Properties

Label 99.4.f.e.91.2
Level $99$
Weight $4$
Character 99.91
Analytic conductor $5.841$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.2
Character \(\chi\) \(=\) 99.91
Dual form 99.4.f.e.37.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.91330 + 2.11664i) q^{2} +(1.53504 - 4.72436i) q^{4} +(12.8877 + 9.36349i) q^{5} +(9.79985 - 30.1608i) q^{7} +(-3.37453 - 10.3857i) q^{8} +O(q^{10})\) \(q+(-2.91330 + 2.11664i) q^{2} +(1.53504 - 4.72436i) q^{4} +(12.8877 + 9.36349i) q^{5} +(9.79985 - 30.1608i) q^{7} +(-3.37453 - 10.3857i) q^{8} -57.3650 q^{10} +(24.0631 + 27.4220i) q^{11} +(33.3572 - 24.2354i) q^{13} +(35.2896 + 108.610i) q^{14} +(63.9641 + 46.4726i) q^{16} +(-17.3758 - 12.6243i) q^{17} +(41.7935 + 128.627i) q^{19} +(64.0197 - 46.5130i) q^{20} +(-128.146 - 28.9555i) q^{22} +4.92310 q^{23} +(39.7917 + 122.466i) q^{25} +(-45.8820 + 141.210i) q^{26} +(-127.447 - 92.5960i) q^{28} +(-18.3820 + 56.5738i) q^{29} +(-32.5863 + 23.6753i) q^{31} -197.351 q^{32} +77.3419 q^{34} +(408.708 - 296.944i) q^{35} +(56.9507 - 175.276i) q^{37} +(-394.014 - 286.268i) q^{38} +(53.7566 - 165.446i) q^{40} +(-113.980 - 350.795i) q^{41} +407.910 q^{43} +(166.489 - 71.5892i) q^{44} +(-14.3425 + 10.4204i) q^{46} +(161.944 + 498.412i) q^{47} +(-536.146 - 389.533i) q^{49} +(-375.142 - 272.557i) q^{50} +(-63.2924 - 194.794i) q^{52} +(-345.667 + 251.142i) q^{53} +(53.3541 + 578.722i) q^{55} -346.312 q^{56} +(-66.1941 - 203.725i) q^{58} +(134.309 - 413.361i) q^{59} +(114.856 + 83.4480i) q^{61} +(44.8217 - 137.947i) q^{62} +(63.2300 - 45.9393i) q^{64} +656.827 q^{65} -5.94006 q^{67} +(-86.3140 + 62.7108i) q^{68} +(-562.168 + 1730.18i) q^{70} +(107.505 + 78.1072i) q^{71} +(129.897 - 399.783i) q^{73} +(205.082 + 631.177i) q^{74} +671.836 q^{76} +(1062.88 - 457.033i) q^{77} +(-296.522 + 215.436i) q^{79} +(389.206 + 1197.85i) q^{80} +(1074.56 + 780.717i) q^{82} +(-625.879 - 454.728i) q^{83} +(-105.728 - 325.396i) q^{85} +(-1188.36 + 863.398i) q^{86} +(203.595 - 342.450i) q^{88} +14.6027 q^{89} +(-404.065 - 1243.58i) q^{91} +(7.55714 - 23.2585i) q^{92} +(-1526.75 - 1109.25i) q^{94} +(-665.775 + 2049.05i) q^{95} +(-966.650 + 702.312i) q^{97} +2386.45 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 28 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 4 q^{4} - 28 q^{7} + 208 q^{10} + 20 q^{13} - 224 q^{16} - 40 q^{19} - 586 q^{22} + 362 q^{25} - 150 q^{28} + 670 q^{31} - 2520 q^{34} - 516 q^{37} + 2002 q^{40} + 4008 q^{43} + 2174 q^{46} + 342 q^{49} - 1894 q^{52} - 3300 q^{55} + 22 q^{58} - 2952 q^{61} - 3992 q^{64} - 1936 q^{67} - 1024 q^{70} + 2194 q^{73} + 15336 q^{76} + 1524 q^{79} + 2898 q^{82} - 7428 q^{85} - 3936 q^{88} - 6460 q^{91} - 16982 q^{94} - 1224 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.91330 + 2.11664i −1.03001 + 0.748345i −0.968310 0.249750i \(-0.919651\pi\)
−0.0616976 + 0.998095i \(0.519651\pi\)
\(3\) 0 0
\(4\) 1.53504 4.72436i 0.191880 0.590545i
\(5\) 12.8877 + 9.36349i 1.15271 + 0.837496i 0.988839 0.148985i \(-0.0476007\pi\)
0.163875 + 0.986481i \(0.447601\pi\)
\(6\) 0 0
\(7\) 9.79985 30.1608i 0.529142 1.62853i −0.226835 0.973933i \(-0.572838\pi\)
0.755977 0.654598i \(-0.227162\pi\)
\(8\) −3.37453 10.3857i −0.149134 0.458989i
\(9\) 0 0
\(10\) −57.3650 −1.81404
\(11\) 24.0631 + 27.4220i 0.659574 + 0.751640i
\(12\) 0 0
\(13\) 33.3572 24.2354i 0.711664 0.517054i −0.172046 0.985089i \(-0.555038\pi\)
0.883710 + 0.468035i \(0.155038\pi\)
\(14\) 35.2896 + 108.610i 0.673682 + 2.07338i
\(15\) 0 0
\(16\) 63.9641 + 46.4726i 0.999439 + 0.726135i
\(17\) −17.3758 12.6243i −0.247897 0.180108i 0.456897 0.889519i \(-0.348961\pi\)
−0.704794 + 0.709412i \(0.748961\pi\)
\(18\) 0 0
\(19\) 41.7935 + 128.627i 0.504636 + 1.55311i 0.801381 + 0.598154i \(0.204099\pi\)
−0.296745 + 0.954957i \(0.595901\pi\)
\(20\) 64.0197 46.5130i 0.715762 0.520031i
\(21\) 0 0
\(22\) −128.146 28.9555i −1.24185 0.280606i
\(23\) 4.92310 0.0446320 0.0223160 0.999751i \(-0.492896\pi\)
0.0223160 + 0.999751i \(0.492896\pi\)
\(24\) 0 0
\(25\) 39.7917 + 122.466i 0.318334 + 0.979730i
\(26\) −45.8820 + 141.210i −0.346085 + 1.06514i
\(27\) 0 0
\(28\) −127.447 92.5960i −0.860190 0.624964i
\(29\) −18.3820 + 56.5738i −0.117705 + 0.362258i −0.992502 0.122232i \(-0.960995\pi\)
0.874797 + 0.484490i \(0.160995\pi\)
\(30\) 0 0
\(31\) −32.5863 + 23.6753i −0.188796 + 0.137168i −0.678168 0.734907i \(-0.737226\pi\)
0.489372 + 0.872075i \(0.337226\pi\)
\(32\) −197.351 −1.09022
\(33\) 0 0
\(34\) 77.3419 0.390118
\(35\) 408.708 296.944i 1.97384 1.43408i
\(36\) 0 0
\(37\) 56.9507 175.276i 0.253044 0.778791i −0.741164 0.671324i \(-0.765726\pi\)
0.994209 0.107467i \(-0.0342739\pi\)
\(38\) −394.014 286.268i −1.68204 1.22207i
\(39\) 0 0
\(40\) 53.7566 165.446i 0.212492 0.653982i
\(41\) −113.980 350.795i −0.434164 1.33622i −0.893941 0.448184i \(-0.852071\pi\)
0.459778 0.888034i \(-0.347929\pi\)
\(42\) 0 0
\(43\) 407.910 1.44664 0.723322 0.690511i \(-0.242614\pi\)
0.723322 + 0.690511i \(0.242614\pi\)
\(44\) 166.489 71.5892i 0.570436 0.245284i
\(45\) 0 0
\(46\) −14.3425 + 10.4204i −0.0459713 + 0.0334001i
\(47\) 161.944 + 498.412i 0.502594 + 1.54683i 0.804778 + 0.593576i \(0.202284\pi\)
−0.302184 + 0.953250i \(0.597716\pi\)
\(48\) 0 0
\(49\) −536.146 389.533i −1.56311 1.13566i
\(50\) −375.142 272.557i −1.06106 0.770906i
\(51\) 0 0
\(52\) −63.2924 194.794i −0.168790 0.519482i
\(53\) −345.667 + 251.142i −0.895868 + 0.650886i −0.937401 0.348251i \(-0.886776\pi\)
0.0415337 + 0.999137i \(0.486776\pi\)
\(54\) 0 0
\(55\) 53.3541 + 578.722i 0.130805 + 1.41882i
\(56\) −346.312 −0.826391
\(57\) 0 0
\(58\) −66.1941 203.725i −0.149857 0.461213i
\(59\) 134.309 413.361i 0.296365 0.912118i −0.686394 0.727229i \(-0.740808\pi\)
0.982760 0.184888i \(-0.0591924\pi\)
\(60\) 0 0
\(61\) 114.856 + 83.4480i 0.241079 + 0.175154i 0.701764 0.712410i \(-0.252396\pi\)
−0.460685 + 0.887564i \(0.652396\pi\)
\(62\) 44.8217 137.947i 0.0918122 0.282569i
\(63\) 0 0
\(64\) 63.2300 45.9393i 0.123496 0.0897252i
\(65\) 656.827 1.25338
\(66\) 0 0
\(67\) −5.94006 −0.0108312 −0.00541562 0.999985i \(-0.501724\pi\)
−0.00541562 + 0.999985i \(0.501724\pi\)
\(68\) −86.3140 + 62.7108i −0.153928 + 0.111835i
\(69\) 0 0
\(70\) −562.168 + 1730.18i −0.959885 + 2.95422i
\(71\) 107.505 + 78.1072i 0.179698 + 0.130558i 0.673998 0.738733i \(-0.264576\pi\)
−0.494300 + 0.869291i \(0.664576\pi\)
\(72\) 0 0
\(73\) 129.897 399.783i 0.208265 0.640974i −0.791299 0.611430i \(-0.790595\pi\)
0.999563 0.0295437i \(-0.00940542\pi\)
\(74\) 205.082 + 631.177i 0.322166 + 0.991525i
\(75\) 0 0
\(76\) 671.836 1.01401
\(77\) 1062.88 457.033i 1.57308 0.676413i
\(78\) 0 0
\(79\) −296.522 + 215.436i −0.422295 + 0.306815i −0.778561 0.627569i \(-0.784050\pi\)
0.356266 + 0.934385i \(0.384050\pi\)
\(80\) 389.206 + 1197.85i 0.543932 + 1.67405i
\(81\) 0 0
\(82\) 1074.56 + 780.717i 1.44714 + 1.05141i
\(83\) −625.879 454.728i −0.827701 0.601360i 0.0912072 0.995832i \(-0.470927\pi\)
−0.918908 + 0.394472i \(0.870927\pi\)
\(84\) 0 0
\(85\) −105.728 325.396i −0.134915 0.415225i
\(86\) −1188.36 + 863.398i −1.49005 + 1.08259i
\(87\) 0 0
\(88\) 203.595 342.450i 0.246629 0.414832i
\(89\) 14.6027 0.0173919 0.00869595 0.999962i \(-0.497232\pi\)
0.00869595 + 0.999962i \(0.497232\pi\)
\(90\) 0 0
\(91\) −404.065 1243.58i −0.465467 1.43256i
\(92\) 7.55714 23.2585i 0.00856398 0.0263572i
\(93\) 0 0
\(94\) −1526.75 1109.25i −1.67523 1.21713i
\(95\) −665.775 + 2049.05i −0.719022 + 2.21292i
\(96\) 0 0
\(97\) −966.650 + 702.312i −1.01184 + 0.735144i −0.964594 0.263739i \(-0.915044\pi\)
−0.0472452 + 0.998883i \(0.515044\pi\)
\(98\) 2386.45 2.45988
\(99\) 0 0
\(100\) 639.656 0.639656
\(101\) 1151.21 836.401i 1.13415 0.824010i 0.147859 0.989008i \(-0.452762\pi\)
0.986294 + 0.164998i \(0.0527619\pi\)
\(102\) 0 0
\(103\) 18.8817 58.1118i 0.0180628 0.0555916i −0.941619 0.336681i \(-0.890696\pi\)
0.959682 + 0.281089i \(0.0906957\pi\)
\(104\) −364.268 264.656i −0.343455 0.249535i
\(105\) 0 0
\(106\) 475.456 1463.30i 0.435664 1.34084i
\(107\) 275.331 + 847.380i 0.248759 + 0.765601i 0.994995 + 0.0999205i \(0.0318588\pi\)
−0.746236 + 0.665681i \(0.768141\pi\)
\(108\) 0 0
\(109\) −363.454 −0.319382 −0.159691 0.987167i \(-0.551050\pi\)
−0.159691 + 0.987167i \(0.551050\pi\)
\(110\) −1380.38 1573.06i −1.19649 1.36350i
\(111\) 0 0
\(112\) 2028.49 1473.79i 1.71138 1.24339i
\(113\) −316.920 975.378i −0.263834 0.811999i −0.991960 0.126555i \(-0.959608\pi\)
0.728125 0.685444i \(-0.240392\pi\)
\(114\) 0 0
\(115\) 63.4476 + 46.0973i 0.0514480 + 0.0373791i
\(116\) 239.058 + 173.686i 0.191345 + 0.139020i
\(117\) 0 0
\(118\) 483.652 + 1488.53i 0.377320 + 1.16127i
\(119\) −551.038 + 400.353i −0.424484 + 0.308406i
\(120\) 0 0
\(121\) −172.930 + 1319.72i −0.129925 + 0.991524i
\(122\) −511.240 −0.379389
\(123\) 0 0
\(124\) 61.8296 + 190.292i 0.0447779 + 0.137812i
\(125\) −18.5518 + 57.0965i −0.0132746 + 0.0408549i
\(126\) 0 0
\(127\) −1933.50 1404.77i −1.35095 0.981522i −0.998964 0.0455164i \(-0.985507\pi\)
−0.351985 0.936005i \(-0.614493\pi\)
\(128\) 400.907 1233.86i 0.276840 0.852025i
\(129\) 0 0
\(130\) −1913.54 + 1390.27i −1.29099 + 0.937957i
\(131\) −878.775 −0.586099 −0.293050 0.956097i \(-0.594670\pi\)
−0.293050 + 0.956097i \(0.594670\pi\)
\(132\) 0 0
\(133\) 4289.07 2.79631
\(134\) 17.3052 12.5729i 0.0111563 0.00810550i
\(135\) 0 0
\(136\) −72.4770 + 223.061i −0.0456974 + 0.140642i
\(137\) −796.789 578.901i −0.496893 0.361014i 0.310936 0.950431i \(-0.399357\pi\)
−0.807829 + 0.589417i \(0.799357\pi\)
\(138\) 0 0
\(139\) −563.156 + 1733.21i −0.343642 + 1.05762i 0.618665 + 0.785655i \(0.287674\pi\)
−0.962307 + 0.271966i \(0.912326\pi\)
\(140\) −775.488 2386.71i −0.468148 1.44081i
\(141\) 0 0
\(142\) −478.520 −0.282792
\(143\) 1467.26 + 331.540i 0.858033 + 0.193880i
\(144\) 0 0
\(145\) −766.630 + 556.989i −0.439070 + 0.319003i
\(146\) 467.766 + 1439.64i 0.265155 + 0.816062i
\(147\) 0 0
\(148\) −740.647 538.112i −0.411357 0.298868i
\(149\) −2752.37 1999.71i −1.51331 1.09948i −0.964683 0.263415i \(-0.915151\pi\)
−0.548626 0.836068i \(-0.684849\pi\)
\(150\) 0 0
\(151\) −327.363 1007.52i −0.176427 0.542986i 0.823269 0.567651i \(-0.192148\pi\)
−0.999696 + 0.0246657i \(0.992148\pi\)
\(152\) 1194.85 868.112i 0.637601 0.463245i
\(153\) 0 0
\(154\) −2129.13 + 3581.22i −1.11409 + 1.87391i
\(155\) −641.648 −0.332506
\(156\) 0 0
\(157\) 468.656 + 1442.37i 0.238234 + 0.733210i 0.996676 + 0.0814689i \(0.0259611\pi\)
−0.758442 + 0.651741i \(0.774039\pi\)
\(158\) 407.858 1255.26i 0.205364 0.632044i
\(159\) 0 0
\(160\) −2543.41 1847.89i −1.25671 0.913055i
\(161\) 48.2456 148.485i 0.0236167 0.0726846i
\(162\) 0 0
\(163\) 1938.29 1408.25i 0.931404 0.676705i −0.0149320 0.999889i \(-0.504753\pi\)
0.946336 + 0.323184i \(0.104753\pi\)
\(164\) −1832.24 −0.872404
\(165\) 0 0
\(166\) 2785.87 1.30256
\(167\) −2131.85 + 1548.88i −0.987829 + 0.717700i −0.959445 0.281897i \(-0.909036\pi\)
−0.0283843 + 0.999597i \(0.509036\pi\)
\(168\) 0 0
\(169\) −153.563 + 472.618i −0.0698966 + 0.215120i
\(170\) 996.762 + 724.190i 0.449695 + 0.326723i
\(171\) 0 0
\(172\) 626.157 1927.11i 0.277582 0.854308i
\(173\) 134.045 + 412.547i 0.0589089 + 0.181303i 0.976181 0.216959i \(-0.0696137\pi\)
−0.917272 + 0.398261i \(0.869614\pi\)
\(174\) 0 0
\(175\) 4083.64 1.76396
\(176\) 264.806 + 2872.30i 0.113412 + 1.23016i
\(177\) 0 0
\(178\) −42.5420 + 30.9085i −0.0179138 + 0.0130151i
\(179\) −500.750 1541.15i −0.209094 0.643525i −0.999520 0.0309682i \(-0.990141\pi\)
0.790426 0.612557i \(-0.209859\pi\)
\(180\) 0 0
\(181\) 1435.82 + 1043.19i 0.589635 + 0.428395i 0.842185 0.539189i \(-0.181269\pi\)
−0.252550 + 0.967584i \(0.581269\pi\)
\(182\) 3809.38 + 2767.68i 1.55148 + 1.12722i
\(183\) 0 0
\(184\) −16.6131 51.1299i −0.00665617 0.0204856i
\(185\) 2375.16 1725.66i 0.943922 0.685799i
\(186\) 0 0
\(187\) −71.9343 780.258i −0.0281302 0.305124i
\(188\) 2603.27 1.00991
\(189\) 0 0
\(190\) −2397.48 7378.70i −0.915430 2.81740i
\(191\) −614.138 + 1890.12i −0.232657 + 0.716045i 0.764766 + 0.644308i \(0.222854\pi\)
−0.997424 + 0.0717373i \(0.977146\pi\)
\(192\) 0 0
\(193\) −1774.07 1288.93i −0.661658 0.480723i 0.205564 0.978644i \(-0.434097\pi\)
−0.867223 + 0.497921i \(0.834097\pi\)
\(194\) 1329.60 4092.09i 0.492061 1.51441i
\(195\) 0 0
\(196\) −2663.30 + 1935.00i −0.970589 + 0.705174i
\(197\) −4825.72 −1.74527 −0.872636 0.488372i \(-0.837591\pi\)
−0.872636 + 0.488372i \(0.837591\pi\)
\(198\) 0 0
\(199\) −3488.25 −1.24259 −0.621296 0.783576i \(-0.713393\pi\)
−0.621296 + 0.783576i \(0.713393\pi\)
\(200\) 1137.62 826.531i 0.402210 0.292223i
\(201\) 0 0
\(202\) −1583.46 + 4873.38i −0.551543 + 1.69747i
\(203\) 1526.17 + 1108.83i 0.527667 + 0.383372i
\(204\) 0 0
\(205\) 1815.72 5588.20i 0.618611 1.90389i
\(206\) 67.9937 + 209.263i 0.0229968 + 0.0707769i
\(207\) 0 0
\(208\) 3259.95 1.08672
\(209\) −2521.53 + 4241.23i −0.834535 + 1.40370i
\(210\) 0 0
\(211\) 1233.99 896.546i 0.402613 0.292516i −0.367991 0.929829i \(-0.619954\pi\)
0.770605 + 0.637314i \(0.219954\pi\)
\(212\) 655.872 + 2018.57i 0.212479 + 0.653942i
\(213\) 0 0
\(214\) −2595.72 1885.90i −0.829157 0.602418i
\(215\) 5257.04 + 3819.46i 1.66757 + 1.21156i
\(216\) 0 0
\(217\) 394.727 + 1214.84i 0.123483 + 0.380042i
\(218\) 1058.85 769.301i 0.328966 0.239008i
\(219\) 0 0
\(220\) 2815.99 + 636.296i 0.862974 + 0.194996i
\(221\) −885.562 −0.269545
\(222\) 0 0
\(223\) 851.393 + 2620.32i 0.255666 + 0.786859i 0.993698 + 0.112093i \(0.0357554\pi\)
−0.738032 + 0.674766i \(0.764245\pi\)
\(224\) −1934.01 + 5952.27i −0.576881 + 1.77546i
\(225\) 0 0
\(226\) 2987.81 + 2170.77i 0.879406 + 0.638926i
\(227\) −1455.95 + 4480.94i −0.425703 + 1.31018i 0.476616 + 0.879111i \(0.341863\pi\)
−0.902319 + 0.431068i \(0.858137\pi\)
\(228\) 0 0
\(229\) −3289.67 + 2390.09i −0.949292 + 0.689701i −0.950639 0.310298i \(-0.899571\pi\)
0.00134745 + 0.999999i \(0.499571\pi\)
\(230\) −282.413 −0.0809643
\(231\) 0 0
\(232\) 649.591 0.183826
\(233\) 2252.38 1636.45i 0.633296 0.460117i −0.224244 0.974533i \(-0.571991\pi\)
0.857541 + 0.514416i \(0.171991\pi\)
\(234\) 0 0
\(235\) −2579.78 + 7939.75i −0.716113 + 2.20397i
\(236\) −1746.69 1269.05i −0.481780 0.350034i
\(237\) 0 0
\(238\) 757.939 2332.70i 0.206428 0.635320i
\(239\) 480.477 + 1478.76i 0.130040 + 0.400221i 0.994786 0.101989i \(-0.0325206\pi\)
−0.864746 + 0.502210i \(0.832521\pi\)
\(240\) 0 0
\(241\) −924.309 −0.247054 −0.123527 0.992341i \(-0.539421\pi\)
−0.123527 + 0.992341i \(0.539421\pi\)
\(242\) −2289.57 4210.77i −0.608178 1.11851i
\(243\) 0 0
\(244\) 570.547 414.527i 0.149695 0.108760i
\(245\) −3262.32 10040.4i −0.850702 2.61819i
\(246\) 0 0
\(247\) 4511.45 + 3277.76i 1.16217 + 0.844368i
\(248\) 355.849 + 258.540i 0.0911147 + 0.0661987i
\(249\) 0 0
\(250\) −66.8057 205.607i −0.0169006 0.0520148i
\(251\) 2759.50 2004.90i 0.693937 0.504175i −0.184015 0.982923i \(-0.558909\pi\)
0.877952 + 0.478748i \(0.158909\pi\)
\(252\) 0 0
\(253\) 118.465 + 135.001i 0.0294381 + 0.0335472i
\(254\) 8606.27 2.12600
\(255\) 0 0
\(256\) 1636.90 + 5037.85i 0.399633 + 1.22994i
\(257\) 1806.34 5559.33i 0.438429 1.34935i −0.451103 0.892472i \(-0.648969\pi\)
0.889532 0.456873i \(-0.151031\pi\)
\(258\) 0 0
\(259\) −4728.37 3435.36i −1.13439 0.824181i
\(260\) 1008.25 3103.09i 0.240497 0.740175i
\(261\) 0 0
\(262\) 2560.14 1860.05i 0.603687 0.438604i
\(263\) −426.069 −0.0998955 −0.0499477 0.998752i \(-0.515905\pi\)
−0.0499477 + 0.998752i \(0.515905\pi\)
\(264\) 0 0
\(265\) −6806.42 −1.57779
\(266\) −12495.4 + 9078.41i −2.88022 + 2.09261i
\(267\) 0 0
\(268\) −9.11821 + 28.0630i −0.00207830 + 0.00639634i
\(269\) 5310.12 + 3858.03i 1.20358 + 0.874454i 0.994632 0.103472i \(-0.0329953\pi\)
0.208950 + 0.977926i \(0.432995\pi\)
\(270\) 0 0
\(271\) 920.948 2834.39i 0.206434 0.635338i −0.793217 0.608938i \(-0.791596\pi\)
0.999651 0.0264000i \(-0.00840436\pi\)
\(272\) −524.745 1615.00i −0.116975 0.360013i
\(273\) 0 0
\(274\) 3546.61 0.781966
\(275\) −2400.75 + 4038.09i −0.526440 + 0.885476i
\(276\) 0 0
\(277\) −349.406 + 253.858i −0.0757898 + 0.0550645i −0.625035 0.780597i \(-0.714915\pi\)
0.549245 + 0.835661i \(0.314915\pi\)
\(278\) −2027.95 6241.37i −0.437511 1.34652i
\(279\) 0 0
\(280\) −4463.18 3242.69i −0.952592 0.692099i
\(281\) −2290.41 1664.08i −0.486243 0.353276i 0.317494 0.948260i \(-0.397159\pi\)
−0.803738 + 0.594984i \(0.797159\pi\)
\(282\) 0 0
\(283\) −636.174 1957.94i −0.133628 0.411264i 0.861746 0.507339i \(-0.169371\pi\)
−0.995374 + 0.0960756i \(0.969371\pi\)
\(284\) 534.031 387.996i 0.111581 0.0810681i
\(285\) 0 0
\(286\) −4976.33 + 2139.79i −1.02887 + 0.442407i
\(287\) −11697.2 −2.40581
\(288\) 0 0
\(289\) −1375.65 4233.83i −0.280003 0.861760i
\(290\) 1054.48 3245.36i 0.213521 0.657151i
\(291\) 0 0
\(292\) −1689.32 1227.36i −0.338562 0.245980i
\(293\) 2360.41 7264.61i 0.470638 1.44847i −0.381114 0.924528i \(-0.624460\pi\)
0.851752 0.523946i \(-0.175540\pi\)
\(294\) 0 0
\(295\) 5601.44 4069.68i 1.10552 0.803207i
\(296\) −2012.55 −0.395194
\(297\) 0 0
\(298\) 12251.2 2.38151
\(299\) 164.221 119.313i 0.0317630 0.0230772i
\(300\) 0 0
\(301\) 3997.45 12302.9i 0.765480 2.35590i
\(302\) 3086.26 + 2242.30i 0.588061 + 0.427252i
\(303\) 0 0
\(304\) −3304.36 + 10169.8i −0.623415 + 1.91867i
\(305\) 698.873 + 2150.91i 0.131204 + 0.403806i
\(306\) 0 0
\(307\) −4284.72 −0.796553 −0.398277 0.917265i \(-0.630392\pi\)
−0.398277 + 0.917265i \(0.630392\pi\)
\(308\) −527.622 5723.01i −0.0976105 1.05876i
\(309\) 0 0
\(310\) 1869.31 1358.14i 0.342483 0.248829i
\(311\) 229.842 + 707.382i 0.0419073 + 0.128977i 0.969821 0.243817i \(-0.0783997\pi\)
−0.927914 + 0.372794i \(0.878400\pi\)
\(312\) 0 0
\(313\) −956.411 694.873i −0.172714 0.125484i 0.498070 0.867137i \(-0.334042\pi\)
−0.670784 + 0.741653i \(0.734042\pi\)
\(314\) −4418.32 3210.10i −0.794077 0.576931i
\(315\) 0 0
\(316\) 562.624 + 1731.58i 0.100158 + 0.308256i
\(317\) 826.987 600.841i 0.146524 0.106456i −0.512108 0.858921i \(-0.671135\pi\)
0.658632 + 0.752465i \(0.271135\pi\)
\(318\) 0 0
\(319\) −1993.69 + 857.275i −0.349923 + 0.150465i
\(320\) 1245.04 0.217500
\(321\) 0 0
\(322\) 173.734 + 534.699i 0.0300678 + 0.0925392i
\(323\) 897.627 2762.61i 0.154629 0.475900i
\(324\) 0 0
\(325\) 4295.36 + 3120.76i 0.733120 + 0.532643i
\(326\) −2666.07 + 8205.33i −0.452945 + 1.39402i
\(327\) 0 0
\(328\) −3258.63 + 2367.53i −0.548560 + 0.398552i
\(329\) 16619.5 2.78500
\(330\) 0 0
\(331\) 4137.81 0.687113 0.343557 0.939132i \(-0.388368\pi\)
0.343557 + 0.939132i \(0.388368\pi\)
\(332\) −3109.05 + 2258.85i −0.513949 + 0.373406i
\(333\) 0 0
\(334\) 2932.30 9024.71i 0.480385 1.47847i
\(335\) −76.5539 55.6196i −0.0124853 0.00907112i
\(336\) 0 0
\(337\) 625.388 1924.75i 0.101089 0.311121i −0.887703 0.460416i \(-0.847700\pi\)
0.988793 + 0.149295i \(0.0477004\pi\)
\(338\) −552.986 1701.91i −0.0889895 0.273882i
\(339\) 0 0
\(340\) −1699.58 −0.271097
\(341\) −1433.35 323.878i −0.227626 0.0514339i
\(342\) 0 0
\(343\) −8202.65 + 5959.57i −1.29126 + 0.938153i
\(344\) −1376.50 4236.44i −0.215744 0.663993i
\(345\) 0 0
\(346\) −1263.73 918.151i −0.196354 0.142659i
\(347\) 5915.26 + 4297.69i 0.915123 + 0.664876i 0.942305 0.334755i \(-0.108653\pi\)
−0.0271821 + 0.999630i \(0.508653\pi\)
\(348\) 0 0
\(349\) 3157.81 + 9718.73i 0.484337 + 1.49064i 0.832939 + 0.553364i \(0.186656\pi\)
−0.348603 + 0.937271i \(0.613344\pi\)
\(350\) −11896.9 + 8643.58i −1.81690 + 1.32005i
\(351\) 0 0
\(352\) −4748.88 5411.75i −0.719081 0.819453i
\(353\) 4008.76 0.604433 0.302216 0.953239i \(-0.402274\pi\)
0.302216 + 0.953239i \(0.402274\pi\)
\(354\) 0 0
\(355\) 654.144 + 2013.25i 0.0977982 + 0.300992i
\(356\) 22.4156 68.9882i 0.00333715 0.0102707i
\(357\) 0 0
\(358\) 4720.90 + 3429.93i 0.696947 + 0.506362i
\(359\) −246.704 + 759.277i −0.0362689 + 0.111624i −0.967552 0.252672i \(-0.918691\pi\)
0.931283 + 0.364297i \(0.118691\pi\)
\(360\) 0 0
\(361\) −9249.20 + 6719.94i −1.34848 + 0.979726i
\(362\) −6391.04 −0.927916
\(363\) 0 0
\(364\) −6495.40 −0.935306
\(365\) 5417.45 3936.01i 0.776883 0.564438i
\(366\) 0 0
\(367\) 773.794 2381.49i 0.110059 0.338727i −0.880825 0.473441i \(-0.843012\pi\)
0.990885 + 0.134714i \(0.0430116\pi\)
\(368\) 314.901 + 228.789i 0.0446070 + 0.0324089i
\(369\) 0 0
\(370\) −3266.98 + 10054.7i −0.459033 + 1.41276i
\(371\) 4187.16 + 12886.7i 0.585947 + 1.80336i
\(372\) 0 0
\(373\) −9807.89 −1.36148 −0.680742 0.732524i \(-0.738342\pi\)
−0.680742 + 0.732524i \(0.738342\pi\)
\(374\) 1861.09 + 2120.87i 0.257312 + 0.293229i
\(375\) 0 0
\(376\) 4629.88 3363.81i 0.635021 0.461370i
\(377\) 757.921 + 2332.64i 0.103541 + 0.318666i
\(378\) 0 0
\(379\) 8814.70 + 6404.25i 1.19467 + 0.867980i 0.993750 0.111628i \(-0.0356063\pi\)
0.200922 + 0.979607i \(0.435606\pi\)
\(380\) 8658.44 + 6290.73i 1.16886 + 0.849230i
\(381\) 0 0
\(382\) −2211.54 6806.41i −0.296210 0.911640i
\(383\) 7842.42 5697.85i 1.04629 0.760173i 0.0747857 0.997200i \(-0.476173\pi\)
0.971503 + 0.237026i \(0.0761727\pi\)
\(384\) 0 0
\(385\) 17977.6 + 4062.18i 2.37980 + 0.537735i
\(386\) 7896.60 1.04126
\(387\) 0 0
\(388\) 1834.13 + 5644.88i 0.239984 + 0.738596i
\(389\) −3797.38 + 11687.1i −0.494948 + 1.52329i 0.322089 + 0.946709i \(0.395615\pi\)
−0.817037 + 0.576585i \(0.804385\pi\)
\(390\) 0 0
\(391\) −85.5427 62.1504i −0.0110641 0.00803857i
\(392\) −2236.34 + 6882.75i −0.288144 + 0.886815i
\(393\) 0 0
\(394\) 14058.8 10214.3i 1.79764 1.30606i
\(395\) −5838.72 −0.743742
\(396\) 0 0
\(397\) −2988.47 −0.377801 −0.188901 0.981996i \(-0.560492\pi\)
−0.188901 + 0.981996i \(0.560492\pi\)
\(398\) 10162.3 7383.37i 1.27988 0.929887i
\(399\) 0 0
\(400\) −3146.09 + 9682.67i −0.393261 + 1.21033i
\(401\) −10944.2 7951.41i −1.36291 0.990210i −0.998254 0.0590672i \(-0.981187\pi\)
−0.364654 0.931143i \(-0.618813\pi\)
\(402\) 0 0
\(403\) −513.207 + 1579.49i −0.0634358 + 0.195235i
\(404\) −2184.31 6722.63i −0.268994 0.827879i
\(405\) 0 0
\(406\) −6793.19 −0.830396
\(407\) 6176.84 2656.00i 0.752271 0.323472i
\(408\) 0 0
\(409\) 3260.87 2369.16i 0.394229 0.286424i −0.372957 0.927848i \(-0.621656\pi\)
0.767186 + 0.641425i \(0.221656\pi\)
\(410\) 6538.47 + 20123.3i 0.787590 + 2.42395i
\(411\) 0 0
\(412\) −245.557 178.408i −0.0293634 0.0213338i
\(413\) −11151.1 8101.74i −1.32859 0.965280i
\(414\) 0 0
\(415\) −3808.33 11720.8i −0.450466 1.38639i
\(416\) −6583.08 + 4782.89i −0.775870 + 0.563702i
\(417\) 0 0
\(418\) −1631.18 17693.2i −0.190870 2.07034i
\(419\) −8327.13 −0.970900 −0.485450 0.874264i \(-0.661344\pi\)
−0.485450 + 0.874264i \(0.661344\pi\)
\(420\) 0 0
\(421\) 196.275 + 604.071i 0.0227217 + 0.0699303i 0.961774 0.273843i \(-0.0882949\pi\)
−0.939053 + 0.343773i \(0.888295\pi\)
\(422\) −1697.32 + 5223.82i −0.195792 + 0.602587i
\(423\) 0 0
\(424\) 3774.75 + 2742.52i 0.432354 + 0.314124i
\(425\) 854.633 2630.29i 0.0975430 0.300206i
\(426\) 0 0
\(427\) 3642.43 2646.38i 0.412810 0.299924i
\(428\) 4425.97 0.499854
\(429\) 0 0
\(430\) −23399.7 −2.62427
\(431\) 7838.74 5695.18i 0.876053 0.636490i −0.0561511 0.998422i \(-0.517883\pi\)
0.932204 + 0.361932i \(0.117883\pi\)
\(432\) 0 0
\(433\) 1206.52 3713.27i 0.133906 0.412121i −0.861512 0.507737i \(-0.830482\pi\)
0.995418 + 0.0956160i \(0.0304821\pi\)
\(434\) −3721.35 2703.72i −0.411591 0.299038i
\(435\) 0 0
\(436\) −557.916 + 1717.09i −0.0612829 + 0.188609i
\(437\) 205.753 + 633.244i 0.0225229 + 0.0693184i
\(438\) 0 0
\(439\) 1221.08 0.132754 0.0663771 0.997795i \(-0.478856\pi\)
0.0663771 + 0.997795i \(0.478856\pi\)
\(440\) 5830.41 2507.04i 0.631713 0.271632i
\(441\) 0 0
\(442\) 2579.91 1874.42i 0.277633 0.201712i
\(443\) 4715.93 + 14514.2i 0.505781 + 1.55663i 0.799454 + 0.600727i \(0.205122\pi\)
−0.293674 + 0.955906i \(0.594878\pi\)
\(444\) 0 0
\(445\) 188.195 + 136.732i 0.0200479 + 0.0145656i
\(446\) −8026.63 5831.69i −0.852179 0.619145i
\(447\) 0 0
\(448\) −765.923 2357.27i −0.0807733 0.248595i
\(449\) −648.769 + 471.359i −0.0681900 + 0.0495430i −0.621358 0.783527i \(-0.713419\pi\)
0.553168 + 0.833070i \(0.313419\pi\)
\(450\) 0 0
\(451\) 6876.77 11566.8i 0.717992 1.20767i
\(452\) −5094.52 −0.530146
\(453\) 0 0
\(454\) −5242.92 16136.1i −0.541988 1.66807i
\(455\) 6436.81 19810.5i 0.663213 2.04116i
\(456\) 0 0
\(457\) 10018.2 + 7278.66i 1.02545 + 0.745036i 0.967394 0.253277i \(-0.0815084\pi\)
0.0580605 + 0.998313i \(0.481508\pi\)
\(458\) 4524.86 13926.1i 0.461644 1.42079i
\(459\) 0 0
\(460\) 315.175 228.988i 0.0319459 0.0232100i
\(461\) 4583.73 0.463092 0.231546 0.972824i \(-0.425622\pi\)
0.231546 + 0.972824i \(0.425622\pi\)
\(462\) 0 0
\(463\) −144.386 −0.0144928 −0.00724642 0.999974i \(-0.502307\pi\)
−0.00724642 + 0.999974i \(0.502307\pi\)
\(464\) −3804.92 + 2764.44i −0.380687 + 0.276586i
\(465\) 0 0
\(466\) −3098.09 + 9534.93i −0.307974 + 0.947848i
\(467\) −2786.89 2024.79i −0.276149 0.200634i 0.441087 0.897464i \(-0.354593\pi\)
−0.717236 + 0.696830i \(0.754593\pi\)
\(468\) 0 0
\(469\) −58.2116 + 179.157i −0.00573126 + 0.0176390i
\(470\) −9289.90 28591.4i −0.911726 2.80600i
\(471\) 0 0
\(472\) −4746.28 −0.462850
\(473\) 9815.60 + 11185.7i 0.954168 + 1.08736i
\(474\) 0 0
\(475\) −14089.5 + 10236.6i −1.36099 + 0.988814i
\(476\) 1045.55 + 3217.86i 0.100678 + 0.309854i
\(477\) 0 0
\(478\) −4529.77 3291.07i −0.433445 0.314916i
\(479\) −10819.0 7860.44i −1.03201 0.749796i −0.0632970 0.997995i \(-0.520162\pi\)
−0.968709 + 0.248198i \(0.920162\pi\)
\(480\) 0 0
\(481\) −2348.18 7226.96i −0.222594 0.685075i
\(482\) 2692.79 1956.43i 0.254468 0.184881i
\(483\) 0 0
\(484\) 5969.37 + 2842.80i 0.560610 + 0.266980i
\(485\) −19034.0 −1.78204
\(486\) 0 0
\(487\) 5561.96 + 17117.9i 0.517528 + 1.59279i 0.778634 + 0.627478i \(0.215913\pi\)
−0.261106 + 0.965310i \(0.584087\pi\)
\(488\) 479.082 1474.46i 0.0444406 0.136774i
\(489\) 0 0
\(490\) 30756.0 + 22345.5i 2.83554 + 2.06014i
\(491\) −4112.56 + 12657.2i −0.377998 + 1.16336i 0.563435 + 0.826160i \(0.309479\pi\)
−0.941434 + 0.337199i \(0.890521\pi\)
\(492\) 0 0
\(493\) 1033.60 750.957i 0.0944242 0.0686032i
\(494\) −20081.1 −1.82893
\(495\) 0 0
\(496\) −3184.61 −0.288293
\(497\) 3409.31 2477.01i 0.307703 0.223560i
\(498\) 0 0
\(499\) 6285.77 19345.6i 0.563907 1.73553i −0.107270 0.994230i \(-0.534211\pi\)
0.671177 0.741297i \(-0.265789\pi\)
\(500\) 241.267 + 175.291i 0.0215796 + 0.0156785i
\(501\) 0 0
\(502\) −3795.63 + 11681.7i −0.337464 + 1.03861i
\(503\) 634.369 + 1952.39i 0.0562328 + 0.173067i 0.975228 0.221202i \(-0.0709980\pi\)
−0.918995 + 0.394269i \(0.870998\pi\)
\(504\) 0 0
\(505\) 22668.1 1.99746
\(506\) −630.873 142.551i −0.0554263 0.0125240i
\(507\) 0 0
\(508\) −9604.64 + 6978.18i −0.838853 + 0.609462i
\(509\) 2449.99 + 7540.30i 0.213348 + 0.656617i 0.999267 + 0.0382874i \(0.0121902\pi\)
−0.785919 + 0.618329i \(0.787810\pi\)
\(510\) 0 0
\(511\) −10784.8 7835.63i −0.933644 0.678332i
\(512\) −7035.37 5111.49i −0.607270 0.441207i
\(513\) 0 0
\(514\) 6504.69 + 20019.4i 0.558190 + 1.71793i
\(515\) 787.472 572.132i 0.0673789 0.0489537i
\(516\) 0 0
\(517\) −9770.55 + 16434.2i −0.831158 + 1.39802i
\(518\) 21046.6 1.78520
\(519\) 0 0
\(520\) −2216.48 6821.63i −0.186921 0.575285i
\(521\) −5281.43 + 16254.6i −0.444114 + 1.36684i 0.439338 + 0.898322i \(0.355213\pi\)
−0.883452 + 0.468522i \(0.844787\pi\)
\(522\) 0 0
\(523\) −8762.59 6366.40i −0.732622 0.532281i 0.157770 0.987476i \(-0.449570\pi\)
−0.890392 + 0.455195i \(0.849570\pi\)
\(524\) −1348.95 + 4151.65i −0.112461 + 0.346118i
\(525\) 0 0
\(526\) 1241.27 901.833i 0.102893 0.0747562i
\(527\) 865.097 0.0715070
\(528\) 0 0
\(529\) −12142.8 −0.998008
\(530\) 19829.2 14406.7i 1.62514 1.18073i
\(531\) 0 0
\(532\) 6583.89 20263.1i 0.536556 1.65135i
\(533\) −12303.7 8939.18i −0.999875 0.726452i
\(534\) 0 0
\(535\) −4386.05 + 13498.9i −0.354440 + 1.09085i
\(536\) 20.0449 + 61.6918i 0.00161531 + 0.00497142i
\(537\) 0 0
\(538\) −23636.0 −1.89409
\(539\) −2219.60 24075.6i −0.177374 1.92395i
\(540\) 0 0
\(541\) −16843.7 + 12237.7i −1.33857 + 0.972528i −0.339075 + 0.940759i \(0.610114\pi\)
−0.999495 + 0.0317692i \(0.989886\pi\)
\(542\) 3316.37 + 10206.7i 0.262823 + 0.808887i
\(543\) 0 0
\(544\) 3429.13 + 2491.41i 0.270262 + 0.196357i
\(545\) −4684.10 3403.20i −0.368156 0.267481i
\(546\) 0 0
\(547\) −1331.66 4098.41i −0.104090 0.320357i 0.885425 0.464781i \(-0.153867\pi\)
−0.989516 + 0.144424i \(0.953867\pi\)
\(548\) −3958.04 + 2875.68i −0.308538 + 0.224166i
\(549\) 0 0
\(550\) −1553.06 16845.7i −0.120405 1.30601i
\(551\) −8045.18 −0.622026
\(552\) 0 0
\(553\) 3591.85 + 11054.6i 0.276204 + 0.850070i
\(554\) 480.599 1479.13i 0.0368569 0.113434i
\(555\) 0 0
\(556\) 7323.87 + 5321.10i 0.558635 + 0.405872i
\(557\) 578.432 1780.23i 0.0440017 0.135423i −0.926642 0.375945i \(-0.877318\pi\)
0.970644 + 0.240521i \(0.0773183\pi\)
\(558\) 0 0
\(559\) 13606.7 9885.88i 1.02952 0.747993i
\(560\) 39942.4 3.01406
\(561\) 0 0
\(562\) 10194.9 0.765207
\(563\) 868.778 631.205i 0.0650349 0.0472506i −0.554793 0.831989i \(-0.687202\pi\)
0.619828 + 0.784738i \(0.287202\pi\)
\(564\) 0 0
\(565\) 5048.57 15537.9i 0.375920 1.15696i
\(566\) 5997.63 + 4357.53i 0.445405 + 0.323605i
\(567\) 0 0
\(568\) 448.420 1380.10i 0.0331255 0.101950i
\(569\) 4279.16 + 13169.9i 0.315275 + 0.970317i 0.975641 + 0.219373i \(0.0704012\pi\)
−0.660366 + 0.750944i \(0.729599\pi\)
\(570\) 0 0
\(571\) −781.386 −0.0572680 −0.0286340 0.999590i \(-0.509116\pi\)
−0.0286340 + 0.999590i \(0.509116\pi\)
\(572\) 3818.62 6422.95i 0.279134 0.469506i
\(573\) 0 0
\(574\) 34077.6 24758.8i 2.47800 1.80037i
\(575\) 195.898 + 602.913i 0.0142079 + 0.0437273i
\(576\) 0 0
\(577\) −7086.19 5148.42i −0.511268 0.371458i 0.302036 0.953296i \(-0.402334\pi\)
−0.813305 + 0.581838i \(0.802334\pi\)
\(578\) 12969.2 + 9422.66i 0.933299 + 0.678081i
\(579\) 0 0
\(580\) 1454.61 + 4476.84i 0.104137 + 0.320501i
\(581\) −19848.5 + 14420.8i −1.41730 + 1.02973i
\(582\) 0 0
\(583\) −15204.6 3435.61i −1.08012 0.244062i
\(584\) −4590.38 −0.325259
\(585\) 0 0
\(586\) 8499.94 + 26160.1i 0.599197 + 1.84414i
\(587\) −297.166 + 914.581i −0.0208949 + 0.0643080i −0.960960 0.276686i \(-0.910764\pi\)
0.940065 + 0.340994i \(0.110764\pi\)
\(588\) 0 0
\(589\) −4407.19 3202.01i −0.308311 0.224001i
\(590\) −7704.63 + 23712.4i −0.537618 + 1.65462i
\(591\) 0 0
\(592\) 11788.4 8564.74i 0.818409 0.594609i
\(593\) −1880.24 −0.130206 −0.0651030 0.997879i \(-0.520738\pi\)
−0.0651030 + 0.997879i \(0.520738\pi\)
\(594\) 0 0
\(595\) −10850.3 −0.747597
\(596\) −13672.4 + 9933.55i −0.939668 + 0.682708i
\(597\) 0 0
\(598\) −225.882 + 695.192i −0.0154465 + 0.0475393i
\(599\) −4095.79 2975.76i −0.279381 0.202982i 0.439266 0.898357i \(-0.355238\pi\)
−0.718647 + 0.695375i \(0.755238\pi\)
\(600\) 0 0
\(601\) 4384.18 13493.1i 0.297561 0.915800i −0.684788 0.728743i \(-0.740105\pi\)
0.982349 0.187057i \(-0.0598950\pi\)
\(602\) 14395.0 + 44303.2i 0.974578 + 2.99944i
\(603\) 0 0
\(604\) −5262.40 −0.354510
\(605\) −14585.8 + 15389.0i −0.980163 + 1.03413i
\(606\) 0 0
\(607\) −6852.98 + 4978.98i −0.458244 + 0.332934i −0.792842 0.609427i \(-0.791399\pi\)
0.334598 + 0.942361i \(0.391399\pi\)
\(608\) −8247.98 25384.7i −0.550164 1.69323i
\(609\) 0 0
\(610\) −6588.73 4786.99i −0.437327 0.317737i
\(611\) 17481.2 + 12700.8i 1.15747 + 0.840951i
\(612\) 0 0
\(613\) −3603.15 11089.3i −0.237406 0.730660i −0.996793 0.0800209i \(-0.974501\pi\)
0.759388 0.650639i \(-0.225499\pi\)
\(614\) 12482.7 9069.20i 0.820456 0.596096i
\(615\) 0 0
\(616\) −8333.36 9496.56i −0.545066 0.621148i
\(617\) 29514.0 1.92575 0.962877 0.269941i \(-0.0870041\pi\)
0.962877 + 0.269941i \(0.0870041\pi\)
\(618\) 0 0
\(619\) 4614.68 + 14202.5i 0.299644 + 0.922210i 0.981622 + 0.190837i \(0.0611202\pi\)
−0.681978 + 0.731373i \(0.738880\pi\)
\(620\) −984.953 + 3031.37i −0.0638011 + 0.196360i
\(621\) 0 0
\(622\) −2166.87 1574.33i −0.139684 0.101487i
\(623\) 143.104 440.428i 0.00920278 0.0283233i
\(624\) 0 0
\(625\) 12248.3 8898.90i 0.783891 0.569530i
\(626\) 4257.11 0.271802
\(627\) 0 0
\(628\) 7533.70 0.478706
\(629\) −3202.30 + 2326.60i −0.202995 + 0.147485i
\(630\) 0 0
\(631\) 1756.75 5406.71i 0.110832 0.341106i −0.880223 0.474561i \(-0.842607\pi\)
0.991055 + 0.133455i \(0.0426070\pi\)
\(632\) 3238.08 + 2352.60i 0.203803 + 0.148072i
\(633\) 0 0
\(634\) −1137.50 + 3500.87i −0.0712554 + 0.219301i
\(635\) −11764.9 36208.6i −0.735237 2.26283i
\(636\) 0 0
\(637\) −27324.8 −1.69961
\(638\) 3993.69 6717.43i 0.247824 0.416843i
\(639\) 0 0
\(640\) 16720.1 12147.8i 1.03268 0.750289i
\(641\) −2830.60 8711.70i −0.174418 0.536804i 0.825188 0.564858i \(-0.191069\pi\)
−0.999606 + 0.0280537i \(0.991069\pi\)
\(642\) 0 0
\(643\) 24254.2 + 17621.7i 1.48755 + 1.08077i 0.975026 + 0.222092i \(0.0712885\pi\)
0.512521 + 0.858674i \(0.328712\pi\)
\(644\) −627.436 455.859i −0.0383920 0.0278934i
\(645\) 0 0
\(646\) 3232.39 + 9948.27i 0.196868 + 0.605897i
\(647\) −10601.1 + 7702.18i −0.644163 + 0.468012i −0.861278 0.508134i \(-0.830335\pi\)
0.217115 + 0.976146i \(0.430335\pi\)
\(648\) 0 0
\(649\) 14567.1 6263.74i 0.881059 0.378849i
\(650\) −19119.2 −1.15372
\(651\) 0 0
\(652\) −3677.74 11318.9i −0.220907 0.679882i
\(653\) 3630.18 11172.5i 0.217550 0.669549i −0.781413 0.624014i \(-0.785501\pi\)
0.998963 0.0455347i \(-0.0144992\pi\)
\(654\) 0 0
\(655\) −11325.4 8228.40i −0.675605 0.490855i
\(656\) 9011.72 27735.2i 0.536355 1.65073i
\(657\) 0 0
\(658\) −48417.7 + 35177.5i −2.86857 + 2.08414i
\(659\) −1585.28 −0.0937081 −0.0468541 0.998902i \(-0.514920\pi\)
−0.0468541 + 0.998902i \(0.514920\pi\)
\(660\) 0 0
\(661\) −9070.54 −0.533741 −0.266871 0.963732i \(-0.585990\pi\)
−0.266871 + 0.963732i \(0.585990\pi\)
\(662\) −12054.7 + 8758.24i −0.707732 + 0.514198i
\(663\) 0 0
\(664\) −2610.63 + 8034.70i −0.152579 + 0.469589i
\(665\) 55276.4 + 40160.7i 3.22335 + 2.34190i
\(666\) 0 0
\(667\) −90.4961 + 278.518i −0.00525341 + 0.0161683i
\(668\) 4044.99 + 12449.2i 0.234290 + 0.721070i
\(669\) 0 0
\(670\) 340.751 0.0196483
\(671\) 475.495 + 5157.61i 0.0273566 + 0.296732i
\(672\) 0 0
\(673\) −12739.3 + 9255.63i −0.729663 + 0.530131i −0.889457 0.457019i \(-0.848917\pi\)
0.159794 + 0.987150i \(0.448917\pi\)
\(674\) 2252.05 + 6931.09i 0.128703 + 0.396106i
\(675\) 0 0
\(676\) 1997.09 + 1450.97i 0.113626 + 0.0825541i
\(677\) −14601.0 10608.2i −0.828895 0.602228i 0.0903513 0.995910i \(-0.471201\pi\)
−0.919247 + 0.393682i \(0.871201\pi\)
\(678\) 0 0
\(679\) 11709.3 + 36037.5i 0.661799 + 2.03681i
\(680\) −3022.69 + 2196.12i −0.170463 + 0.123849i
\(681\) 0 0
\(682\) 4861.33 2090.34i 0.272947 0.117365i
\(683\) −10422.1 −0.583881 −0.291941 0.956436i \(-0.594301\pi\)
−0.291941 + 0.956436i \(0.594301\pi\)
\(684\) 0 0
\(685\) −4848.27 14921.5i −0.270428 0.832291i
\(686\) 11282.5 34724.1i 0.627943 1.93261i
\(687\) 0 0
\(688\) 26091.6 + 18956.6i 1.44583 + 1.05046i
\(689\) −5443.95 + 16754.8i −0.301013 + 0.926424i
\(690\) 0 0
\(691\) 6497.39 4720.63i 0.357703 0.259886i −0.394391 0.918943i \(-0.629044\pi\)
0.752093 + 0.659057i \(0.229044\pi\)
\(692\) 2154.79 0.118371
\(693\) 0 0
\(694\) −26329.6 −1.44014
\(695\) −23486.7 + 17064.1i −1.28187 + 0.931336i
\(696\) 0 0
\(697\) −2448.03 + 7534.25i −0.133035 + 0.409441i
\(698\) −29770.7 21629.7i −1.61438 1.17292i
\(699\) 0 0
\(700\) 6268.54 19292.6i 0.338469 1.04170i
\(701\) −1604.92 4939.43i −0.0864720 0.266134i 0.898465 0.439044i \(-0.144683\pi\)
−0.984938 + 0.172911i \(0.944683\pi\)
\(702\) 0 0
\(703\) 24925.5 1.33724
\(704\) 2781.26 + 628.448i 0.148896 + 0.0336442i
\(705\) 0 0
\(706\) −11678.7 + 8485.09i −0.622570 + 0.452324i
\(707\) −13944.9 42918.0i −0.741799 2.28302i
\(708\) 0 0
\(709\) 26122.2 + 18978.9i 1.38370 + 1.00531i 0.996524 + 0.0833054i \(0.0265477\pi\)
0.387171 + 0.922008i \(0.373452\pi\)
\(710\) −6167.04 4480.62i −0.325979 0.236837i
\(711\) 0 0
\(712\) −49.2771 151.659i −0.00259373 0.00798268i
\(713\) −160.426 + 116.556i −0.00842634 + 0.00612210i
\(714\) 0 0
\(715\) 15805.3 + 18011.5i 0.826694 + 0.942087i
\(716\) −8049.62 −0.420152
\(717\) 0 0
\(718\) −888.391 2734.19i −0.0461761 0.142116i
\(719\) 2733.18 8411.87i 0.141767 0.436314i −0.854814 0.518934i \(-0.826329\pi\)
0.996581 + 0.0826204i \(0.0263289\pi\)
\(720\) 0 0
\(721\) −1567.66 1138.97i −0.0809748 0.0588317i
\(722\) 12722.0 39154.4i 0.655769 2.01825i
\(723\) 0 0
\(724\) 7132.44 5182.02i 0.366126 0.266006i
\(725\) −7659.83 −0.392385
\(726\) 0 0
\(727\) 17537.4 0.894670 0.447335 0.894367i \(-0.352373\pi\)
0.447335 + 0.894367i \(0.352373\pi\)
\(728\) −11552.0 + 8393.02i −0.588112 + 0.427289i
\(729\) 0 0
\(730\) −7451.56 + 22933.6i −0.377801 + 1.16275i
\(731\) −7087.76 5149.56i −0.358619 0.260552i
\(732\) 0 0
\(733\) −272.607 + 838.998i −0.0137367 + 0.0422771i −0.957690 0.287802i \(-0.907075\pi\)
0.943953 + 0.330079i \(0.107075\pi\)
\(734\) 2786.46 + 8575.85i 0.140123 + 0.431254i
\(735\) 0 0
\(736\) −971.577 −0.0486587
\(737\) −142.936 162.888i −0.00714400 0.00814119i
\(738\) 0 0
\(739\) 1166.37 847.419i 0.0580591 0.0421824i −0.558377 0.829587i \(-0.688576\pi\)
0.616436 + 0.787405i \(0.288576\pi\)
\(740\) −4506.66 13870.1i −0.223876 0.689019i
\(741\) 0 0
\(742\) −39475.0 28680.3i −1.95306 1.41898i
\(743\) 25842.7 + 18775.8i 1.27601 + 0.927075i 0.999425 0.0339141i \(-0.0107973\pi\)
0.276585 + 0.960989i \(0.410797\pi\)
\(744\) 0 0
\(745\) −16747.5 51543.6i −0.823600 2.53478i
\(746\) 28573.3 20759.7i 1.40234 1.01886i
\(747\) 0 0
\(748\) −3796.64 857.882i −0.185587 0.0419349i
\(749\) 28255.9 1.37843
\(750\) 0 0
\(751\) −10165.3 31285.5i −0.493922 1.52014i −0.818630 0.574322i \(-0.805266\pi\)
0.324707 0.945815i \(-0.394734\pi\)
\(752\) −12803.9 + 39406.4i −0.620892 + 1.91091i
\(753\) 0 0
\(754\) −7145.41 5191.44i −0.345120 0.250744i
\(755\) 5214.93 16049.9i 0.251379 0.773664i
\(756\) 0 0
\(757\) −1452.12 + 1055.03i −0.0697204 + 0.0506549i −0.622100 0.782938i \(-0.713720\pi\)
0.552379 + 0.833593i \(0.313720\pi\)
\(758\) −39235.4 −1.88007
\(759\) 0 0
\(760\) 23527.5 1.12294
\(761\) −246.368 + 178.996i −0.0117356 + 0.00852644i −0.593638 0.804732i \(-0.702309\pi\)
0.581902 + 0.813259i \(0.302309\pi\)
\(762\) 0 0
\(763\) −3561.80 + 10962.1i −0.168998 + 0.520123i
\(764\) 7986.90 + 5802.82i 0.378215 + 0.274789i
\(765\) 0 0
\(766\) −10787.0 + 33199.1i −0.508814 + 1.56597i
\(767\) −5537.80 17043.6i −0.260702 0.802358i
\(768\) 0 0
\(769\) 23116.6 1.08402 0.542008 0.840374i \(-0.317664\pi\)
0.542008 + 0.840374i \(0.317664\pi\)
\(770\) −60972.4 + 26217.7i −2.85363 + 1.22704i
\(771\) 0 0
\(772\) −8812.65 + 6402.76i −0.410847 + 0.298498i
\(773\) −3367.32 10363.6i −0.156681 0.482214i 0.841647 0.540029i \(-0.181587\pi\)
−0.998327 + 0.0578149i \(0.981587\pi\)
\(774\) 0 0
\(775\) −4196.10 3048.64i −0.194488 0.141304i
\(776\) 10556.0 + 7669.39i 0.488323 + 0.354787i
\(777\) 0 0
\(778\) −13674.5 42085.8i −0.630148 1.93940i
\(779\) 40358.1 29321.9i 1.85620 1.34861i
\(780\) 0 0
\(781\) 445.063 + 4827.51i 0.0203913 + 0.221181i
\(782\) 380.762 0.0174118
\(783\) 0 0
\(784\) −16191.5 49832.2i −0.737585 2.27005i
\(785\) −7465.74 + 22977.2i −0.339444 + 1.04470i
\(786\) 0 0
\(787\) −15622.8 11350.7i −0.707616 0.514113i 0.174788 0.984606i \(-0.444076\pi\)
−0.882404 + 0.470493i \(0.844076\pi\)
\(788\) −7407.66 + 22798.4i −0.334882 + 1.03066i
\(789\) 0 0
\(790\) 17010.0 12358.5i 0.766060 0.556575i
\(791\) −32524.0 −1.46197
\(792\) 0 0
\(793\) 5853.68 0.262132
\(794\) 8706.32 6325.51i 0.389138 0.282726i
\(795\) 0 0
\(796\) −5354.60 + 16479.8i −0.238428 + 0.733806i
\(797\) −27357.8 19876.6i −1.21589 0.883394i −0.220136 0.975469i \(-0.570650\pi\)
−0.995752 + 0.0920748i \(0.970650\pi\)
\(798\) 0 0
\(799\) 3478.17 10704.7i 0.154004 0.473974i
\(800\) −7852.93 24168.8i −0.347054 1.06812i
\(801\) 0 0
\(802\) 48713.9 2.14482
\(803\) 14088.6 6058.00i 0.619147 0.266229i
\(804\) 0 0
\(805\) 2012.11 1461.88i 0.0880964 0.0640057i
\(806\) −1848.08 5687.80i −0.0807639 0.248566i
\(807\) 0 0
\(808\) −12571.4 9133.67i −0.547353 0.397675i
\(809\) 25666.8 + 18648.0i 1.11545 + 0.810420i 0.983513 0.180839i \(-0.0578812\pi\)
0.131934 + 0.991258i \(0.457881\pi\)
\(810\) 0 0
\(811\) 4028.01 + 12397.0i 0.174405 + 0.536764i 0.999606 0.0280756i \(-0.00893790\pi\)
−0.825200 + 0.564840i \(0.808938\pi\)
\(812\) 7581.24 5508.10i 0.327647 0.238050i
\(813\) 0 0
\(814\) −12373.2 + 20811.9i −0.532777 + 0.896137i
\(815\) 38166.4 1.64038
\(816\) 0 0
\(817\) 17048.0 + 52468.3i 0.730029 + 2.24680i
\(818\) −4485.24 + 13804.2i −0.191715 + 0.590038i
\(819\) 0 0
\(820\) −23613.5 17156.2i −1.00563 0.730635i
\(821\) −589.658 + 1814.78i −0.0250660 + 0.0771453i −0.962807 0.270190i \(-0.912913\pi\)
0.937741 + 0.347335i \(0.112913\pi\)
\(822\) 0 0
\(823\) −13773.5 + 10007.0i −0.583369 + 0.423842i −0.839937 0.542684i \(-0.817408\pi\)
0.256568 + 0.966526i \(0.417408\pi\)
\(824\) −667.251 −0.0282097
\(825\) 0 0
\(826\) 49634.9 2.09082
\(827\) 16950.8 12315.5i 0.712740 0.517836i −0.171316 0.985216i \(-0.554802\pi\)
0.884057 + 0.467380i \(0.154802\pi\)
\(828\) 0 0
\(829\) 1874.06 5767.78i 0.0785150 0.241644i −0.904093 0.427335i \(-0.859452\pi\)
0.982608 + 0.185691i \(0.0594523\pi\)
\(830\) 35903.5 + 26085.5i 1.50148 + 1.09089i
\(831\) 0 0
\(832\) 995.819 3064.82i 0.0414950 0.127708i
\(833\) 4398.40 + 13536.9i 0.182948 + 0.563055i
\(834\) 0 0
\(835\) −41977.6 −1.73975
\(836\) 16166.5 + 18423.1i 0.668815 + 0.762171i
\(837\) 0 0
\(838\) 24259.5 17625.5i 1.00003 0.726568i
\(839\) 4540.38 + 13973.8i 0.186831 + 0.575007i 0.999975 0.00705566i \(-0.00224591\pi\)
−0.813144 + 0.582062i \(0.802246\pi\)
\(840\) 0 0
\(841\) 16868.4 + 12255.6i 0.691640 + 0.502506i
\(842\) −1850.41 1344.40i −0.0757355 0.0550250i
\(843\) 0 0
\(844\) −2341.39 7206.05i −0.0954903 0.293889i
\(845\) −6404.43 + 4653.09i −0.260732 + 0.189433i
\(846\) 0 0
\(847\) 38109.1 + 18148.7i 1.54598 + 0.736243i
\(848\) −33781.5 −1.36800
\(849\) 0 0
\(850\) 3077.57 + 9471.77i 0.124188 + 0.382211i
\(851\) 280.374 862.902i 0.0112939 0.0347590i
\(852\) 0 0
\(853\) −965.318 701.344i −0.0387478 0.0281519i 0.568243 0.822861i \(-0.307623\pi\)
−0.606991 + 0.794709i \(0.707623\pi\)
\(854\) −5010.07 + 15419.4i −0.200751 + 0.617848i
\(855\) 0 0
\(856\) 7871.55 5719.02i 0.314304 0.228355i
\(857\) −12579.5 −0.501410 −0.250705 0.968064i \(-0.580662\pi\)
−0.250705 + 0.968064i \(0.580662\pi\)
\(858\) 0 0
\(859\) −23421.2 −0.930293 −0.465146 0.885234i \(-0.653998\pi\)
−0.465146 + 0.885234i \(0.653998\pi\)
\(860\) 26114.3 18973.1i 1.03545 0.752300i
\(861\) 0 0
\(862\) −10782.0 + 33183.6i −0.426028 + 1.31118i
\(863\) 32968.7 + 23953.2i 1.30043 + 0.944816i 0.999960 0.00897626i \(-0.00285727\pi\)
0.300468 + 0.953792i \(0.402857\pi\)
\(864\) 0 0
\(865\) −2135.35 + 6571.93i −0.0839353 + 0.258326i
\(866\) 4344.71 + 13371.6i 0.170484 + 0.524696i
\(867\) 0 0
\(868\) 6345.29 0.248126
\(869\) −13042.9 2947.15i −0.509149 0.115046i
\(870\) 0 0
\(871\) −198.144 + 143.960i −0.00770820 + 0.00560034i
\(872\) 1226.49 + 3774.74i 0.0476308 + 0.146593i
\(873\) 0 0
\(874\) −1939.77 1409.33i −0.0750729 0.0545436i
\(875\) 1540.27 + 1119.07i 0.0595094 + 0.0432361i
\(876\) 0 0
\(877\) 7090.82 + 21823.3i 0.273022 + 0.840274i 0.989736 + 0.142908i \(0.0456452\pi\)
−0.716714 + 0.697367i \(0.754355\pi\)
\(878\) −3557.38 + 2584.59i −0.136738 + 0.0993459i
\(879\) 0 0
\(880\) −23482.0 + 39496.9i −0.899520 + 1.51300i
\(881\) 34636.1 1.32454 0.662269 0.749266i \(-0.269594\pi\)
0.662269 + 0.749266i \(0.269594\pi\)
\(882\) 0 0
\(883\) −6556.34 20178.3i −0.249874 0.769032i −0.994797 0.101882i \(-0.967514\pi\)
0.744923 0.667151i \(-0.232486\pi\)
\(884\) −1359.37 + 4183.72i −0.0517202 + 0.159178i
\(885\) 0 0
\(886\) −44460.2 32302.2i −1.68586 1.22485i
\(887\) 5915.07 18204.7i 0.223910 0.689126i −0.774490 0.632586i \(-0.781993\pi\)
0.998400 0.0565393i \(-0.0180066\pi\)
\(888\) 0 0
\(889\) −61317.1 + 44549.5i −2.31328 + 1.68070i
\(890\) −837.681 −0.0315496
\(891\) 0 0
\(892\) 13686.2 0.513733
\(893\) −57341.1 + 41660.7i −2.14876 + 1.56117i
\(894\) 0 0
\(895\) 7977.01 24550.7i 0.297924 0.916916i
\(896\) −33285.5 24183.4i −1.24106 0.901685i
\(897\) 0 0
\(898\) 892.366 2746.42i 0.0331611 0.102059i
\(899\) −740.405 2278.73i −0.0274682 0.0845383i
\(900\) 0 0
\(901\) 9176.71 0.339312
\(902\) 4448.60 + 48253.2i 0.164215 + 1.78121i
\(903\) 0 0
\(904\) −9060.56 + 6582.88i −0.333351 + 0.242194i
\(905\) 8736.65 + 26888.7i 0.320902 + 0.987634i
\(906\) 0 0
\(907\) −5452.83 3961.71i −0.199623 0.145035i 0.483483 0.875354i \(-0.339371\pi\)
−0.683106 + 0.730319i \(0.739371\pi\)
\(908\) 18934.7 + 13756.8i 0.692036 + 0.502794i
\(909\) 0 0
\(910\) 23179.2 + 71338.2i 0.844377 + 2.59872i
\(911\) 17666.4 12835.4i 0.642496 0.466801i −0.218211 0.975902i \(-0.570022\pi\)
0.860707 + 0.509101i \(0.170022\pi\)
\(912\) 0 0
\(913\) −2591.09 28105.0i −0.0939238 1.01877i
\(914\) −44592.4 −1.61377
\(915\) 0 0
\(916\) 6241.87 + 19210.5i 0.225150 + 0.692939i
\(917\) −8611.86 + 26504.6i −0.310130 + 0.954481i
\(918\) 0 0
\(919\) −9296.26 6754.13i −0.333684 0.242435i 0.408308 0.912844i \(-0.366119\pi\)
−0.741992 + 0.670409i \(0.766119\pi\)
\(920\) 264.649 814.506i 0.00948393 0.0291885i
\(921\) 0 0
\(922\) −13353.8 + 9702.09i −0.476989 + 0.346553i
\(923\) 5479.04 0.195390
\(924\) 0 0
\(925\) 23731.6 0.843557
\(926\) 420.640 305.613i 0.0149277 0.0108456i
\(927\) 0 0
\(928\) 3627.69 11164.9i 0.128324 0.394941i
\(929\) 18320.2 + 13310.4i 0.647003 + 0.470075i 0.862249 0.506485i \(-0.169055\pi\)
−0.215246 + 0.976560i \(0.569055\pi\)
\(930\) 0 0
\(931\) 27697.1 85242.8i 0.975011 3.00077i
\(932\) −4273.68 13153.0i −0.150203 0.462277i
\(933\) 0 0
\(934\) 12404.8 0.434579
\(935\) 6378.87 10729.3i 0.223114 0.375279i
\(936\) 0 0
\(937\) 17785.9 12922.2i 0.620106 0.450534i −0.232852 0.972512i \(-0.574806\pi\)
0.852959 + 0.521978i \(0.174806\pi\)
\(938\) −209.622 645.151i −0.00729682 0.0224573i
\(939\) 0 0
\(940\) 33550.2 + 24375.6i 1.16413 + 0.845794i
\(941\) 1193.63 + 867.223i 0.0413509 + 0.0300432i 0.608269 0.793731i \(-0.291864\pi\)
−0.566918 + 0.823774i \(0.691864\pi\)
\(942\) 0 0
\(943\) −561.135 1727.00i −0.0193776 0.0596381i
\(944\) 27800.9 20198.5i 0.958520 0.696405i
\(945\) 0 0
\(946\) −52271.9 11811.3i −1.79652 0.405938i
\(947\) 44129.0 1.51426 0.757128 0.653266i \(-0.226602\pi\)
0.757128 + 0.653266i \(0.226602\pi\)
\(948\) 0 0
\(949\) −5355.90 16483.8i −0.183203 0.563842i
\(950\) 19379.7 59644.5i 0.661853 2.03697i
\(951\) 0 0
\(952\) 6017.45 + 4371.93i 0.204860 + 0.148839i
\(953\) 14305.9 44029.1i 0.486269 1.49658i −0.343867 0.939018i \(-0.611737\pi\)
0.830135 0.557562i \(-0.188263\pi\)
\(954\) 0 0
\(955\) −25613.0 + 18608.9i −0.867872 + 0.630546i
\(956\) 7723.73 0.261300
\(957\) 0 0
\(958\) 48156.6 1.62408
\(959\) −25268.6 + 18358.7i −0.850849 + 0.618178i
\(960\) 0 0
\(961\) −8704.58 + 26789.9i −0.292188 + 0.899263i
\(962\) 22137.8 + 16084.1i 0.741946 + 0.539055i
\(963\) 0 0
\(964\) −1418.85 + 4366.77i −0.0474046 + 0.145897i
\(965\) −10794.8 33222.9i −0.360099 1.10827i
\(966\) 0 0
\(967\) −41724.4 −1.38755 −0.693777 0.720189i \(-0.744055\pi\)
−0.693777 + 0.720189i \(0.744055\pi\)
\(968\) 14289.8 2657.42i 0.474474 0.0882364i
\(969\) 0 0
\(970\) 55451.8 40288.1i 1.83552 1.33358i
\(971\) −1289.25 3967.89i −0.0426095 0.131139i 0.927489 0.373851i \(-0.121963\pi\)
−0.970098 + 0.242712i \(0.921963\pi\)
\(972\) 0 0
\(973\) 46756.3 + 33970.5i 1.54053 + 1.11926i
\(974\) −52436.2 38097.1i −1.72501 1.25330i
\(975\) 0 0
\(976\) 3468.63 + 10675.3i 0.113758 + 0.350112i
\(977\) −16292.7 + 11837.4i −0.533522 + 0.387627i −0.821674 0.569958i \(-0.806959\pi\)
0.288151 + 0.957585i \(0.406959\pi\)
\(978\) 0 0
\(979\) 351.386 + 400.434i 0.0114712 + 0.0130724i
\(980\) −52442.2 −1.70939
\(981\) 0 0
\(982\) −14809.5 45578.9i −0.481252 1.48114i
\(983\) 11895.7 36611.1i 0.385975 1.18791i −0.549796 0.835299i \(-0.685294\pi\)
0.935771 0.352609i \(-0.114706\pi\)
\(984\) 0 0
\(985\) −62192.6 45185.6i −2.01180 1.46166i
\(986\) −1421.70 + 4375.53i −0.0459189 + 0.141324i
\(987\) 0 0
\(988\) 22410.6 16282.2i 0.721635 0.524298i
\(989\) 2008.18 0.0645666
\(990\) 0 0
\(991\) −920.782 −0.0295152 −0.0147576 0.999891i \(-0.504698\pi\)
−0.0147576 + 0.999891i \(0.504698\pi\)
\(992\) 6430.94 4672.35i 0.205829 0.149544i
\(993\) 0 0
\(994\) −4689.42 + 14432.6i −0.149637 + 0.460536i
\(995\) −44955.7 32662.2i −1.43235 1.04067i
\(996\) 0 0
\(997\) 17300.8 53246.3i 0.549569 1.69140i −0.160301 0.987068i \(-0.551247\pi\)
0.709870 0.704332i \(-0.248753\pi\)
\(998\) 22635.3 + 69664.3i 0.717944 + 2.20960i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.f.e.91.2 yes 24
3.2 odd 2 inner 99.4.f.e.91.5 yes 24
11.2 odd 10 1089.4.a.bl.1.3 12
11.4 even 5 inner 99.4.f.e.37.2 24
11.9 even 5 1089.4.a.bm.1.10 12
33.2 even 10 1089.4.a.bl.1.10 12
33.20 odd 10 1089.4.a.bm.1.3 12
33.26 odd 10 inner 99.4.f.e.37.5 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.4.f.e.37.2 24 11.4 even 5 inner
99.4.f.e.37.5 yes 24 33.26 odd 10 inner
99.4.f.e.91.2 yes 24 1.1 even 1 trivial
99.4.f.e.91.5 yes 24 3.2 odd 2 inner
1089.4.a.bl.1.3 12 11.2 odd 10
1089.4.a.bl.1.10 12 33.2 even 10
1089.4.a.bm.1.3 12 33.20 odd 10
1089.4.a.bm.1.10 12 11.9 even 5