Properties

Label 1089.6.a.bf
Level $1089$
Weight $6$
Character orbit 1089.a
Self dual yes
Analytic conductor $174.658$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,6,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.657979776\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 229x^{6} + 16722x^{4} - 418240x^{2} + 3026848 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 25) q^{4} + (\beta_{3} + 3 \beta_1) q^{5} + (\beta_{6} - \beta_{5} + \beta_{2} + 13) q^{7} + (\beta_{4} + \beta_{3} + 19 \beta_1) q^{8} + (2 \beta_{6} + 7 \beta_{5} + \cdots + 178) q^{10}+ \cdots + (39 \beta_{7} + 348 \beta_{4} + \cdots + 19061 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 202 q^{4} + 106 q^{7} + 1438 q^{10} + 1618 q^{13} + 2218 q^{16} - 1170 q^{19} + 15250 q^{25} + 23744 q^{28} - 10882 q^{31} - 8974 q^{34} + 16908 q^{37} + 48258 q^{40} - 39252 q^{43} + 84140 q^{46}+ \cdots - 285512 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 229x^{6} + 16722x^{4} - 418240x^{2} + 3026848 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 57 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} + 249\nu^{5} - 17478\nu^{3} + 273592\nu ) / 4224 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} - 249\nu^{5} + 21702\nu^{3} - 624184\nu ) / 4224 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} + 249\nu^{4} - 17478\nu^{2} + 261976 ) / 1056 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} - 161\nu^{4} + 6830\nu^{2} - 70312 ) / 176 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 3\nu^{7} - 571\nu^{5} + 30786\nu^{3} - 387816\nu ) / 352 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 57 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{3} + 83\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{6} + 12\beta_{5} + 121\beta_{2} + 4719 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{7} + 123\beta_{4} + 195\beta_{3} + 7749\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 498\beta_{6} + 1932\beta_{5} + 12651\beta_{2} + 440761 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 498\beta_{7} + 13149\beta_{4} + 26853\beta_{3} + 752419\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.2702
−9.12913
−5.27195
−3.51979
3.51979
5.27195
9.12913
10.2702
−10.2702 0 73.4766 −96.0074 0 231.048 −425.972 0 986.013
1.2 −9.12913 0 51.3411 42.6812 0 −149.019 −176.567 0 −389.642
1.3 −5.27195 0 −4.20653 35.7371 0 128.331 190.879 0 −188.404
1.4 −3.51979 0 −19.6111 −88.3672 0 −157.360 181.660 0 311.034
1.5 3.51979 0 −19.6111 88.3672 0 −157.360 −181.660 0 311.034
1.6 5.27195 0 −4.20653 −35.7371 0 128.331 −190.879 0 −188.404
1.7 9.12913 0 51.3411 −42.6812 0 −149.019 176.567 0 −389.642
1.8 10.2702 0 73.4766 96.0074 0 231.048 425.972 0 986.013
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.6.a.bf yes 8
3.b odd 2 1 inner 1089.6.a.bf yes 8
11.b odd 2 1 1089.6.a.be 8
33.d even 2 1 1089.6.a.be 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1089.6.a.be 8 11.b odd 2 1
1089.6.a.be 8 33.d even 2 1
1089.6.a.bf yes 8 1.a even 1 1 trivial
1089.6.a.bf yes 8 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1089))\):

\( T_{2}^{8} - 229T_{2}^{6} + 16722T_{2}^{4} - 418240T_{2}^{2} + 3026848 \) Copy content Toggle raw display
\( T_{5}^{8} - 20125T_{5}^{6} + 127064259T_{5}^{4} - 262655010847T_{5}^{2} + 167456866563712 \) Copy content Toggle raw display
\( T_{7}^{4} - 53T_{7}^{3} - 57006T_{7}^{2} + 657028T_{7} + 695298376 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 229 T^{6} + \cdots + 3026848 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots + 167456866563712 \) Copy content Toggle raw display
$7$ \( (T^{4} - 53 T^{3} + \cdots + 695298376)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} - 809 T^{3} + \cdots - 7604252450)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 27\!\cdots\!12 \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots + 4234032000000)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 56\!\cdots\!88 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 13\!\cdots\!08 \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 182895361654720)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + \cdots - 38\!\cdots\!77)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 97\!\cdots\!72 \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 42\!\cdots\!96)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 19\!\cdots\!12 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 13\!\cdots\!32 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 48\!\cdots\!12 \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots - 10\!\cdots\!16)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots - 64\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 83\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{4} + \cdots - 25\!\cdots\!00)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 18\!\cdots\!12)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 68\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 99\!\cdots\!88 \) Copy content Toggle raw display
$97$ \( (T^{4} + \cdots + 16\!\cdots\!25)^{2} \) Copy content Toggle raw display
show more
show less