Properties

Label 1089.4.a.bl.1.10
Level $1089$
Weight $4$
Character 1089.1
Self dual yes
Analytic conductor $64.253$
Analytic rank $1$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,4,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.2530799963\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 77x^{10} + 2138x^{8} - 25937x^{6} + 133491x^{4} - 221760x^{2} + 9680 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(3.60104\) of defining polynomial
Character \(\chi\) \(=\) 1089.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.60104 q^{2} +4.96749 q^{4} +15.9301 q^{5} -31.7130 q^{7} -10.9202 q^{8} +O(q^{10})\) \(q+3.60104 q^{2} +4.96749 q^{4} +15.9301 q^{5} -31.7130 q^{7} -10.9202 q^{8} +57.3650 q^{10} +41.2318 q^{13} -114.200 q^{14} -79.0640 q^{16} +21.4777 q^{17} -135.247 q^{19} +79.1326 q^{20} -4.92310 q^{23} +128.769 q^{25} +148.477 q^{26} -157.534 q^{28} -59.4852 q^{29} +40.2789 q^{31} -197.351 q^{32} +77.3419 q^{34} -505.191 q^{35} +184.296 q^{37} -487.028 q^{38} -173.960 q^{40} -368.847 q^{41} -407.910 q^{43} -17.7283 q^{46} -524.061 q^{47} +662.712 q^{49} +463.701 q^{50} +204.818 q^{52} -427.268 q^{53} +346.312 q^{56} -214.209 q^{58} -434.633 q^{59} +141.970 q^{61} +145.046 q^{62} -78.1566 q^{64} +656.827 q^{65} -5.94006 q^{67} +106.690 q^{68} -1819.21 q^{70} +132.884 q^{71} -420.357 q^{73} +663.659 q^{74} -671.836 q^{76} -366.521 q^{79} -1259.50 q^{80} -1328.23 q^{82} +773.629 q^{83} +342.142 q^{85} -1468.90 q^{86} -14.6027 q^{89} -1307.58 q^{91} -24.4554 q^{92} -1887.16 q^{94} -2154.49 q^{95} +1194.84 q^{97} +2386.45 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 58 q^{4} - 66 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 58 q^{4} - 66 q^{7} - 104 q^{10} - 120 q^{13} + 378 q^{16} - 360 q^{19} + 526 q^{25} - 560 q^{28} + 90 q^{31} - 1260 q^{34} - 428 q^{37} - 2376 q^{40} - 2004 q^{43} - 1282 q^{46} + 1186 q^{49} - 3198 q^{52} - 914 q^{58} - 2344 q^{61} + 1684 q^{64} - 968 q^{67} - 5922 q^{70} - 322 q^{73} - 7668 q^{76} - 3482 q^{79} + 4314 q^{82} - 636 q^{85} - 380 q^{91} - 5904 q^{94} + 3258 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.60104 1.27316 0.636580 0.771211i \(-0.280349\pi\)
0.636580 + 0.771211i \(0.280349\pi\)
\(3\) 0 0
\(4\) 4.96749 0.620936
\(5\) 15.9301 1.42483 0.712417 0.701757i \(-0.247601\pi\)
0.712417 + 0.701757i \(0.247601\pi\)
\(6\) 0 0
\(7\) −31.7130 −1.71234 −0.856170 0.516695i \(-0.827162\pi\)
−0.856170 + 0.516695i \(0.827162\pi\)
\(8\) −10.9202 −0.482609
\(9\) 0 0
\(10\) 57.3650 1.81404
\(11\) 0 0
\(12\) 0 0
\(13\) 41.2318 0.879665 0.439832 0.898080i \(-0.355038\pi\)
0.439832 + 0.898080i \(0.355038\pi\)
\(14\) −114.200 −2.18008
\(15\) 0 0
\(16\) −79.0640 −1.23537
\(17\) 21.4777 0.306418 0.153209 0.988194i \(-0.451039\pi\)
0.153209 + 0.988194i \(0.451039\pi\)
\(18\) 0 0
\(19\) −135.247 −1.63304 −0.816518 0.577319i \(-0.804099\pi\)
−0.816518 + 0.577319i \(0.804099\pi\)
\(20\) 79.1326 0.884730
\(21\) 0 0
\(22\) 0 0
\(23\) −4.92310 −0.0446320 −0.0223160 0.999751i \(-0.507104\pi\)
−0.0223160 + 0.999751i \(0.507104\pi\)
\(24\) 0 0
\(25\) 128.769 1.03015
\(26\) 148.477 1.11995
\(27\) 0 0
\(28\) −157.534 −1.06325
\(29\) −59.4852 −0.380901 −0.190451 0.981697i \(-0.560995\pi\)
−0.190451 + 0.981697i \(0.560995\pi\)
\(30\) 0 0
\(31\) 40.2789 0.233365 0.116682 0.993169i \(-0.462774\pi\)
0.116682 + 0.993169i \(0.462774\pi\)
\(32\) −197.351 −1.09022
\(33\) 0 0
\(34\) 77.3419 0.390118
\(35\) −505.191 −2.43980
\(36\) 0 0
\(37\) 184.296 0.818869 0.409434 0.912340i \(-0.365726\pi\)
0.409434 + 0.912340i \(0.365726\pi\)
\(38\) −487.028 −2.07912
\(39\) 0 0
\(40\) −173.960 −0.687638
\(41\) −368.847 −1.40498 −0.702491 0.711692i \(-0.747929\pi\)
−0.702491 + 0.711692i \(0.747929\pi\)
\(42\) 0 0
\(43\) −407.910 −1.44664 −0.723322 0.690511i \(-0.757386\pi\)
−0.723322 + 0.690511i \(0.757386\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −17.7283 −0.0568237
\(47\) −524.061 −1.62643 −0.813214 0.581964i \(-0.802284\pi\)
−0.813214 + 0.581964i \(0.802284\pi\)
\(48\) 0 0
\(49\) 662.712 1.93211
\(50\) 463.701 1.31154
\(51\) 0 0
\(52\) 204.818 0.546215
\(53\) −427.268 −1.10735 −0.553677 0.832732i \(-0.686776\pi\)
−0.553677 + 0.832732i \(0.686776\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 346.312 0.826391
\(57\) 0 0
\(58\) −214.209 −0.484948
\(59\) −434.633 −0.959058 −0.479529 0.877526i \(-0.659192\pi\)
−0.479529 + 0.877526i \(0.659192\pi\)
\(60\) 0 0
\(61\) 141.970 0.297990 0.148995 0.988838i \(-0.452396\pi\)
0.148995 + 0.988838i \(0.452396\pi\)
\(62\) 145.046 0.297110
\(63\) 0 0
\(64\) −78.1566 −0.152650
\(65\) 656.827 1.25338
\(66\) 0 0
\(67\) −5.94006 −0.0108312 −0.00541562 0.999985i \(-0.501724\pi\)
−0.00541562 + 0.999985i \(0.501724\pi\)
\(68\) 106.690 0.190266
\(69\) 0 0
\(70\) −1819.21 −3.10625
\(71\) 132.884 0.222118 0.111059 0.993814i \(-0.464576\pi\)
0.111059 + 0.993814i \(0.464576\pi\)
\(72\) 0 0
\(73\) −420.357 −0.673960 −0.336980 0.941512i \(-0.609405\pi\)
−0.336980 + 0.941512i \(0.609405\pi\)
\(74\) 663.659 1.04255
\(75\) 0 0
\(76\) −671.836 −1.01401
\(77\) 0 0
\(78\) 0 0
\(79\) −366.521 −0.521985 −0.260993 0.965341i \(-0.584050\pi\)
−0.260993 + 0.965341i \(0.584050\pi\)
\(80\) −1259.50 −1.76020
\(81\) 0 0
\(82\) −1328.23 −1.78877
\(83\) 773.629 1.02309 0.511547 0.859255i \(-0.329073\pi\)
0.511547 + 0.859255i \(0.329073\pi\)
\(84\) 0 0
\(85\) 342.142 0.436594
\(86\) −1468.90 −1.84181
\(87\) 0 0
\(88\) 0 0
\(89\) −14.6027 −0.0173919 −0.00869595 0.999962i \(-0.502768\pi\)
−0.00869595 + 0.999962i \(0.502768\pi\)
\(90\) 0 0
\(91\) −1307.58 −1.50628
\(92\) −24.4554 −0.0277136
\(93\) 0 0
\(94\) −1887.16 −2.07070
\(95\) −2154.49 −2.32680
\(96\) 0 0
\(97\) 1194.84 1.25070 0.625351 0.780344i \(-0.284956\pi\)
0.625351 + 0.780344i \(0.284956\pi\)
\(98\) 2386.45 2.45988
\(99\) 0 0
\(100\) 639.656 0.639656
\(101\) −1422.97 −1.40189 −0.700945 0.713215i \(-0.747238\pi\)
−0.700945 + 0.713215i \(0.747238\pi\)
\(102\) 0 0
\(103\) 61.1024 0.0584524 0.0292262 0.999573i \(-0.490696\pi\)
0.0292262 + 0.999573i \(0.490696\pi\)
\(104\) −450.259 −0.424534
\(105\) 0 0
\(106\) −1538.61 −1.40984
\(107\) 890.989 0.805001 0.402501 0.915420i \(-0.368141\pi\)
0.402501 + 0.915420i \(0.368141\pi\)
\(108\) 0 0
\(109\) 363.454 0.319382 0.159691 0.987167i \(-0.448950\pi\)
0.159691 + 0.987167i \(0.448950\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2507.35 2.11538
\(113\) 1025.57 0.853786 0.426893 0.904302i \(-0.359608\pi\)
0.426893 + 0.904302i \(0.359608\pi\)
\(114\) 0 0
\(115\) −78.4255 −0.0635932
\(116\) −295.492 −0.236515
\(117\) 0 0
\(118\) −1565.13 −1.22103
\(119\) −681.120 −0.524691
\(120\) 0 0
\(121\) 0 0
\(122\) 511.240 0.379389
\(123\) 0 0
\(124\) 200.085 0.144904
\(125\) 60.0348 0.0429574
\(126\) 0 0
\(127\) −2389.94 −1.66986 −0.834932 0.550353i \(-0.814493\pi\)
−0.834932 + 0.550353i \(0.814493\pi\)
\(128\) 1297.36 0.895873
\(129\) 0 0
\(130\) 2365.26 1.59575
\(131\) −878.775 −0.586099 −0.293050 0.956097i \(-0.594670\pi\)
−0.293050 + 0.956097i \(0.594670\pi\)
\(132\) 0 0
\(133\) 4289.07 2.79631
\(134\) −21.3904 −0.0137899
\(135\) 0 0
\(136\) −234.540 −0.147880
\(137\) −984.886 −0.614193 −0.307097 0.951678i \(-0.599357\pi\)
−0.307097 + 0.951678i \(0.599357\pi\)
\(138\) 0 0
\(139\) 1822.41 1.11205 0.556024 0.831166i \(-0.312326\pi\)
0.556024 + 0.831166i \(0.312326\pi\)
\(140\) −2509.53 −1.51496
\(141\) 0 0
\(142\) 478.520 0.282792
\(143\) 0 0
\(144\) 0 0
\(145\) −947.607 −0.542720
\(146\) −1513.72 −0.858058
\(147\) 0 0
\(148\) 915.490 0.508465
\(149\) 3402.12 1.87055 0.935276 0.353919i \(-0.115151\pi\)
0.935276 + 0.353919i \(0.115151\pi\)
\(150\) 0 0
\(151\) 1059.37 0.570929 0.285464 0.958389i \(-0.407852\pi\)
0.285464 + 0.958389i \(0.407852\pi\)
\(152\) 1476.92 0.788119
\(153\) 0 0
\(154\) 0 0
\(155\) 641.648 0.332506
\(156\) 0 0
\(157\) 1516.60 0.770943 0.385471 0.922720i \(-0.374039\pi\)
0.385471 + 0.922720i \(0.374039\pi\)
\(158\) −1319.86 −0.664571
\(159\) 0 0
\(160\) −3143.82 −1.55338
\(161\) 156.126 0.0764252
\(162\) 0 0
\(163\) −2395.86 −1.15128 −0.575639 0.817704i \(-0.695247\pi\)
−0.575639 + 0.817704i \(0.695247\pi\)
\(164\) −1832.24 −0.872404
\(165\) 0 0
\(166\) 2785.87 1.30256
\(167\) 2635.11 1.22102 0.610512 0.792007i \(-0.290964\pi\)
0.610512 + 0.792007i \(0.290964\pi\)
\(168\) 0 0
\(169\) −496.940 −0.226190
\(170\) 1232.07 0.555854
\(171\) 0 0
\(172\) −2026.29 −0.898273
\(173\) 433.778 0.190633 0.0953166 0.995447i \(-0.469614\pi\)
0.0953166 + 0.995447i \(0.469614\pi\)
\(174\) 0 0
\(175\) −4083.64 −1.76396
\(176\) 0 0
\(177\) 0 0
\(178\) −52.5848 −0.0221427
\(179\) 1620.46 0.676643 0.338321 0.941031i \(-0.390141\pi\)
0.338321 + 0.941031i \(0.390141\pi\)
\(180\) 0 0
\(181\) −1774.78 −0.728829 −0.364415 0.931237i \(-0.618731\pi\)
−0.364415 + 0.931237i \(0.618731\pi\)
\(182\) −4708.66 −1.91774
\(183\) 0 0
\(184\) 53.7612 0.0215398
\(185\) 2935.86 1.16675
\(186\) 0 0
\(187\) 0 0
\(188\) −2603.27 −1.00991
\(189\) 0 0
\(190\) −7758.42 −2.96239
\(191\) 1987.39 0.752894 0.376447 0.926438i \(-0.377146\pi\)
0.376447 + 0.926438i \(0.377146\pi\)
\(192\) 0 0
\(193\) −2192.87 −0.817855 −0.408927 0.912567i \(-0.634097\pi\)
−0.408927 + 0.912567i \(0.634097\pi\)
\(194\) 4302.68 1.59234
\(195\) 0 0
\(196\) 3292.02 1.19971
\(197\) −4825.72 −1.74527 −0.872636 0.488372i \(-0.837591\pi\)
−0.872636 + 0.488372i \(0.837591\pi\)
\(198\) 0 0
\(199\) −3488.25 −1.24259 −0.621296 0.783576i \(-0.713393\pi\)
−0.621296 + 0.783576i \(0.713393\pi\)
\(200\) −1406.18 −0.497159
\(201\) 0 0
\(202\) −5124.17 −1.78483
\(203\) 1886.45 0.652232
\(204\) 0 0
\(205\) −5875.78 −2.00187
\(206\) 220.032 0.0744193
\(207\) 0 0
\(208\) −3259.95 −1.08672
\(209\) 0 0
\(210\) 0 0
\(211\) 1525.30 0.497657 0.248829 0.968548i \(-0.419954\pi\)
0.248829 + 0.968548i \(0.419954\pi\)
\(212\) −2122.45 −0.687595
\(213\) 0 0
\(214\) 3208.48 1.02489
\(215\) −6498.05 −2.06123
\(216\) 0 0
\(217\) −1277.36 −0.399599
\(218\) 1308.81 0.406624
\(219\) 0 0
\(220\) 0 0
\(221\) 885.562 0.269545
\(222\) 0 0
\(223\) 2755.17 0.827352 0.413676 0.910424i \(-0.364245\pi\)
0.413676 + 0.910424i \(0.364245\pi\)
\(224\) 6258.58 1.86683
\(225\) 0 0
\(226\) 3693.13 1.08701
\(227\) −4711.54 −1.37760 −0.688802 0.724949i \(-0.741863\pi\)
−0.688802 + 0.724949i \(0.741863\pi\)
\(228\) 0 0
\(229\) 4066.26 1.17339 0.586695 0.809808i \(-0.300429\pi\)
0.586695 + 0.809808i \(0.300429\pi\)
\(230\) −282.413 −0.0809643
\(231\) 0 0
\(232\) 649.591 0.183826
\(233\) −2784.09 −0.782797 −0.391399 0.920221i \(-0.628009\pi\)
−0.391399 + 0.920221i \(0.628009\pi\)
\(234\) 0 0
\(235\) −8348.35 −2.31739
\(236\) −2159.03 −0.595513
\(237\) 0 0
\(238\) −2452.74 −0.668015
\(239\) 1554.86 0.420817 0.210409 0.977614i \(-0.432521\pi\)
0.210409 + 0.977614i \(0.432521\pi\)
\(240\) 0 0
\(241\) 924.309 0.247054 0.123527 0.992341i \(-0.460579\pi\)
0.123527 + 0.992341i \(0.460579\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 705.235 0.185033
\(245\) 10557.1 2.75293
\(246\) 0 0
\(247\) −5576.46 −1.43652
\(248\) −439.854 −0.112624
\(249\) 0 0
\(250\) 216.188 0.0546916
\(251\) 3410.93 0.857754 0.428877 0.903363i \(-0.358909\pi\)
0.428877 + 0.903363i \(0.358909\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −8606.27 −2.12600
\(255\) 0 0
\(256\) 5297.11 1.29324
\(257\) −5845.43 −1.41879 −0.709393 0.704813i \(-0.751031\pi\)
−0.709393 + 0.704813i \(0.751031\pi\)
\(258\) 0 0
\(259\) −5844.59 −1.40218
\(260\) 3262.78 0.778266
\(261\) 0 0
\(262\) −3164.51 −0.746198
\(263\) −426.069 −0.0998955 −0.0499477 0.998752i \(-0.515905\pi\)
−0.0499477 + 0.998752i \(0.515905\pi\)
\(264\) 0 0
\(265\) −6806.42 −1.57779
\(266\) 15445.1 3.56015
\(267\) 0 0
\(268\) −29.5071 −0.00672551
\(269\) 6563.67 1.48771 0.743855 0.668341i \(-0.232995\pi\)
0.743855 + 0.668341i \(0.232995\pi\)
\(270\) 0 0
\(271\) −2980.25 −0.668034 −0.334017 0.942567i \(-0.608404\pi\)
−0.334017 + 0.942567i \(0.608404\pi\)
\(272\) −1698.11 −0.378540
\(273\) 0 0
\(274\) −3546.61 −0.781966
\(275\) 0 0
\(276\) 0 0
\(277\) −431.890 −0.0936814 −0.0468407 0.998902i \(-0.514915\pi\)
−0.0468407 + 0.998902i \(0.514915\pi\)
\(278\) 6562.57 1.41582
\(279\) 0 0
\(280\) 5516.79 1.17747
\(281\) 2831.10 0.601030 0.300515 0.953777i \(-0.402841\pi\)
0.300515 + 0.953777i \(0.402841\pi\)
\(282\) 0 0
\(283\) 2058.70 0.432428 0.216214 0.976346i \(-0.430629\pi\)
0.216214 + 0.976346i \(0.430629\pi\)
\(284\) 660.099 0.137921
\(285\) 0 0
\(286\) 0 0
\(287\) 11697.2 2.40581
\(288\) 0 0
\(289\) −4451.71 −0.906108
\(290\) −3412.37 −0.690970
\(291\) 0 0
\(292\) −2088.12 −0.418486
\(293\) 7638.46 1.52302 0.761508 0.648156i \(-0.224460\pi\)
0.761508 + 0.648156i \(0.224460\pi\)
\(294\) 0 0
\(295\) −6923.75 −1.36650
\(296\) −2012.55 −0.395194
\(297\) 0 0
\(298\) 12251.2 2.38151
\(299\) −202.988 −0.0392612
\(300\) 0 0
\(301\) 12936.0 2.47715
\(302\) 3814.83 0.726884
\(303\) 0 0
\(304\) 10693.1 2.01741
\(305\) 2261.60 0.424587
\(306\) 0 0
\(307\) 4284.72 0.796553 0.398277 0.917265i \(-0.369608\pi\)
0.398277 + 0.917265i \(0.369608\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2310.60 0.423333
\(311\) −743.786 −0.135615 −0.0678074 0.997698i \(-0.521600\pi\)
−0.0678074 + 0.997698i \(0.521600\pi\)
\(312\) 0 0
\(313\) 1182.19 0.213487 0.106743 0.994287i \(-0.465958\pi\)
0.106743 + 0.994287i \(0.465958\pi\)
\(314\) 5461.34 0.981533
\(315\) 0 0
\(316\) −1820.69 −0.324119
\(317\) 1022.21 0.181114 0.0905571 0.995891i \(-0.471135\pi\)
0.0905571 + 0.995891i \(0.471135\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1245.04 −0.217500
\(321\) 0 0
\(322\) 562.216 0.0973014
\(323\) −2904.78 −0.500391
\(324\) 0 0
\(325\) 5309.36 0.906186
\(326\) −8627.60 −1.46576
\(327\) 0 0
\(328\) 4027.89 0.678058
\(329\) 16619.5 2.78500
\(330\) 0 0
\(331\) 4137.81 0.687113 0.343557 0.939132i \(-0.388368\pi\)
0.343557 + 0.939132i \(0.388368\pi\)
\(332\) 3842.99 0.635276
\(333\) 0 0
\(334\) 9489.14 1.55456
\(335\) −94.6258 −0.0154327
\(336\) 0 0
\(337\) −2023.80 −0.327132 −0.163566 0.986532i \(-0.552300\pi\)
−0.163566 + 0.986532i \(0.552300\pi\)
\(338\) −1789.50 −0.287976
\(339\) 0 0
\(340\) 1699.58 0.271097
\(341\) 0 0
\(342\) 0 0
\(343\) −10139.0 −1.59608
\(344\) 4454.46 0.698164
\(345\) 0 0
\(346\) 1562.05 0.242706
\(347\) −7311.66 −1.13115 −0.565577 0.824695i \(-0.691347\pi\)
−0.565577 + 0.824695i \(0.691347\pi\)
\(348\) 0 0
\(349\) −10218.9 −1.56735 −0.783673 0.621173i \(-0.786656\pi\)
−0.783673 + 0.621173i \(0.786656\pi\)
\(350\) −14705.3 −2.24581
\(351\) 0 0
\(352\) 0 0
\(353\) −4008.76 −0.604433 −0.302216 0.953239i \(-0.597726\pi\)
−0.302216 + 0.953239i \(0.597726\pi\)
\(354\) 0 0
\(355\) 2116.86 0.316482
\(356\) −72.5385 −0.0107993
\(357\) 0 0
\(358\) 5835.35 0.861474
\(359\) −798.351 −0.117369 −0.0586843 0.998277i \(-0.518691\pi\)
−0.0586843 + 0.998277i \(0.518691\pi\)
\(360\) 0 0
\(361\) 11432.6 1.66681
\(362\) −6391.04 −0.927916
\(363\) 0 0
\(364\) −6495.40 −0.935306
\(365\) −6696.33 −0.960280
\(366\) 0 0
\(367\) 2504.05 0.356159 0.178080 0.984016i \(-0.443012\pi\)
0.178080 + 0.984016i \(0.443012\pi\)
\(368\) 389.239 0.0551373
\(369\) 0 0
\(370\) 10572.2 1.48546
\(371\) 13549.9 1.89616
\(372\) 0 0
\(373\) 9807.89 1.36148 0.680742 0.732524i \(-0.261658\pi\)
0.680742 + 0.732524i \(0.261658\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 5722.85 0.784929
\(377\) −2452.68 −0.335065
\(378\) 0 0
\(379\) −10895.6 −1.47670 −0.738348 0.674420i \(-0.764394\pi\)
−0.738348 + 0.674420i \(0.764394\pi\)
\(380\) −10702.4 −1.44480
\(381\) 0 0
\(382\) 7156.68 0.958554
\(383\) 9693.76 1.29328 0.646642 0.762793i \(-0.276173\pi\)
0.646642 + 0.762793i \(0.276173\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −7896.60 −1.04126
\(387\) 0 0
\(388\) 5935.38 0.776606
\(389\) 12288.6 1.60169 0.800843 0.598874i \(-0.204385\pi\)
0.800843 + 0.598874i \(0.204385\pi\)
\(390\) 0 0
\(391\) −105.737 −0.0136760
\(392\) −7236.95 −0.932452
\(393\) 0 0
\(394\) −17377.6 −2.22201
\(395\) −5838.72 −0.743742
\(396\) 0 0
\(397\) −2988.47 −0.377801 −0.188901 0.981996i \(-0.560492\pi\)
−0.188901 + 0.981996i \(0.560492\pi\)
\(398\) −12561.3 −1.58202
\(399\) 0 0
\(400\) −10181.0 −1.27262
\(401\) −13527.7 −1.68465 −0.842323 0.538973i \(-0.818813\pi\)
−0.842323 + 0.538973i \(0.818813\pi\)
\(402\) 0 0
\(403\) 1660.77 0.205283
\(404\) −7068.59 −0.870484
\(405\) 0 0
\(406\) 6793.19 0.830396
\(407\) 0 0
\(408\) 0 0
\(409\) 4030.65 0.487293 0.243647 0.969864i \(-0.421656\pi\)
0.243647 + 0.969864i \(0.421656\pi\)
\(410\) −21158.9 −2.54870
\(411\) 0 0
\(412\) 303.525 0.0362952
\(413\) 13783.5 1.64223
\(414\) 0 0
\(415\) 12324.0 1.45774
\(416\) −8137.13 −0.959028
\(417\) 0 0
\(418\) 0 0
\(419\) 8327.13 0.970900 0.485450 0.874264i \(-0.338656\pi\)
0.485450 + 0.874264i \(0.338656\pi\)
\(420\) 0 0
\(421\) 635.158 0.0735290 0.0367645 0.999324i \(-0.488295\pi\)
0.0367645 + 0.999324i \(0.488295\pi\)
\(422\) 5492.65 0.633597
\(423\) 0 0
\(424\) 4665.85 0.534419
\(425\) 2765.65 0.315656
\(426\) 0 0
\(427\) −4502.29 −0.510261
\(428\) 4425.97 0.499854
\(429\) 0 0
\(430\) −23399.7 −2.62427
\(431\) −9689.22 −1.08286 −0.541431 0.840745i \(-0.682117\pi\)
−0.541431 + 0.840745i \(0.682117\pi\)
\(432\) 0 0
\(433\) 3904.36 0.433330 0.216665 0.976246i \(-0.430482\pi\)
0.216665 + 0.976246i \(0.430482\pi\)
\(434\) −4599.84 −0.508754
\(435\) 0 0
\(436\) 1805.45 0.198316
\(437\) 665.832 0.0728857
\(438\) 0 0
\(439\) −1221.08 −0.132754 −0.0663771 0.997795i \(-0.521144\pi\)
−0.0663771 + 0.997795i \(0.521144\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 3188.95 0.343173
\(443\) −15261.1 −1.63674 −0.818370 0.574691i \(-0.805122\pi\)
−0.818370 + 0.574691i \(0.805122\pi\)
\(444\) 0 0
\(445\) −232.622 −0.0247805
\(446\) 9921.46 1.05335
\(447\) 0 0
\(448\) 2478.58 0.261388
\(449\) −801.923 −0.0842875 −0.0421438 0.999112i \(-0.513419\pi\)
−0.0421438 + 0.999112i \(0.513419\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 5094.52 0.530146
\(453\) 0 0
\(454\) −16966.5 −1.75391
\(455\) −20829.9 −2.14620
\(456\) 0 0
\(457\) 12383.2 1.26753 0.633766 0.773525i \(-0.281508\pi\)
0.633766 + 0.773525i \(0.281508\pi\)
\(458\) 14642.8 1.49391
\(459\) 0 0
\(460\) −389.578 −0.0394873
\(461\) 4583.73 0.463092 0.231546 0.972824i \(-0.425622\pi\)
0.231546 + 0.972824i \(0.425622\pi\)
\(462\) 0 0
\(463\) −144.386 −0.0144928 −0.00724642 0.999974i \(-0.502307\pi\)
−0.00724642 + 0.999974i \(0.502307\pi\)
\(464\) 4703.14 0.470556
\(465\) 0 0
\(466\) −10025.6 −0.996626
\(467\) −3444.78 −0.341339 −0.170670 0.985328i \(-0.554593\pi\)
−0.170670 + 0.985328i \(0.554593\pi\)
\(468\) 0 0
\(469\) 188.377 0.0185468
\(470\) −30062.7 −2.95041
\(471\) 0 0
\(472\) 4746.28 0.462850
\(473\) 0 0
\(474\) 0 0
\(475\) −17415.5 −1.68227
\(476\) −3383.46 −0.325799
\(477\) 0 0
\(478\) 5599.10 0.535768
\(479\) 13373.0 1.27563 0.637815 0.770190i \(-0.279838\pi\)
0.637815 + 0.770190i \(0.279838\pi\)
\(480\) 0 0
\(481\) 7598.87 0.720330
\(482\) 3328.48 0.314539
\(483\) 0 0
\(484\) 0 0
\(485\) 19034.0 1.78204
\(486\) 0 0
\(487\) 17998.9 1.67476 0.837379 0.546623i \(-0.184087\pi\)
0.837379 + 0.546623i \(0.184087\pi\)
\(488\) −1550.34 −0.143813
\(489\) 0 0
\(490\) 38016.5 3.50492
\(491\) −13308.5 −1.22323 −0.611614 0.791156i \(-0.709479\pi\)
−0.611614 + 0.791156i \(0.709479\pi\)
\(492\) 0 0
\(493\) −1277.60 −0.116715
\(494\) −20081.1 −1.82893
\(495\) 0 0
\(496\) −3184.61 −0.288293
\(497\) −4214.14 −0.380342
\(498\) 0 0
\(499\) 20341.2 1.82484 0.912421 0.409254i \(-0.134211\pi\)
0.912421 + 0.409254i \(0.134211\pi\)
\(500\) 298.222 0.0266738
\(501\) 0 0
\(502\) 12282.9 1.09206
\(503\) 2052.86 0.181973 0.0909866 0.995852i \(-0.470998\pi\)
0.0909866 + 0.995852i \(0.470998\pi\)
\(504\) 0 0
\(505\) −22668.1 −1.99746
\(506\) 0 0
\(507\) 0 0
\(508\) −11872.0 −1.03688
\(509\) −7928.34 −0.690408 −0.345204 0.938528i \(-0.612190\pi\)
−0.345204 + 0.938528i \(0.612190\pi\)
\(510\) 0 0
\(511\) 13330.8 1.15405
\(512\) 8696.19 0.750627
\(513\) 0 0
\(514\) −21049.6 −1.80634
\(515\) 973.369 0.0832849
\(516\) 0 0
\(517\) 0 0
\(518\) −21046.6 −1.78520
\(519\) 0 0
\(520\) −7172.69 −0.604890
\(521\) 17091.1 1.43718 0.718592 0.695432i \(-0.244787\pi\)
0.718592 + 0.695432i \(0.244787\pi\)
\(522\) 0 0
\(523\) −10831.2 −0.905571 −0.452786 0.891619i \(-0.649570\pi\)
−0.452786 + 0.891619i \(0.649570\pi\)
\(524\) −4365.31 −0.363930
\(525\) 0 0
\(526\) −1534.29 −0.127183
\(527\) 865.097 0.0715070
\(528\) 0 0
\(529\) −12142.8 −0.998008
\(530\) −24510.2 −2.00878
\(531\) 0 0
\(532\) 21305.9 1.73633
\(533\) −15208.2 −1.23591
\(534\) 0 0
\(535\) 14193.6 1.14699
\(536\) 64.8666 0.00522726
\(537\) 0 0
\(538\) 23636.0 1.89409
\(539\) 0 0
\(540\) 0 0
\(541\) −20819.9 −1.65456 −0.827282 0.561787i \(-0.810114\pi\)
−0.827282 + 0.561787i \(0.810114\pi\)
\(542\) −10732.0 −0.850514
\(543\) 0 0
\(544\) −4238.64 −0.334062
\(545\) 5789.87 0.455066
\(546\) 0 0
\(547\) 4309.33 0.336844 0.168422 0.985715i \(-0.446133\pi\)
0.168422 + 0.985715i \(0.446133\pi\)
\(548\) −4892.41 −0.381375
\(549\) 0 0
\(550\) 0 0
\(551\) 8045.18 0.622026
\(552\) 0 0
\(553\) 11623.5 0.893816
\(554\) −1555.25 −0.119271
\(555\) 0 0
\(556\) 9052.80 0.690511
\(557\) 1871.85 0.142393 0.0711963 0.997462i \(-0.477318\pi\)
0.0711963 + 0.997462i \(0.477318\pi\)
\(558\) 0 0
\(559\) −16818.9 −1.27256
\(560\) 39942.4 3.01406
\(561\) 0 0
\(562\) 10194.9 0.765207
\(563\) −1073.87 −0.0803876 −0.0401938 0.999192i \(-0.512798\pi\)
−0.0401938 + 0.999192i \(0.512798\pi\)
\(564\) 0 0
\(565\) 16337.5 1.21650
\(566\) 7413.47 0.550550
\(567\) 0 0
\(568\) −1451.12 −0.107196
\(569\) 13847.6 1.02025 0.510126 0.860100i \(-0.329599\pi\)
0.510126 + 0.860100i \(0.329599\pi\)
\(570\) 0 0
\(571\) 781.386 0.0572680 0.0286340 0.999590i \(-0.490884\pi\)
0.0286340 + 0.999590i \(0.490884\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 42122.3 3.06298
\(575\) −633.940 −0.0459776
\(576\) 0 0
\(577\) 8759.01 0.631963 0.315981 0.948765i \(-0.397666\pi\)
0.315981 + 0.948765i \(0.397666\pi\)
\(578\) −16030.8 −1.15362
\(579\) 0 0
\(580\) −4707.22 −0.336995
\(581\) −24534.1 −1.75188
\(582\) 0 0
\(583\) 0 0
\(584\) 4590.38 0.325259
\(585\) 0 0
\(586\) 27506.4 1.93904
\(587\) 961.648 0.0676175 0.0338087 0.999428i \(-0.489236\pi\)
0.0338087 + 0.999428i \(0.489236\pi\)
\(588\) 0 0
\(589\) −5447.58 −0.381093
\(590\) −24932.7 −1.73977
\(591\) 0 0
\(592\) −14571.2 −1.01161
\(593\) −1880.24 −0.130206 −0.0651030 0.997879i \(-0.520738\pi\)
−0.0651030 + 0.997879i \(0.520738\pi\)
\(594\) 0 0
\(595\) −10850.3 −0.747597
\(596\) 16900.0 1.16149
\(597\) 0 0
\(598\) −730.968 −0.0499858
\(599\) −5062.67 −0.345334 −0.172667 0.984980i \(-0.555238\pi\)
−0.172667 + 0.984980i \(0.555238\pi\)
\(600\) 0 0
\(601\) −14187.5 −0.962929 −0.481465 0.876466i \(-0.659895\pi\)
−0.481465 + 0.876466i \(0.659895\pi\)
\(602\) 46583.2 3.15380
\(603\) 0 0
\(604\) 5262.40 0.354510
\(605\) 0 0
\(606\) 0 0
\(607\) −8470.75 −0.566420 −0.283210 0.959058i \(-0.591399\pi\)
−0.283210 + 0.959058i \(0.591399\pi\)
\(608\) 26691.0 1.78037
\(609\) 0 0
\(610\) 8144.11 0.540566
\(611\) −21608.0 −1.43071
\(612\) 0 0
\(613\) 11660.0 0.768261 0.384130 0.923279i \(-0.374501\pi\)
0.384130 + 0.923279i \(0.374501\pi\)
\(614\) 15429.4 1.01414
\(615\) 0 0
\(616\) 0 0
\(617\) −29514.0 −1.92575 −0.962877 0.269941i \(-0.912996\pi\)
−0.962877 + 0.269941i \(0.912996\pi\)
\(618\) 0 0
\(619\) 14933.4 0.969669 0.484834 0.874606i \(-0.338880\pi\)
0.484834 + 0.874606i \(0.338880\pi\)
\(620\) 3187.38 0.206465
\(621\) 0 0
\(622\) −2678.40 −0.172659
\(623\) 463.094 0.0297808
\(624\) 0 0
\(625\) −15139.7 −0.968942
\(626\) 4257.11 0.271802
\(627\) 0 0
\(628\) 7533.70 0.478706
\(629\) 3958.26 0.250916
\(630\) 0 0
\(631\) 5684.96 0.358660 0.179330 0.983789i \(-0.442607\pi\)
0.179330 + 0.983789i \(0.442607\pi\)
\(632\) 4002.48 0.251915
\(633\) 0 0
\(634\) 3681.03 0.230587
\(635\) −38072.0 −2.37928
\(636\) 0 0
\(637\) 27324.8 1.69961
\(638\) 0 0
\(639\) 0 0
\(640\) 20667.1 1.27647
\(641\) 9160.03 0.564429 0.282215 0.959351i \(-0.408931\pi\)
0.282215 + 0.959351i \(0.408931\pi\)
\(642\) 0 0
\(643\) −29979.9 −1.83871 −0.919355 0.393430i \(-0.871288\pi\)
−0.919355 + 0.393430i \(0.871288\pi\)
\(644\) 775.554 0.0474551
\(645\) 0 0
\(646\) −10460.2 −0.637078
\(647\) −13103.7 −0.796230 −0.398115 0.917336i \(-0.630335\pi\)
−0.398115 + 0.917336i \(0.630335\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 19119.2 1.15372
\(651\) 0 0
\(652\) −11901.4 −0.714870
\(653\) −11747.5 −0.704005 −0.352003 0.935999i \(-0.614499\pi\)
−0.352003 + 0.935999i \(0.614499\pi\)
\(654\) 0 0
\(655\) −13999.0 −0.835093
\(656\) 29162.5 1.73568
\(657\) 0 0
\(658\) 59847.6 3.54575
\(659\) −1585.28 −0.0937081 −0.0468541 0.998902i \(-0.514920\pi\)
−0.0468541 + 0.998902i \(0.514920\pi\)
\(660\) 0 0
\(661\) −9070.54 −0.533741 −0.266871 0.963732i \(-0.585990\pi\)
−0.266871 + 0.963732i \(0.585990\pi\)
\(662\) 14900.4 0.874805
\(663\) 0 0
\(664\) −8448.18 −0.493755
\(665\) 68325.4 3.98428
\(666\) 0 0
\(667\) 292.852 0.0170004
\(668\) 13089.9 0.758177
\(669\) 0 0
\(670\) −340.751 −0.0196483
\(671\) 0 0
\(672\) 0 0
\(673\) −15746.6 −0.901913 −0.450957 0.892546i \(-0.648917\pi\)
−0.450957 + 0.892546i \(0.648917\pi\)
\(674\) −7287.78 −0.416491
\(675\) 0 0
\(676\) −2468.54 −0.140450
\(677\) 18047.8 1.02457 0.512285 0.858815i \(-0.328799\pi\)
0.512285 + 0.858815i \(0.328799\pi\)
\(678\) 0 0
\(679\) −37892.1 −2.14163
\(680\) −3736.26 −0.210704
\(681\) 0 0
\(682\) 0 0
\(683\) 10422.1 0.583881 0.291941 0.956436i \(-0.405699\pi\)
0.291941 + 0.956436i \(0.405699\pi\)
\(684\) 0 0
\(685\) −15689.3 −0.875123
\(686\) −36511.0 −2.03207
\(687\) 0 0
\(688\) 32251.0 1.78715
\(689\) −17617.0 −0.974100
\(690\) 0 0
\(691\) −8031.22 −0.442145 −0.221072 0.975257i \(-0.570956\pi\)
−0.221072 + 0.975257i \(0.570956\pi\)
\(692\) 2154.79 0.118371
\(693\) 0 0
\(694\) −26329.6 −1.44014
\(695\) 29031.2 1.58448
\(696\) 0 0
\(697\) −7921.98 −0.430511
\(698\) −36798.6 −1.99548
\(699\) 0 0
\(700\) −20285.4 −1.09531
\(701\) −5193.62 −0.279829 −0.139915 0.990164i \(-0.544683\pi\)
−0.139915 + 0.990164i \(0.544683\pi\)
\(702\) 0 0
\(703\) −24925.5 −1.33724
\(704\) 0 0
\(705\) 0 0
\(706\) −14435.7 −0.769539
\(707\) 45126.6 2.40051
\(708\) 0 0
\(709\) −32288.8 −1.71034 −0.855171 0.518347i \(-0.826548\pi\)
−0.855171 + 0.518347i \(0.826548\pi\)
\(710\) 7622.88 0.402932
\(711\) 0 0
\(712\) 159.464 0.00839349
\(713\) −198.297 −0.0104155
\(714\) 0 0
\(715\) 0 0
\(716\) 8049.62 0.420152
\(717\) 0 0
\(718\) −2874.89 −0.149429
\(719\) −8844.76 −0.458768 −0.229384 0.973336i \(-0.573671\pi\)
−0.229384 + 0.973336i \(0.573671\pi\)
\(720\) 0 0
\(721\) −1937.74 −0.100090
\(722\) 41169.4 2.12211
\(723\) 0 0
\(724\) −8816.18 −0.452556
\(725\) −7659.83 −0.392385
\(726\) 0 0
\(727\) 17537.4 0.894670 0.447335 0.894367i \(-0.352373\pi\)
0.447335 + 0.894367i \(0.352373\pi\)
\(728\) 14279.1 0.726947
\(729\) 0 0
\(730\) −24113.8 −1.22259
\(731\) −8760.95 −0.443277
\(732\) 0 0
\(733\) 882.175 0.0444527 0.0222264 0.999753i \(-0.492925\pi\)
0.0222264 + 0.999753i \(0.492925\pi\)
\(734\) 9017.19 0.453447
\(735\) 0 0
\(736\) 971.577 0.0486587
\(737\) 0 0
\(738\) 0 0
\(739\) 1441.71 0.0717650 0.0358825 0.999356i \(-0.488576\pi\)
0.0358825 + 0.999356i \(0.488576\pi\)
\(740\) 14583.9 0.724478
\(741\) 0 0
\(742\) 48793.8 2.41412
\(743\) −31943.3 −1.57723 −0.788617 0.614884i \(-0.789203\pi\)
−0.788617 + 0.614884i \(0.789203\pi\)
\(744\) 0 0
\(745\) 54196.1 2.66522
\(746\) 35318.6 1.73339
\(747\) 0 0
\(748\) 0 0
\(749\) −28255.9 −1.37843
\(750\) 0 0
\(751\) −32895.5 −1.59837 −0.799183 0.601088i \(-0.794734\pi\)
−0.799183 + 0.601088i \(0.794734\pi\)
\(752\) 41434.3 2.00925
\(753\) 0 0
\(754\) −8832.21 −0.426592
\(755\) 16875.9 0.813478
\(756\) 0 0
\(757\) 1794.93 0.0861792 0.0430896 0.999071i \(-0.486280\pi\)
0.0430896 + 0.999071i \(0.486280\pi\)
\(758\) −39235.4 −1.88007
\(759\) 0 0
\(760\) 23527.5 1.12294
\(761\) 304.527 0.0145060 0.00725302 0.999974i \(-0.497691\pi\)
0.00725302 + 0.999974i \(0.497691\pi\)
\(762\) 0 0
\(763\) −11526.2 −0.546890
\(764\) 9872.35 0.467499
\(765\) 0 0
\(766\) 34907.6 1.64656
\(767\) −17920.7 −0.843649
\(768\) 0 0
\(769\) −23116.6 −1.08402 −0.542008 0.840374i \(-0.682336\pi\)
−0.542008 + 0.840374i \(0.682336\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10893.0 −0.507835
\(773\) 10896.9 0.507030 0.253515 0.967331i \(-0.418413\pi\)
0.253515 + 0.967331i \(0.418413\pi\)
\(774\) 0 0
\(775\) 5186.66 0.240400
\(776\) −13047.9 −0.603600
\(777\) 0 0
\(778\) 44251.7 2.03920
\(779\) 49885.4 2.29439
\(780\) 0 0
\(781\) 0 0
\(782\) −380.762 −0.0174118
\(783\) 0 0
\(784\) −52396.7 −2.38687
\(785\) 24159.6 1.09846
\(786\) 0 0
\(787\) −19310.9 −0.874662 −0.437331 0.899301i \(-0.644076\pi\)
−0.437331 + 0.899301i \(0.644076\pi\)
\(788\) −23971.7 −1.08370
\(789\) 0 0
\(790\) −21025.5 −0.946902
\(791\) −32524.0 −1.46197
\(792\) 0 0
\(793\) 5853.68 0.262132
\(794\) −10761.6 −0.481001
\(795\) 0 0
\(796\) −17327.9 −0.771570
\(797\) −33816.1 −1.50292 −0.751460 0.659778i \(-0.770650\pi\)
−0.751460 + 0.659778i \(0.770650\pi\)
\(798\) 0 0
\(799\) −11255.6 −0.498366
\(800\) −25412.6 −1.12309
\(801\) 0 0
\(802\) −48713.9 −2.14482
\(803\) 0 0
\(804\) 0 0
\(805\) 2487.10 0.108893
\(806\) 5980.50 0.261358
\(807\) 0 0
\(808\) 15539.1 0.676565
\(809\) −31725.9 −1.37877 −0.689384 0.724396i \(-0.742119\pi\)
−0.689384 + 0.724396i \(0.742119\pi\)
\(810\) 0 0
\(811\) −13034.9 −0.564387 −0.282194 0.959357i \(-0.591062\pi\)
−0.282194 + 0.959357i \(0.591062\pi\)
\(812\) 9370.93 0.404994
\(813\) 0 0
\(814\) 0 0
\(815\) −38166.4 −1.64038
\(816\) 0 0
\(817\) 55168.4 2.36242
\(818\) 14514.5 0.620402
\(819\) 0 0
\(820\) −29187.9 −1.24303
\(821\) −1908.17 −0.0811154 −0.0405577 0.999177i \(-0.512913\pi\)
−0.0405577 + 0.999177i \(0.512913\pi\)
\(822\) 0 0
\(823\) 17024.9 0.721084 0.360542 0.932743i \(-0.382592\pi\)
0.360542 + 0.932743i \(0.382592\pi\)
\(824\) −667.251 −0.0282097
\(825\) 0 0
\(826\) 49634.9 2.09082
\(827\) −20952.3 −0.880995 −0.440498 0.897754i \(-0.645198\pi\)
−0.440498 + 0.897754i \(0.645198\pi\)
\(828\) 0 0
\(829\) 6064.60 0.254080 0.127040 0.991898i \(-0.459452\pi\)
0.127040 + 0.991898i \(0.459452\pi\)
\(830\) 44379.2 1.85593
\(831\) 0 0
\(832\) −3222.54 −0.134281
\(833\) 14233.5 0.592031
\(834\) 0 0
\(835\) 41977.6 1.73975
\(836\) 0 0
\(837\) 0 0
\(838\) 29986.3 1.23611
\(839\) −14693.0 −0.604598 −0.302299 0.953213i \(-0.597754\pi\)
−0.302299 + 0.953213i \(0.597754\pi\)
\(840\) 0 0
\(841\) −20850.5 −0.854914
\(842\) 2287.23 0.0936142
\(843\) 0 0
\(844\) 7576.89 0.309013
\(845\) −7916.30 −0.322283
\(846\) 0 0
\(847\) 0 0
\(848\) 33781.5 1.36800
\(849\) 0 0
\(850\) 9959.21 0.401880
\(851\) −907.309 −0.0365478
\(852\) 0 0
\(853\) −1193.20 −0.0478949 −0.0239474 0.999713i \(-0.507623\pi\)
−0.0239474 + 0.999713i \(0.507623\pi\)
\(854\) −16212.9 −0.649643
\(855\) 0 0
\(856\) −9729.77 −0.388501
\(857\) −12579.5 −0.501410 −0.250705 0.968064i \(-0.580662\pi\)
−0.250705 + 0.968064i \(0.580662\pi\)
\(858\) 0 0
\(859\) −23421.2 −0.930293 −0.465146 0.885234i \(-0.653998\pi\)
−0.465146 + 0.885234i \(0.653998\pi\)
\(860\) −32279.0 −1.27989
\(861\) 0 0
\(862\) −34891.3 −1.37866
\(863\) 40751.6 1.60742 0.803708 0.595024i \(-0.202857\pi\)
0.803708 + 0.595024i \(0.202857\pi\)
\(864\) 0 0
\(865\) 6910.14 0.271620
\(866\) 14059.8 0.551698
\(867\) 0 0
\(868\) −6345.29 −0.248126
\(869\) 0 0
\(870\) 0 0
\(871\) −244.919 −0.00952786
\(872\) −3968.99 −0.154137
\(873\) 0 0
\(874\) 2397.69 0.0927952
\(875\) −1903.88 −0.0735576
\(876\) 0 0
\(877\) −22946.4 −0.883517 −0.441758 0.897134i \(-0.645645\pi\)
−0.441758 + 0.897134i \(0.645645\pi\)
\(878\) −4397.17 −0.169017
\(879\) 0 0
\(880\) 0 0
\(881\) −34636.1 −1.32454 −0.662269 0.749266i \(-0.730406\pi\)
−0.662269 + 0.749266i \(0.730406\pi\)
\(882\) 0 0
\(883\) −21216.8 −0.808608 −0.404304 0.914625i \(-0.632486\pi\)
−0.404304 + 0.914625i \(0.632486\pi\)
\(884\) 4399.02 0.167370
\(885\) 0 0
\(886\) −54955.8 −2.08383
\(887\) 19141.6 0.724590 0.362295 0.932064i \(-0.381993\pi\)
0.362295 + 0.932064i \(0.381993\pi\)
\(888\) 0 0
\(889\) 75792.1 2.85938
\(890\) −837.681 −0.0315496
\(891\) 0 0
\(892\) 13686.2 0.513733
\(893\) 70877.5 2.65602
\(894\) 0 0
\(895\) 25814.1 0.964103
\(896\) −41143.2 −1.53404
\(897\) 0 0
\(898\) −2887.76 −0.107311
\(899\) −2396.00 −0.0888889
\(900\) 0 0
\(901\) −9176.71 −0.339312
\(902\) 0 0
\(903\) 0 0
\(904\) −11199.5 −0.412045
\(905\) −28272.4 −1.03846
\(906\) 0 0
\(907\) 6740.07 0.246748 0.123374 0.992360i \(-0.460629\pi\)
0.123374 + 0.992360i \(0.460629\pi\)
\(908\) −23404.5 −0.855404
\(909\) 0 0
\(910\) −75009.4 −2.73246
\(911\) 21836.9 0.794169 0.397084 0.917782i \(-0.370022\pi\)
0.397084 + 0.917782i \(0.370022\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 44592.4 1.61377
\(915\) 0 0
\(916\) 20199.1 0.728599
\(917\) 27868.6 1.00360
\(918\) 0 0
\(919\) −11490.8 −0.412456 −0.206228 0.978504i \(-0.566119\pi\)
−0.206228 + 0.978504i \(0.566119\pi\)
\(920\) 856.422 0.0306906
\(921\) 0 0
\(922\) 16506.2 0.589590
\(923\) 5479.04 0.195390
\(924\) 0 0
\(925\) 23731.6 0.843557
\(926\) −519.939 −0.0184517
\(927\) 0 0
\(928\) 11739.5 0.415266
\(929\) 22645.0 0.799740 0.399870 0.916572i \(-0.369055\pi\)
0.399870 + 0.916572i \(0.369055\pi\)
\(930\) 0 0
\(931\) −89629.6 −3.15520
\(932\) −13829.9 −0.486067
\(933\) 0 0
\(934\) −12404.8 −0.434579
\(935\) 0 0
\(936\) 0 0
\(937\) 21984.6 0.766494 0.383247 0.923646i \(-0.374806\pi\)
0.383247 + 0.923646i \(0.374806\pi\)
\(938\) 678.352 0.0236130
\(939\) 0 0
\(940\) −41470.3 −1.43895
\(941\) −1475.41 −0.0511126 −0.0255563 0.999673i \(-0.508136\pi\)
−0.0255563 + 0.999673i \(0.508136\pi\)
\(942\) 0 0
\(943\) 1815.87 0.0627072
\(944\) 34363.8 1.18480
\(945\) 0 0
\(946\) 0 0
\(947\) −44129.0 −1.51426 −0.757128 0.653266i \(-0.773398\pi\)
−0.757128 + 0.653266i \(0.773398\pi\)
\(948\) 0 0
\(949\) −17332.1 −0.592859
\(950\) −62714.0 −2.14180
\(951\) 0 0
\(952\) 7437.97 0.253221
\(953\) 46294.9 1.57360 0.786799 0.617209i \(-0.211737\pi\)
0.786799 + 0.617209i \(0.211737\pi\)
\(954\) 0 0
\(955\) 31659.4 1.07275
\(956\) 7723.73 0.261300
\(957\) 0 0
\(958\) 48156.6 1.62408
\(959\) 31233.6 1.05171
\(960\) 0 0
\(961\) −28168.6 −0.945541
\(962\) 27363.8 0.917095
\(963\) 0 0
\(964\) 4591.50 0.153405
\(965\) −34932.6 −1.16531
\(966\) 0 0
\(967\) 41724.4 1.38755 0.693777 0.720189i \(-0.255945\pi\)
0.693777 + 0.720189i \(0.255945\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 68542.2 2.26882
\(971\) 4172.09 0.137887 0.0689437 0.997621i \(-0.478037\pi\)
0.0689437 + 0.997621i \(0.478037\pi\)
\(972\) 0 0
\(973\) −57794.0 −1.90420
\(974\) 64814.7 2.13223
\(975\) 0 0
\(976\) −11224.7 −0.368130
\(977\) −20138.9 −0.659470 −0.329735 0.944074i \(-0.606959\pi\)
−0.329735 + 0.944074i \(0.606959\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 52442.2 1.70939
\(981\) 0 0
\(982\) −47924.5 −1.55736
\(983\) −38495.2 −1.24904 −0.624520 0.781008i \(-0.714706\pi\)
−0.624520 + 0.781008i \(0.714706\pi\)
\(984\) 0 0
\(985\) −76874.3 −2.48672
\(986\) −4600.70 −0.148597
\(987\) 0 0
\(988\) −27701.0 −0.891990
\(989\) 2008.18 0.0645666
\(990\) 0 0
\(991\) −920.782 −0.0295152 −0.0147576 0.999891i \(-0.504698\pi\)
−0.0147576 + 0.999891i \(0.504698\pi\)
\(992\) −7949.08 −0.254419
\(993\) 0 0
\(994\) −15175.3 −0.484236
\(995\) −55568.3 −1.77049
\(996\) 0 0
\(997\) −55986.4 −1.77844 −0.889222 0.457476i \(-0.848753\pi\)
−0.889222 + 0.457476i \(0.848753\pi\)
\(998\) 73249.4 2.32331
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.4.a.bl.1.10 12
3.2 odd 2 inner 1089.4.a.bl.1.3 12
11.2 odd 10 99.4.f.e.37.5 yes 24
11.6 odd 10 99.4.f.e.91.5 yes 24
11.10 odd 2 1089.4.a.bm.1.3 12
33.2 even 10 99.4.f.e.37.2 24
33.17 even 10 99.4.f.e.91.2 yes 24
33.32 even 2 1089.4.a.bm.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.4.f.e.37.2 24 33.2 even 10
99.4.f.e.37.5 yes 24 11.2 odd 10
99.4.f.e.91.2 yes 24 33.17 even 10
99.4.f.e.91.5 yes 24 11.6 odd 10
1089.4.a.bl.1.3 12 3.2 odd 2 inner
1089.4.a.bl.1.10 12 1.1 even 1 trivial
1089.4.a.bm.1.3 12 11.10 odd 2
1089.4.a.bm.1.10 12 33.32 even 2