L(s) = 1 | − 3.51·2-s − 19.6·4-s − 88.3·5-s − 157.·7-s + 181.·8-s + 311.·10-s + 700.·13-s + 553.·14-s − 11.8·16-s − 831.·17-s + 764.·19-s + 1.73e3·20-s − 1.02e3·23-s + 4.68e3·25-s − 2.46e3·26-s + 3.08e3·28-s + 902.·29-s − 7.63e3·31-s − 5.77e3·32-s + 2.92e3·34-s + 1.39e4·35-s − 1.38e4·37-s − 2.69e3·38-s − 1.60e4·40-s + 1.74e4·41-s + 4.26e3·43-s + 3.62e3·46-s + ⋯ |
L(s) = 1 | − 0.622·2-s − 0.612·4-s − 1.58·5-s − 1.21·7-s + 1.00·8-s + 0.983·10-s + 1.14·13-s + 0.755·14-s − 0.0115·16-s − 0.697·17-s + 0.486·19-s + 0.968·20-s − 0.405·23-s + 1.49·25-s − 0.715·26-s + 0.743·28-s + 0.199·29-s − 1.42·31-s − 0.996·32-s + 0.434·34-s + 1.91·35-s − 1.66·37-s − 0.302·38-s − 1.58·40-s + 1.61·41-s + 0.351·43-s + 0.252·46-s + ⋯ |
Λ(s)=(=(1089s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(1089s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.06837962346 |
L(21) |
≈ |
0.06837962346 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1 |
good | 2 | 1+3.51T+32T2 |
| 5 | 1+88.3T+3.12e3T2 |
| 7 | 1+157.T+1.68e4T2 |
| 13 | 1−700.T+3.71e5T2 |
| 17 | 1+831.T+1.41e6T2 |
| 19 | 1−764.T+2.47e6T2 |
| 23 | 1+1.02e3T+6.43e6T2 |
| 29 | 1−902.T+2.05e7T2 |
| 31 | 1+7.63e3T+2.86e7T2 |
| 37 | 1+1.38e4T+6.93e7T2 |
| 41 | 1−1.74e4T+1.15e8T2 |
| 43 | 1−4.26e3T+1.47e8T2 |
| 47 | 1+1.95e4T+2.29e8T2 |
| 53 | 1+8.65e3T+4.18e8T2 |
| 59 | 1+5.13e4T+7.14e8T2 |
| 61 | 1+3.19e4T+8.44e8T2 |
| 67 | 1−3.01e4T+1.35e9T2 |
| 71 | 1−3.31e4T+1.80e9T2 |
| 73 | 1+4.47e4T+2.07e9T2 |
| 79 | 1+7.02e4T+3.07e9T2 |
| 83 | 1+9.09e4T+3.93e9T2 |
| 89 | 1+1.36e5T+5.58e9T2 |
| 97 | 1−1.79e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.024098507232539117402568695687, −8.434703698355867714311864986631, −7.61578402767065846703468917751, −6.91821523043985095741698932152, −5.84329650519419073234541378112, −4.56214347527659237777687779673, −3.80586115735969575280587412819, −3.19252846939715397135654859911, −1.37395676105794566630609640458, −0.13384366472601920504430869747,
0.13384366472601920504430869747, 1.37395676105794566630609640458, 3.19252846939715397135654859911, 3.80586115735969575280587412819, 4.56214347527659237777687779673, 5.84329650519419073234541378112, 6.91821523043985095741698932152, 7.61578402767065846703468917751, 8.434703698355867714311864986631, 9.024098507232539117402568695687