L(s) = 1 | + (−0.618 + 1.90i)2-s + (−5.73 + 4.16i)3-s + (−3.23 − 2.35i)4-s + (−1.54 − 4.75i)5-s + (−4.38 − 13.4i)6-s + (−9.28 − 6.74i)7-s + (6.47 − 4.70i)8-s + (7.20 − 22.1i)9-s + 10.0·10-s + (31.3 − 18.6i)11-s + 28.3·12-s + (−11.2 + 34.4i)13-s + (18.5 − 13.4i)14-s + (28.6 + 20.8i)15-s + (4.94 + 15.2i)16-s + (−7.66 − 23.5i)17-s + ⋯ |
L(s) = 1 | + (−0.218 + 0.672i)2-s + (−1.10 + 0.802i)3-s + (−0.404 − 0.293i)4-s + (−0.138 − 0.425i)5-s + (−0.298 − 0.917i)6-s + (−0.501 − 0.364i)7-s + (0.286 − 0.207i)8-s + (0.266 − 0.820i)9-s + 0.316·10-s + (0.859 − 0.511i)11-s + 0.682·12-s + (−0.239 + 0.736i)13-s + (0.354 − 0.257i)14-s + (0.493 + 0.358i)15-s + (0.0772 + 0.237i)16-s + (−0.109 − 0.336i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(0.935+0.352i)Λ(4−s)
Λ(s)=(=(110s/2ΓC(s+3/2)L(s)(0.935+0.352i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
0.935+0.352i
|
Analytic conductor: |
6.49021 |
Root analytic conductor: |
2.54758 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :3/2), 0.935+0.352i)
|
Particular Values
L(2) |
≈ |
0.619544−0.112747i |
L(21) |
≈ |
0.619544−0.112747i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.618−1.90i)T |
| 5 | 1+(1.54+4.75i)T |
| 11 | 1+(−31.3+18.6i)T |
good | 3 | 1+(5.73−4.16i)T+(8.34−25.6i)T2 |
| 7 | 1+(9.28+6.74i)T+(105.+326.i)T2 |
| 13 | 1+(11.2−34.4i)T+(−1.77e3−1.29e3i)T2 |
| 17 | 1+(7.66+23.5i)T+(−3.97e3+2.88e3i)T2 |
| 19 | 1+(−93.8+68.2i)T+(2.11e3−6.52e3i)T2 |
| 23 | 1−89.1T+1.21e4T2 |
| 29 | 1+(160.+116.i)T+(7.53e3+2.31e4i)T2 |
| 31 | 1+(−73.7+227.i)T+(−2.41e4−1.75e4i)T2 |
| 37 | 1+(251.+183.i)T+(1.56e4+4.81e4i)T2 |
| 41 | 1+(−30.1+21.9i)T+(2.12e4−6.55e4i)T2 |
| 43 | 1−330.T+7.95e4T2 |
| 47 | 1+(127.−92.6i)T+(3.20e4−9.87e4i)T2 |
| 53 | 1+(11.4−35.1i)T+(−1.20e5−8.75e4i)T2 |
| 59 | 1+(516.+374.i)T+(6.34e4+1.95e5i)T2 |
| 61 | 1+(−10.3−31.9i)T+(−1.83e5+1.33e5i)T2 |
| 67 | 1−396.T+3.00e5T2 |
| 71 | 1+(−337.−1.03e3i)T+(−2.89e5+2.10e5i)T2 |
| 73 | 1+(276.+200.i)T+(1.20e5+3.69e5i)T2 |
| 79 | 1+(−113.+349.i)T+(−3.98e5−2.89e5i)T2 |
| 83 | 1+(288.+886.i)T+(−4.62e5+3.36e5i)T2 |
| 89 | 1−470.T+7.04e5T2 |
| 97 | 1+(−361.+1.11e3i)T+(−7.38e5−5.36e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.22916289950513462035698694691, −11.77340461011525610430411824248, −11.09532629467355708661120862733, −9.709862162236827819556618808523, −9.100605560471018967249881350028, −7.35876854947189900812560722377, −6.21473174205530879569662509421, −5.10823137546310638616315917691, −3.98650801381844387643017805984, −0.48339145173196210335635633668,
1.33188105394653926113455420905, 3.30983300613706949801940015186, 5.27962924304850510874383486159, 6.52478754600541840207374100160, 7.53206821486422474466772219773, 9.146287468043217912348693453204, 10.32511559913798792544067734141, 11.30881748487506115795753143006, 12.27523719879340623559957927622, 12.63788362956822254909359359502