Defining parameters
Level: | \( N \) | \(=\) | \( 1089 = 3^{2} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 1089.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 41 \) | ||
Sturm bound: | \(792\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(1089))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 684 | 231 | 453 |
Cusp forms | 636 | 222 | 414 |
Eisenstein series | 48 | 9 | 39 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(11\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(42\) |
\(+\) | \(-\) | \(-\) | \(48\) |
\(-\) | \(+\) | \(-\) | \(67\) |
\(-\) | \(-\) | \(+\) | \(65\) |
Plus space | \(+\) | \(107\) | |
Minus space | \(-\) | \(115\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(1089))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(1089))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(1089)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 2}\)