Properties

Label 1089.2.d.g
Level 10891089
Weight 22
Character orbit 1089.d
Analytic conductor 8.6968.696
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(1088,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1088");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1089=32112 1089 = 3^{2} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1089.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.695708780128.69570878012
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+2x1416x1272x10+26x8+360x6+725x4+1000x2+625 x^{16} + 2x^{14} - 16x^{12} - 72x^{10} + 26x^{8} + 360x^{6} + 725x^{4} + 1000x^{2} + 625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 28 2^{8}
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β15q2+(β4+1)q4+(β12β6+β2)q5+(β9β8)q7+(2β15β7)q8+(2β13+β112β8)q10++(2β15+8β14++2β7)q98+O(q100) q + \beta_{15} q^{2} + (\beta_{4} + 1) q^{4} + (\beta_{12} - \beta_{6} + \cdots - \beta_{2}) q^{5} + (\beta_{9} - \beta_{8}) q^{7} + (2 \beta_{15} - \beta_{7}) q^{8} + (2 \beta_{13} + \beta_{11} - 2 \beta_{8}) q^{10}+ \cdots + (2 \beta_{15} + 8 \beta_{14} + \cdots + 2 \beta_{7}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+16q4+40q1632q25+16q31+40q34+8q37+16q49+32q58104q64+96q6764q70+88q82+48q91+O(q100) 16 q + 16 q^{4} + 40 q^{16} - 32 q^{25} + 16 q^{31} + 40 q^{34} + 8 q^{37} + 16 q^{49} + 32 q^{58} - 104 q^{64} + 96 q^{67} - 64 q^{70} + 88 q^{82} + 48 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+2x1416x1272x10+26x8+360x6+725x4+1000x2+625 x^{16} + 2x^{14} - 16x^{12} - 72x^{10} + 26x^{8} + 360x^{6} + 725x^{4} + 1000x^{2} + 625 : Copy content Toggle raw display

β1\beta_{1}== (198ν14+906ν123748ν1012741ν817472ν618885ν4++555250)/881375 ( 198 \nu^{14} + 906 \nu^{12} - 3748 \nu^{10} - 12741 \nu^{8} - 17472 \nu^{6} - 18885 \nu^{4} + \cdots + 555250 ) / 881375 Copy content Toggle raw display
β2\beta_{2}== (532ν1512231ν1361577ν1112284ν9+989047ν7+4371000ν)/4406875 ( 532 \nu^{15} - 12231 \nu^{13} - 61577 \nu^{11} - 12284 \nu^{9} + 989047 \nu^{7} + \cdots - 4371000 \nu ) / 4406875 Copy content Toggle raw display
β3\beta_{3}== (3734ν147568ν12+73369ν10+265723ν8286834ν6+2261250)/881375 ( - 3734 \nu^{14} - 7568 \nu^{12} + 73369 \nu^{10} + 265723 \nu^{8} - 286834 \nu^{6} + \cdots - 2261250 ) / 881375 Copy content Toggle raw display
β4\beta_{4}== (1229ν14+2574ν1221367ν1091914ν8+61687ν6+544476ν4++684025)/176275 ( 1229 \nu^{14} + 2574 \nu^{12} - 21367 \nu^{10} - 91914 \nu^{8} + 61687 \nu^{6} + 544476 \nu^{4} + \cdots + 684025 ) / 176275 Copy content Toggle raw display
β5\beta_{5}== (6796ν157982ν13+118381ν11+297652ν9922291ν7++7469875ν)/4406875 ( - 6796 \nu^{15} - 7982 \nu^{13} + 118381 \nu^{11} + 297652 \nu^{9} - 922291 \nu^{7} + \cdots + 7469875 \nu ) / 4406875 Copy content Toggle raw display
β6\beta_{6}== (7797ν151879ν13+194307ν11+471569ν91255952ν7+4720750ν)/4406875 ( - 7797 \nu^{15} - 1879 \nu^{13} + 194307 \nu^{11} + 471569 \nu^{9} - 1255952 \nu^{7} + \cdots - 4720750 \nu ) / 4406875 Copy content Toggle raw display
β7\beta_{7}== (1932ν15+4062ν1330006ν11142852ν9+37491ν7++1047925ν)/881375 ( 1932 \nu^{15} + 4062 \nu^{13} - 30006 \nu^{11} - 142852 \nu^{9} + 37491 \nu^{7} + \cdots + 1047925 \nu ) / 881375 Copy content Toggle raw display
β8\beta_{8}== (11794ν14+8708ν12186864ν10541763ν8+1019404ν6++4137375)/881375 ( 11794 \nu^{14} + 8708 \nu^{12} - 186864 \nu^{10} - 541763 \nu^{8} + 1019404 \nu^{6} + \cdots + 4137375 ) / 881375 Copy content Toggle raw display
β9\beta_{9}== (14403ν14+14916ν12224078ν10748351ν8+1023533ν6++6732875)/881375 ( 14403 \nu^{14} + 14916 \nu^{12} - 224078 \nu^{10} - 748351 \nu^{8} + 1023533 \nu^{6} + \cdots + 6732875 ) / 881375 Copy content Toggle raw display
β10\beta_{10}== (2989ν15+5072ν1349056ν11209227ν9+125816ν7++1755775ν)/881375 ( 2989 \nu^{15} + 5072 \nu^{13} - 49056 \nu^{11} - 209227 \nu^{9} + 125816 \nu^{7} + \cdots + 1755775 \nu ) / 881375 Copy content Toggle raw display
β11\beta_{11}== (17146ν146392ν12+302936ν10+792337ν81894396ν6+6906250)/881375 ( - 17146 \nu^{14} - 6392 \nu^{12} + 302936 \nu^{10} + 792337 \nu^{8} - 1894396 \nu^{6} + \cdots - 6906250 ) / 881375 Copy content Toggle raw display
β12\beta_{12}== (1496ν15+2572ν1324401ν1191992ν9+100886ν7+478015ν5++598500ν)/400625 ( 1496 \nu^{15} + 2572 \nu^{13} - 24401 \nu^{11} - 91992 \nu^{9} + 100886 \nu^{7} + 478015 \nu^{5} + \cdots + 598500 \nu ) / 400625 Copy content Toggle raw display
β13\beta_{13}== (22098ν1413706ν12+377023ν10+1116041ν81983428ν6+11238000)/881375 ( - 22098 \nu^{14} - 13706 \nu^{12} + 377023 \nu^{10} + 1116041 \nu^{8} - 1983428 \nu^{6} + \cdots - 11238000 ) / 881375 Copy content Toggle raw display
β14\beta_{14}== (58981ν15+32907ν13991506ν112819027ν9+5518041ν7++25694375ν)/4406875 ( 58981 \nu^{15} + 32907 \nu^{13} - 991506 \nu^{11} - 2819027 \nu^{9} + 5518041 \nu^{7} + \cdots + 25694375 \nu ) / 4406875 Copy content Toggle raw display
β15\beta_{15}== (93868ν15+59971ν131584393ν114599956ν9+8757748ν7++41365625ν)/4406875 ( 93868 \nu^{15} + 59971 \nu^{13} - 1584393 \nu^{11} - 4599956 \nu^{9} + 8757748 \nu^{7} + \cdots + 41365625 \nu ) / 4406875 Copy content Toggle raw display
ν\nu== (β12β7+β5)/2 ( \beta_{12} - \beta_{7} + \beta_{5} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β9β8β4β3β11)/2 ( \beta_{9} - \beta_{8} - \beta_{4} - \beta_{3} - \beta _1 - 1 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β153β142β12+3β103β7β5β2)/2 ( 2\beta_{15} - 3\beta_{14} - 2\beta_{12} + 3\beta_{10} - 3\beta_{7} - \beta_{5} - \beta_{2} ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (2β13+3β114β9+5β82β38β1+5)/2 ( -2\beta_{13} + 3\beta_{11} - 4\beta_{9} + 5\beta_{8} - 2\beta_{3} - 8\beta _1 + 5 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (5β15+7β14+3β12+5β107β7)/2 ( -5\beta_{15} + 7\beta_{14} + 3\beta_{12} + 5\beta_{10} - 7\beta_{7} ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (11β1311β11+17β915β85β46β326β1+15)/2 ( 11\beta_{13} - 11\beta_{11} + 17\beta_{9} - 15\beta_{8} - 5\beta_{4} - 6\beta_{3} - 26\beta _1 + 15 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (28β1543β14+7β12+27β1048β7+16β6+4β5+9β2)/2 ( 28\beta_{15} - 43\beta_{14} + 7\beta_{12} + 27\beta_{10} - 48\beta_{7} + 16\beta_{6} + 4\beta_{5} + 9\beta_{2} ) / 2 Copy content Toggle raw display
ν8\nu^{8}== (20β13+35β1132β9+53β832β452β318β1+17)/2 ( -20\beta_{13} + 35\beta_{11} - 32\beta_{9} + 53\beta_{8} - 32\beta_{4} - 52\beta_{3} - 18\beta _1 + 17 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (15β15+21β1429β12+72β10116β751β6+87β2)/2 ( - 15 \beta_{15} + 21 \beta_{14} - 29 \beta_{12} + 72 \beta_{10} - 116 \beta_{7} - 51 \beta_{6} + \cdots - 87 \beta_{2} ) / 2 Copy content Toggle raw display
ν10\nu^{10}== 21β13+36β9275β1+166 21\beta_{13} + 36\beta_{9} - 275\beta _1 + 166 Copy content Toggle raw display
ν11\nu^{11}== (51β1578β14+223β12+290β10462β7+368β6++239β2)/2 ( 51 \beta_{15} - 78 \beta_{14} + 223 \beta_{12} + 290 \beta_{10} - 462 \beta_{7} + 368 \beta_{6} + \cdots + 239 \beta_{2} ) / 2 Copy content Toggle raw display
ν12\nu^{12}== (290β13110β11+462β9177β8462β4752β367β1+43)/2 ( 290\beta_{13} - 110\beta_{11} + 462\beta_{9} - 177\beta_{8} - 462\beta_{4} - 752\beta_{3} - 67\beta _1 + 43 ) / 2 Copy content Toggle raw display
ν13\nu^{13}== (1034β151681β14239β12+1281β102076β7+1037β2)/2 ( 1034 \beta_{15} - 1681 \beta_{14} - 239 \beta_{12} + 1281 \beta_{10} - 2076 \beta_{7} + \cdots - 1037 \beta_{2} ) / 2 Copy content Toggle raw display
ν14\nu^{14}== (1039β13+2071β111678β9+3360β8400β4639β3++3360)/2 ( - 1039 \beta_{13} + 2071 \beta_{11} - 1678 \beta_{9} + 3360 \beta_{8} - 400 \beta_{4} - 639 \beta_{3} + \cdots + 3360 ) / 2 Copy content Toggle raw display
ν15\nu^{15}== (2710β15+4399β14+1521β12+2710β104399β7+2475β6)/2 ( -2710\beta_{15} + 4399\beta_{14} + 1521\beta_{12} + 2710\beta_{10} - 4399\beta_{7} + 2475\beta_{6} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1089Z)×\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times.

nn 244244 848848
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1088.1
0.0783900 1.17295i
0.0783900 + 1.17295i
0.556839 + 1.81878i
0.556839 1.81878i
1.90184 + 0.0324487i
1.90184 0.0324487i
0.752864 0.902863i
0.752864 + 0.902863i
−0.752864 0.902863i
−0.752864 + 0.902863i
−1.90184 + 0.0324487i
−1.90184 0.0324487i
−0.556839 + 1.81878i
−0.556839 1.81878i
−0.0783900 1.17295i
−0.0783900 + 1.17295i
−2.43632 0 3.93565 3.79576i 0 0.367791i −4.71586 0 9.24768i
1088.2 −2.43632 0 3.93565 3.79576i 0 0.367791i −4.71586 0 9.24768i
1088.3 −2.35080 0 3.52626 2.24814i 0 4.05107i −3.58792 0 5.28492i
1088.4 −2.35080 0 3.52626 2.24814i 0 4.05107i −3.58792 0 5.28492i
1088.5 −0.688291 0 −1.52626 0.0401087i 0 0.246848i 2.42709 0 0.0276065i
1088.6 −0.688291 0 −1.52626 0.0401087i 0 0.246848i 2.42709 0 0.0276065i
1088.7 −0.253675 0 −1.93565 2.92173i 0 2.71893i 0.998377 0 0.741170i
1088.8 −0.253675 0 −1.93565 2.92173i 0 2.71893i 0.998377 0 0.741170i
1088.9 0.253675 0 −1.93565 2.92173i 0 2.71893i −0.998377 0 0.741170i
1088.10 0.253675 0 −1.93565 2.92173i 0 2.71893i −0.998377 0 0.741170i
1088.11 0.688291 0 −1.52626 0.0401087i 0 0.246848i −2.42709 0 0.0276065i
1088.12 0.688291 0 −1.52626 0.0401087i 0 0.246848i −2.42709 0 0.0276065i
1088.13 2.35080 0 3.52626 2.24814i 0 4.05107i 3.58792 0 5.28492i
1088.14 2.35080 0 3.52626 2.24814i 0 4.05107i 3.58792 0 5.28492i
1088.15 2.43632 0 3.93565 3.79576i 0 0.367791i 4.71586 0 9.24768i
1088.16 2.43632 0 3.93565 3.79576i 0 0.367791i 4.71586 0 9.24768i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1088.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
11.b odd 2 1 inner
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.2.d.g 16
3.b odd 2 1 inner 1089.2.d.g 16
11.b odd 2 1 inner 1089.2.d.g 16
11.c even 5 1 99.2.j.a 16
11.d odd 10 1 99.2.j.a 16
33.d even 2 1 inner 1089.2.d.g 16
33.f even 10 1 99.2.j.a 16
33.h odd 10 1 99.2.j.a 16
44.g even 10 1 1584.2.cd.c 16
44.h odd 10 1 1584.2.cd.c 16
99.m even 15 2 891.2.u.c 32
99.n odd 30 2 891.2.u.c 32
99.o odd 30 2 891.2.u.c 32
99.p even 30 2 891.2.u.c 32
132.n odd 10 1 1584.2.cd.c 16
132.o even 10 1 1584.2.cd.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
99.2.j.a 16 11.c even 5 1
99.2.j.a 16 11.d odd 10 1
99.2.j.a 16 33.f even 10 1
99.2.j.a 16 33.h odd 10 1
891.2.u.c 32 99.m even 15 2
891.2.u.c 32 99.n odd 30 2
891.2.u.c 32 99.o odd 30 2
891.2.u.c 32 99.p even 30 2
1089.2.d.g 16 1.a even 1 1 trivial
1089.2.d.g 16 3.b odd 2 1 inner
1089.2.d.g 16 11.b odd 2 1 inner
1089.2.d.g 16 33.d even 2 1 inner
1584.2.cd.c 16 44.g even 10 1
1584.2.cd.c 16 44.h odd 10 1
1584.2.cd.c 16 132.n odd 10 1
1584.2.cd.c 16 132.o even 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1089,[χ])S_{2}^{\mathrm{new}}(1089, [\chi]):

T2812T26+39T2418T22+1 T_{2}^{8} - 12T_{2}^{6} + 39T_{2}^{4} - 18T_{2}^{2} + 1 Copy content Toggle raw display
T17850T176+815T1744300T172+25 T_{17}^{8} - 50T_{17}^{6} + 815T_{17}^{4} - 4300T_{17}^{2} + 25 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T812T6+39T4++1)2 (T^{8} - 12 T^{6} + 39 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 (T8+28T6+239T4++1)2 (T^{8} + 28 T^{6} + 239 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
77 (T8+24T6+126T4++1)2 (T^{8} + 24 T^{6} + 126 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
1111 T16 T^{16} Copy content Toggle raw display
1313 (T8+36T6++841)2 (T^{8} + 36 T^{6} + \cdots + 841)^{2} Copy content Toggle raw display
1717 (T850T6++25)2 (T^{8} - 50 T^{6} + \cdots + 25)^{2} Copy content Toggle raw display
1919 (T8+66T6++14641)2 (T^{8} + 66 T^{6} + \cdots + 14641)^{2} Copy content Toggle raw display
2323 (T8+82T6++7921)2 (T^{8} + 82 T^{6} + \cdots + 7921)^{2} Copy content Toggle raw display
2929 (T8132T6++59536)2 (T^{8} - 132 T^{6} + \cdots + 59536)^{2} Copy content Toggle raw display
3131 (T44T3+169)4 (T^{4} - 4 T^{3} + \cdots - 169)^{4} Copy content Toggle raw display
3737 (T42T3++1251)4 (T^{4} - 2 T^{3} + \cdots + 1251)^{4} Copy content Toggle raw display
4141 (T8242T6++3455881)2 (T^{8} - 242 T^{6} + \cdots + 3455881)^{2} Copy content Toggle raw display
4343 (T8+164T6++9801)2 (T^{8} + 164 T^{6} + \cdots + 9801)^{2} Copy content Toggle raw display
4747 (T8+222T6++121)2 (T^{8} + 222 T^{6} + \cdots + 121)^{2} Copy content Toggle raw display
5353 (T8+222T6++408321)2 (T^{8} + 222 T^{6} + \cdots + 408321)^{2} Copy content Toggle raw display
5959 (T8+52T6+359T4++1)2 (T^{8} + 52 T^{6} + 359 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
6161 (T8+186T6++450241)2 (T^{8} + 186 T^{6} + \cdots + 450241)^{2} Copy content Toggle raw display
6767 (T424T3+649)4 (T^{4} - 24 T^{3} + \cdots - 649)^{4} Copy content Toggle raw display
7171 (T8+132T6++19321)2 (T^{8} + 132 T^{6} + \cdots + 19321)^{2} Copy content Toggle raw display
7373 (T8+340T6++1488400)2 (T^{8} + 340 T^{6} + \cdots + 1488400)^{2} Copy content Toggle raw display
7979 (T8+180T6++24025)2 (T^{8} + 180 T^{6} + \cdots + 24025)^{2} Copy content Toggle raw display
8383 (T8278T6++15124321)2 (T^{8} - 278 T^{6} + \cdots + 15124321)^{2} Copy content Toggle raw display
8989 (T8+130T6++126025)2 (T^{8} + 130 T^{6} + \cdots + 126025)^{2} Copy content Toggle raw display
9797 (T4255T2++1255)4 (T^{4} - 255 T^{2} + \cdots + 1255)^{4} Copy content Toggle raw display
show more
show less