Properties

Label 1089.6.a
Level $1089$
Weight $6$
Character orbit 1089.a
Rep. character $\chi_{1089}(1,\cdot)$
Character field $\Q$
Dimension $222$
Newform subspaces $41$
Sturm bound $792$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 41 \)
Sturm bound: \(792\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(1089))\).

Total New Old
Modular forms 684 231 453
Cusp forms 636 222 414
Eisenstein series 48 9 39

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(42\)
\(+\)\(-\)\(-\)\(48\)
\(-\)\(+\)\(-\)\(67\)
\(-\)\(-\)\(+\)\(65\)
Plus space\(+\)\(107\)
Minus space\(-\)\(115\)

Trace form

\( 222 q - 2 q^{2} + 3456 q^{4} + 72 q^{5} + 18 q^{7} - 312 q^{8} + 158 q^{10} + 252 q^{13} + 1308 q^{14} + 53940 q^{16} - 1958 q^{17} + 1960 q^{19} + 2592 q^{20} - 3630 q^{23} + 131622 q^{25} - 4704 q^{26}+ \cdots - 66570 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(1089))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 11
1089.6.a.a 1089.a 1.a $1$ $174.658$ \(\Q\) None 363.6.a.a \(-9\) \(0\) \(-24\) \(-72\) $-$ $+$ $\mathrm{SU}(2)$ \(q-9q^{2}+7^{2}q^{4}-24q^{5}-72q^{7}-153q^{8}+\cdots\)
1089.6.a.b 1089.a 1.a $1$ $174.658$ \(\Q\) None 3.6.a.a \(-6\) \(0\) \(-6\) \(40\) $-$ $-$ $\mathrm{SU}(2)$ \(q-6q^{2}+4q^{4}-6q^{5}+40q^{7}+168q^{8}+\cdots\)
1089.6.a.c 1089.a 1.a $1$ $174.658$ \(\Q\) None 11.6.a.a \(-4\) \(0\) \(19\) \(-10\) $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}-2^{4}q^{4}+19q^{5}-10q^{7}+192q^{8}+\cdots\)
1089.6.a.d 1089.a 1.a $1$ $174.658$ \(\Q\) None 33.6.a.a \(-2\) \(0\) \(-46\) \(-148\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-28q^{4}-46q^{5}-148q^{7}+\cdots\)
1089.6.a.e 1089.a 1.a $1$ $174.658$ \(\Q\) \(\Q(\sqrt{-11}) \) 121.6.a.a \(0\) \(0\) \(-57\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-2^{5}q^{4}-57q^{5}+2^{10}q^{16}+1824q^{20}+\cdots\)
1089.6.a.f 1089.a 1.a $1$ $174.658$ \(\Q\) \(\Q(\sqrt{-3}) \) 1089.6.a.f \(0\) \(0\) \(0\) \(-25\) $+$ $-$ $N(\mathrm{U}(1))$ \(q-2^{5}q^{4}-5^{2}q^{7}+1202q^{13}+2^{10}q^{16}+\cdots\)
1089.6.a.g 1089.a 1.a $1$ $174.658$ \(\Q\) \(\Q(\sqrt{-3}) \) 1089.6.a.f \(0\) \(0\) \(0\) \(25\) $+$ $-$ $N(\mathrm{U}(1))$ \(q-2^{5}q^{4}+5^{2}q^{7}-1202q^{13}+2^{10}q^{16}+\cdots\)
1089.6.a.h 1089.a 1.a $1$ $174.658$ \(\Q\) None 33.6.a.b \(1\) \(0\) \(92\) \(26\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-31q^{4}+92q^{5}+26q^{7}-63q^{8}+\cdots\)
1089.6.a.i 1089.a 1.a $1$ $174.658$ \(\Q\) None 363.6.a.a \(9\) \(0\) \(-24\) \(72\) $-$ $+$ $\mathrm{SU}(2)$ \(q+9q^{2}+7^{2}q^{4}-24q^{5}+72q^{7}+153q^{8}+\cdots\)
1089.6.a.j 1089.a 1.a $2$ $174.658$ \(\Q(\sqrt{177}) \) None 33.6.a.c \(-5\) \(0\) \(-58\) \(286\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta )q^{2}+(2^{4}+5\beta )q^{4}+(-24+\cdots)q^{5}+\cdots\)
1089.6.a.k 1089.a 1.a $2$ $174.658$ \(\Q(\sqrt{3}) \) \(\Q(\sqrt{-3}) \) 1089.6.a.k \(0\) \(0\) \(0\) \(0\) $+$ $+$ $N(\mathrm{U}(1))$ \(q-2^{5}q^{4}-149\beta q^{7}+116\beta q^{13}+2^{10}q^{16}+\cdots\)
1089.6.a.l 1089.a 1.a $2$ $174.658$ \(\Q(\sqrt{5}) \) None 363.6.a.h \(0\) \(0\) \(196\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}-12q^{4}+98q^{5}+53\beta q^{7}+\cdots\)
1089.6.a.m 1089.a 1.a $2$ $174.658$ \(\Q(\sqrt{38}) \) None 121.6.a.c \(0\) \(0\) \(38\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+6q^{4}+19q^{5}+8\beta q^{7}-26\beta q^{8}+\cdots\)
1089.6.a.n 1089.a 1.a $2$ $174.658$ \(\Q(\sqrt{3}) \) None 363.6.a.i \(0\) \(0\) \(-48\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4\beta q^{2}+2^{4}q^{4}-24q^{5}-\beta q^{7}-2^{6}\beta q^{8}+\cdots\)
1089.6.a.o 1089.a 1.a $2$ $174.658$ \(\Q(\sqrt{313}) \) None 33.6.a.d \(1\) \(0\) \(38\) \(18\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(46+\beta )q^{4}+(24-10\beta )q^{5}+\cdots\)
1089.6.a.p 1089.a 1.a $2$ $174.658$ \(\Q(\sqrt{33}) \) None 33.6.a.e \(13\) \(0\) \(-58\) \(-146\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(7-\beta )q^{2}+(5^{2}-13\beta )q^{4}+(-24+\cdots)q^{5}+\cdots\)
1089.6.a.q 1089.a 1.a $3$ $174.658$ 3.3.193425.1 None 363.6.a.k \(-1\) \(0\) \(58\) \(117\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(6+\beta _{1}+2\beta _{2})q^{4}+(17+6\beta _{1}+\cdots)q^{5}+\cdots\)
1089.6.a.r 1089.a 1.a $3$ $174.658$ 3.3.54492.1 None 11.6.a.b \(0\) \(0\) \(-24\) \(-84\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(28-2\beta _{1}-4\beta _{2})q^{4}+(-8+\cdots)q^{5}+\cdots\)
1089.6.a.s 1089.a 1.a $3$ $174.658$ 3.3.193425.1 None 363.6.a.k \(1\) \(0\) \(58\) \(-117\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(6+\beta _{1}+2\beta _{2})q^{4}+(17+6\beta _{1}+\cdots)q^{5}+\cdots\)
1089.6.a.t 1089.a 1.a $4$ $174.658$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 363.6.a.m \(-9\) \(0\) \(-42\) \(-14\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{2}+(12+6\beta _{1}+\beta _{2})q^{4}+\cdots\)
1089.6.a.u 1089.a 1.a $4$ $174.658$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 363.6.a.m \(9\) \(0\) \(-42\) \(14\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{2}+(12+6\beta _{1}+\beta _{2})q^{4}+\cdots\)
1089.6.a.v 1089.a 1.a $5$ $174.658$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 121.6.a.e \(-4\) \(0\) \(-29\) \(-102\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(21-\beta _{1}+\beta _{3})q^{4}+\cdots\)
1089.6.a.w 1089.a 1.a $5$ $174.658$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 99.6.a.h \(-4\) \(0\) \(100\) \(18\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(21-3\beta _{1}+\beta _{4})q^{4}+\cdots\)
1089.6.a.x 1089.a 1.a $5$ $174.658$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 99.6.a.h \(4\) \(0\) \(-100\) \(18\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(21-3\beta _{1}+\beta _{4})q^{4}+\cdots\)
1089.6.a.y 1089.a 1.a $5$ $174.658$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 121.6.a.e \(4\) \(0\) \(-29\) \(102\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(21-\beta _{1}+\beta _{3})q^{4}+(-6+\cdots)q^{5}+\cdots\)
1089.6.a.z 1089.a 1.a $6$ $174.658$ 6.6.\(\cdots\).1 None 363.6.a.o \(0\) \(0\) \(50\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}+3\beta _{2})q^{2}+(14+\beta _{3}-7\beta _{4}+\cdots)q^{4}+\cdots\)
1089.6.a.ba 1089.a 1.a $6$ $174.658$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 363.6.a.p \(0\) \(0\) \(48\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(28+\beta _{2})q^{4}+(8+\beta _{2}+\beta _{4}+\cdots)q^{5}+\cdots\)
1089.6.a.bb 1089.a 1.a $8$ $174.658$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 11.6.c.a \(-8\) \(0\) \(-70\) \(292\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(11-\beta _{1}+\beta _{2})q^{4}+\cdots\)
1089.6.a.bc 1089.a 1.a $8$ $174.658$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1089.6.a.bc \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{4}q^{2}+(19-\beta _{1})q^{4}-\beta _{2}q^{5}+\beta _{7}q^{7}+\cdots\)
1089.6.a.bd 1089.a 1.a $8$ $174.658$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 121.6.a.h \(0\) \(0\) \(256\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(19-2\beta _{2}+\beta _{6})q^{4}+(33+\cdots)q^{5}+\cdots\)
1089.6.a.be 1089.a 1.a $8$ $174.658$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1089.6.a.be \(0\) \(0\) \(0\) \(-106\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(5^{2}+\beta _{2})q^{4}+(-3\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\)
1089.6.a.bf 1089.a 1.a $8$ $174.658$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1089.6.a.be \(0\) \(0\) \(0\) \(106\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(5^{2}+\beta _{2})q^{4}+(3\beta _{1}+\beta _{3}+\cdots)q^{5}+\cdots\)
1089.6.a.bg 1089.a 1.a $8$ $174.658$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 11.6.c.a \(8\) \(0\) \(-70\) \(-292\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(11-\beta _{1}+\beta _{2})q^{4}+(-9+\cdots)q^{5}+\cdots\)
1089.6.a.bh 1089.a 1.a $10$ $174.658$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 33.6.e.a \(-9\) \(0\) \(-11\) \(470\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(19-\beta _{1}+\beta _{2})q^{4}+\cdots\)
1089.6.a.bi 1089.a 1.a $10$ $174.658$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 33.6.e.b \(-7\) \(0\) \(33\) \(-78\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(15-\beta _{1}+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
1089.6.a.bj 1089.a 1.a $10$ $174.658$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 363.6.a.s \(0\) \(0\) \(-198\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{6}q^{2}+(18+\beta _{1})q^{4}+(-20-\beta _{1}+\cdots)q^{5}+\cdots\)
1089.6.a.bk 1089.a 1.a $10$ $174.658$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 33.6.e.b \(7\) \(0\) \(33\) \(78\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(15-\beta _{1}+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
1089.6.a.bl 1089.a 1.a $10$ $174.658$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 33.6.e.a \(9\) \(0\) \(-11\) \(-470\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(19-\beta _{1}+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
1089.6.a.bm 1089.a 1.a $12$ $174.658$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1089.6.a.bm \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{6}q^{2}+(14+\beta _{3})q^{4}+(\beta _{1}-\beta _{2})q^{5}+\cdots\)
1089.6.a.bn 1089.a 1.a $20$ $174.658$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 99.6.f.d \(0\) \(0\) \(0\) \(-472\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(15+\beta _{2})q^{4}+(-\beta _{1}-\beta _{8}+\cdots)q^{5}+\cdots\)
1089.6.a.bo 1089.a 1.a $20$ $174.658$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 99.6.f.d \(0\) \(0\) \(0\) \(472\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(15+\beta _{2})q^{4}+(\beta _{1}+\beta _{8})q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(1089))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(1089)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 2}\)