661944624461309309707127280918, −7.53239586995472275178768725296, −6.93045106611899315665111024350, −5.71183822392350844525876943205, −4.69493841996800004765734577326, −4.03858853264800273785022775858, −2.61713481083898514510419594548, −1.11819915132474521782161659814,
0.51408885130907543948359990438, 2.07359307152150981892691724188, 3.53231076987696099132894774539, 4.48285572926991813837212151585, 5.35012247395157256996385435979, 6.37408112398852213898326472885, 7.40735584071940610329828522591, 8.341813322465757819307096544023, 8.740319946165314148553589741992, 9.709259270341238189946421873510