Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1089,2,Mod(1088,1089)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1089.1088");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1089.d (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 99) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1088.1 |
|
−2.43632 | 0 | 3.93565 | − | 3.79576i | 0 | − | 0.367791i | −4.71586 | 0 | 9.24768i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.2 | −2.43632 | 0 | 3.93565 | 3.79576i | 0 | 0.367791i | −4.71586 | 0 | − | 9.24768i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.3 | −2.35080 | 0 | 3.52626 | − | 2.24814i | 0 | 4.05107i | −3.58792 | 0 | 5.28492i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.4 | −2.35080 | 0 | 3.52626 | 2.24814i | 0 | − | 4.05107i | −3.58792 | 0 | − | 5.28492i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.5 | −0.688291 | 0 | −1.52626 | − | 0.0401087i | 0 | 0.246848i | 2.42709 | 0 | 0.0276065i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.6 | −0.688291 | 0 | −1.52626 | 0.0401087i | 0 | − | 0.246848i | 2.42709 | 0 | − | 0.0276065i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.7 | −0.253675 | 0 | −1.93565 | − | 2.92173i | 0 | − | 2.71893i | 0.998377 | 0 | 0.741170i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.8 | −0.253675 | 0 | −1.93565 | 2.92173i | 0 | 2.71893i | 0.998377 | 0 | − | 0.741170i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.9 | 0.253675 | 0 | −1.93565 | − | 2.92173i | 0 | 2.71893i | −0.998377 | 0 | − | 0.741170i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.10 | 0.253675 | 0 | −1.93565 | 2.92173i | 0 | − | 2.71893i | −0.998377 | 0 | 0.741170i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.11 | 0.688291 | 0 | −1.52626 | − | 0.0401087i | 0 | − | 0.246848i | −2.42709 | 0 | − | 0.0276065i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.12 | 0.688291 | 0 | −1.52626 | 0.0401087i | 0 | 0.246848i | −2.42709 | 0 | 0.0276065i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.13 | 2.35080 | 0 | 3.52626 | − | 2.24814i | 0 | − | 4.05107i | 3.58792 | 0 | − | 5.28492i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.14 | 2.35080 | 0 | 3.52626 | 2.24814i | 0 | 4.05107i | 3.58792 | 0 | 5.28492i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.15 | 2.43632 | 0 | 3.93565 | − | 3.79576i | 0 | 0.367791i | 4.71586 | 0 | − | 9.24768i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1088.16 | 2.43632 | 0 | 3.93565 | 3.79576i | 0 | − | 0.367791i | 4.71586 | 0 | 9.24768i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
33.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1089.2.d.g | 16 | |
3.b | odd | 2 | 1 | inner | 1089.2.d.g | 16 | |
11.b | odd | 2 | 1 | inner | 1089.2.d.g | 16 | |
11.c | even | 5 | 1 | 99.2.j.a | ✓ | 16 | |
11.d | odd | 10 | 1 | 99.2.j.a | ✓ | 16 | |
33.d | even | 2 | 1 | inner | 1089.2.d.g | 16 | |
33.f | even | 10 | 1 | 99.2.j.a | ✓ | 16 | |
33.h | odd | 10 | 1 | 99.2.j.a | ✓ | 16 | |
44.g | even | 10 | 1 | 1584.2.cd.c | 16 | ||
44.h | odd | 10 | 1 | 1584.2.cd.c | 16 | ||
99.m | even | 15 | 2 | 891.2.u.c | 32 | ||
99.n | odd | 30 | 2 | 891.2.u.c | 32 | ||
99.o | odd | 30 | 2 | 891.2.u.c | 32 | ||
99.p | even | 30 | 2 | 891.2.u.c | 32 | ||
132.n | odd | 10 | 1 | 1584.2.cd.c | 16 | ||
132.o | even | 10 | 1 | 1584.2.cd.c | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
99.2.j.a | ✓ | 16 | 11.c | even | 5 | 1 | |
99.2.j.a | ✓ | 16 | 11.d | odd | 10 | 1 | |
99.2.j.a | ✓ | 16 | 33.f | even | 10 | 1 | |
99.2.j.a | ✓ | 16 | 33.h | odd | 10 | 1 | |
891.2.u.c | 32 | 99.m | even | 15 | 2 | ||
891.2.u.c | 32 | 99.n | odd | 30 | 2 | ||
891.2.u.c | 32 | 99.o | odd | 30 | 2 | ||
891.2.u.c | 32 | 99.p | even | 30 | 2 | ||
1089.2.d.g | 16 | 1.a | even | 1 | 1 | trivial | |
1089.2.d.g | 16 | 3.b | odd | 2 | 1 | inner | |
1089.2.d.g | 16 | 11.b | odd | 2 | 1 | inner | |
1089.2.d.g | 16 | 33.d | even | 2 | 1 | inner | |
1584.2.cd.c | 16 | 44.g | even | 10 | 1 | ||
1584.2.cd.c | 16 | 44.h | odd | 10 | 1 | ||
1584.2.cd.c | 16 | 132.n | odd | 10 | 1 | ||
1584.2.cd.c | 16 | 132.o | even | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|