Properties

Label 2-33e2-1.1-c3-0-122
Degree $2$
Conductor $1089$
Sign $-1$
Analytic cond. $64.2530$
Root an. cond. $8.01580$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.60·2-s + 4.96·4-s + 15.9·5-s − 31.7·7-s − 10.9·8-s + 57.3·10-s + 41.2·13-s − 114.·14-s − 79.0·16-s + 21.4·17-s − 135.·19-s + 79.1·20-s − 4.92·23-s + 128.·25-s + 148.·26-s − 157.·28-s − 59.4·29-s + 40.2·31-s − 197.·32-s + 77.3·34-s − 505.·35-s + 184.·37-s − 487.·38-s − 173.·40-s − 368.·41-s − 407.·43-s − 17.7·46-s + ⋯
L(s)  = 1  + 1.27·2-s + 0.620·4-s + 1.42·5-s − 1.71·7-s − 0.482·8-s + 1.81·10-s + 0.879·13-s − 2.18·14-s − 1.23·16-s + 0.306·17-s − 1.63·19-s + 0.884·20-s − 0.0446·23-s + 1.03·25-s + 1.11·26-s − 1.06·28-s − 0.380·29-s + 0.233·31-s − 1.09·32-s + 0.390·34-s − 2.43·35-s + 0.818·37-s − 2.07·38-s − 0.687·40-s − 1.40·41-s − 1.44·43-s − 0.0568·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1089\)    =    \(3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(64.2530\)
Root analytic conductor: \(8.01580\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1089,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 - 3.60T + 8T^{2} \)
5 \( 1 - 15.9T + 125T^{2} \)
7 \( 1 + 31.7T + 343T^{2} \)
13 \( 1 - 41.2T + 2.19e3T^{2} \)
17 \( 1 - 21.4T + 4.91e3T^{2} \)
19 \( 1 + 135.T + 6.85e3T^{2} \)
23 \( 1 + 4.92T + 1.21e4T^{2} \)
29 \( 1 + 59.4T + 2.43e4T^{2} \)
31 \( 1 - 40.2T + 2.97e4T^{2} \)
37 \( 1 - 184.T + 5.06e4T^{2} \)
41 \( 1 + 368.T + 6.89e4T^{2} \)
43 \( 1 + 407.T + 7.95e4T^{2} \)
47 \( 1 + 524.T + 1.03e5T^{2} \)
53 \( 1 + 427.T + 1.48e5T^{2} \)
59 \( 1 + 434.T + 2.05e5T^{2} \)
61 \( 1 - 141.T + 2.26e5T^{2} \)
67 \( 1 + 5.94T + 3.00e5T^{2} \)
71 \( 1 - 132.T + 3.57e5T^{2} \)
73 \( 1 + 420.T + 3.89e5T^{2} \)
79 \( 1 + 366.T + 4.93e5T^{2} \)
83 \( 1 - 773.T + 5.71e5T^{2} \)
89 \( 1 + 14.6T + 7.04e5T^{2} \)
97 \( 1 - 1.19e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.282639753341904394547409961923, −8.426715560137539716120085171272, −6.65435001862456106891656852281, −6.35646284824790787271019537172, −5.79613606434435075327341393875, −4.77553401722419823263347579535, −3.63586587154152252629071295738, −2.96102722869322841035465822634, −1.85175852664316128757711241550, 0, 1.85175852664316128757711241550, 2.96102722869322841035465822634, 3.63586587154152252629071295738, 4.77553401722419823263347579535, 5.79613606434435075327341393875, 6.35646284824790787271019537172, 6.65435001862456106891656852281, 8.426715560137539716120085171272, 9.282639753341904394547409961923

Graph of the $Z$-function along the critical line