Properties

Label 110.4.g.c
Level 110110
Weight 44
Character orbit 110.g
Analytic conductor 6.4906.490
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,4,Mod(31,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.31");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 110=2511 110 = 2 \cdot 5 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 110.g (of order 55, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.490210100636.49021010063
Analytic rank: 00
Dimension: 1212
Relative dimension: 33 over Q(ζ5)\Q(\zeta_{5})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x11+80x1071x9+3603x8191x7+110280x6+142285x5++2085136 x^{12} - x^{11} + 80 x^{10} - 71 x^{9} + 3603 x^{8} - 191 x^{7} + 110280 x^{6} + 142285 x^{5} + \cdots + 2085136 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2β82β5++2)q2β4q34β2q4+5β5q52β3q6+(β11+β9+2β7++5)q7+8β8q8++(9β11+15β10++220)q99+O(q100) q + ( - 2 \beta_{8} - 2 \beta_{5} + \cdots + 2) q^{2} - \beta_{4} q^{3} - 4 \beta_{2} q^{4} + 5 \beta_{5} q^{5} - 2 \beta_{3} q^{6} + (\beta_{11} + \beta_{9} + 2 \beta_{7} + \cdots + 5) q^{7} + 8 \beta_{8} q^{8}+ \cdots + (9 \beta_{11} + 15 \beta_{10} + \cdots + 220) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q2q312q4+15q5+2q6+38q7+24q878q9+120q10+66q11+16q12+57q1376q14+5q1548q16157q1724q18+331q19++3455q99+O(q100) 12 q + 6 q^{2} - q^{3} - 12 q^{4} + 15 q^{5} + 2 q^{6} + 38 q^{7} + 24 q^{8} - 78 q^{9} + 120 q^{10} + 66 q^{11} + 16 q^{12} + 57 q^{13} - 76 q^{14} + 5 q^{15} - 48 q^{16} - 157 q^{17} - 24 q^{18} + 331 q^{19}+ \cdots + 3455 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12x11+80x1071x9+3603x8191x7+110280x6+142285x5++2085136 x^{12} - x^{11} + 80 x^{10} - 71 x^{9} + 3603 x^{8} - 191 x^{7} + 110280 x^{6} + 142285 x^{5} + \cdots + 2085136 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (48 ⁣ ⁣35ν11++23 ⁣ ⁣92)/12 ⁣ ⁣12 ( 48\!\cdots\!35 \nu^{11} + \cdots + 23\!\cdots\!92 ) / 12\!\cdots\!12 Copy content Toggle raw display
β3\beta_{3}== (87 ⁣ ⁣97ν11+14 ⁣ ⁣80)/17 ⁣ ⁣96 ( 87\!\cdots\!97 \nu^{11} + \cdots - 14\!\cdots\!80 ) / 17\!\cdots\!96 Copy content Toggle raw display
β4\beta_{4}== (52 ⁣ ⁣83ν11++32 ⁣ ⁣98)/43 ⁣ ⁣49 ( - 52\!\cdots\!83 \nu^{11} + \cdots + 32\!\cdots\!98 ) / 43\!\cdots\!49 Copy content Toggle raw display
β5\beta_{5}== (20 ⁣ ⁣11ν11++32 ⁣ ⁣32)/12 ⁣ ⁣12 ( - 20\!\cdots\!11 \nu^{11} + \cdots + 32\!\cdots\!32 ) / 12\!\cdots\!12 Copy content Toggle raw display
β6\beta_{6}== (38 ⁣ ⁣65ν11+18 ⁣ ⁣32)/18 ⁣ ⁣68 ( - 38\!\cdots\!65 \nu^{11} + \cdots - 18\!\cdots\!32 ) / 18\!\cdots\!68 Copy content Toggle raw display
β7\beta_{7}== (37 ⁣ ⁣71ν11++58 ⁣ ⁣68)/17 ⁣ ⁣96 ( - 37\!\cdots\!71 \nu^{11} + \cdots + 58\!\cdots\!68 ) / 17\!\cdots\!96 Copy content Toggle raw display
β8\beta_{8}== (29 ⁣ ⁣33ν11++17 ⁣ ⁣64)/12 ⁣ ⁣12 ( - 29\!\cdots\!33 \nu^{11} + \cdots + 17\!\cdots\!64 ) / 12\!\cdots\!12 Copy content Toggle raw display
β9\beta_{9}== (45 ⁣ ⁣43ν11++27 ⁣ ⁣00)/18 ⁣ ⁣68 ( - 45\!\cdots\!43 \nu^{11} + \cdots + 27\!\cdots\!00 ) / 18\!\cdots\!68 Copy content Toggle raw display
β10\beta_{10}== (33 ⁣ ⁣33ν11++16 ⁣ ⁣60)/93 ⁣ ⁣34 ( - 33\!\cdots\!33 \nu^{11} + \cdots + 16\!\cdots\!60 ) / 93\!\cdots\!34 Copy content Toggle raw display
β11\beta_{11}== (37 ⁣ ⁣40ν11+71 ⁣ ⁣60)/93 ⁣ ⁣34 ( 37\!\cdots\!40 \nu^{11} + \cdots - 71\!\cdots\!60 ) / 93\!\cdots\!34 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β103β9+6β8+3β634β56 3\beta_{10} - 3\beta_{9} + 6\beta_{8} + 3\beta_{6} - 34\beta_{5} - 6 Copy content Toggle raw display
ν3\nu^{3}== 3β1161β7+9β49β3+12β212 -3\beta_{11} - 61\beta_{7} + 9\beta_{4} - 9\beta_{3} + 12\beta_{2} - 12 Copy content Toggle raw display
ν4\nu^{4}== 27β10+186β91822β8+660β518β4+9β3+660β29β1 -27\beta_{10} + 186\beta_{9} - 1822\beta_{8} + 660\beta_{5} - 18\beta_{4} + 9\beta_{3} + 660\beta_{2} - 9\beta_1 Copy content Toggle raw display
ν5\nu^{5}== 213β11+213β10996β8+3811β72803β4+3811β3++546 213 \beta_{11} + 213 \beta_{10} - 996 \beta_{8} + 3811 \beta_{7} - 2803 \beta_{4} + 3811 \beta_{3} + \cdots + 546 Copy content Toggle raw display
ν6\nu^{6}== 3024β113024β9+783β78622β656286β5783β4++56286 - 3024 \beta_{11} - 3024 \beta_{9} + 783 \beta_{7} - 8622 \beta_{6} - 56286 \beta_{5} - 783 \beta_{4} + \cdots + 56286 Copy content Toggle raw display
ν7\nu^{7}== 675β1114481β10+14481β9+67536β886076β7+67536 - 675 \beta_{11} - 14481 \beta_{10} + 14481 \beta_{9} + 67536 \beta_{8} - 86076 \beta_{7} + \cdots - 67536 Copy content Toggle raw display
ν8\nu^{8}== 741027β11+258903β10+5821360β8+76464β7+258903β6+10143112 741027 \beta_{11} + 258903 \beta_{10} + 5821360 \beta_{8} + 76464 \beta_{7} + 258903 \beta_{6} + \cdots - 10143112 Copy content Toggle raw display
ν9\nu^{9}== 111888β10970419β9+2936304β8+4171494β5+8973007β4+6616197β1 111888 \beta_{10} - 970419 \beta_{9} + 2936304 \beta_{8} + 4171494 \beta_{5} + 8973007 \beta_{4} + \cdots - 6616197 \beta_1 Copy content Toggle raw display
ν10\nu^{10}== 47738031β1147738031β10+19960479β9314604246β8++658936114 - 47738031 \beta_{11} - 47738031 \beta_{10} + 19960479 \beta_{9} - 314604246 \beta_{8} + \cdots + 658936114 Copy content Toggle raw display
ν11\nu^{11}== 12371238β11+12371238β9+482105151β7+52375686β6242945736β5++242945736 12371238 \beta_{11} + 12371238 \beta_{9} + 482105151 \beta_{7} + 52375686 \beta_{6} - 242945736 \beta_{5} + \cdots + 242945736 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/110Z)×\left(\mathbb{Z}/110\mathbb{Z}\right)^\times.

nn 6767 101101
χ(n)\chi(n) 11 β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
5.73804 + 4.16893i
0.396392 + 0.287995i
−5.32541 3.86914i
5.73804 4.16893i
0.396392 0.287995i
−5.32541 + 3.86914i
2.51400 + 7.73730i
−0.292839 0.901266i
−2.53018 7.78709i
2.51400 7.73730i
−0.292839 + 0.901266i
−2.53018 + 7.78709i
−0.618034 + 1.90211i −5.73804 + 4.16893i −3.23607 2.35114i −1.54508 4.75528i −4.38347 13.4909i −9.28009 6.74238i 6.47214 4.70228i 7.20166 22.1644i 10.0000
31.2 −0.618034 + 1.90211i −0.396392 + 0.287995i −3.23607 2.35114i −1.54508 4.75528i −0.302816 0.931973i 19.1679 + 13.9263i 6.47214 4.70228i −8.26927 + 25.4502i 10.0000
31.3 −0.618034 + 1.90211i 5.32541 3.86914i −3.23607 2.35114i −1.54508 4.75528i 4.06825 + 12.5208i 7.43847 + 5.40436i 6.47214 4.70228i 5.04633 15.5310i 10.0000
71.1 −0.618034 1.90211i −5.73804 4.16893i −3.23607 + 2.35114i −1.54508 + 4.75528i −4.38347 + 13.4909i −9.28009 + 6.74238i 6.47214 + 4.70228i 7.20166 + 22.1644i 10.0000
71.2 −0.618034 1.90211i −0.396392 0.287995i −3.23607 + 2.35114i −1.54508 + 4.75528i −0.302816 + 0.931973i 19.1679 13.9263i 6.47214 + 4.70228i −8.26927 25.4502i 10.0000
71.3 −0.618034 1.90211i 5.32541 + 3.86914i −3.23607 + 2.35114i −1.54508 + 4.75528i 4.06825 12.5208i 7.43847 5.40436i 6.47214 + 4.70228i 5.04633 + 15.5310i 10.0000
81.1 1.61803 + 1.17557i −2.51400 + 7.73730i 1.23607 + 3.80423i 4.04508 2.93893i −13.1635 + 9.56383i 7.65943 + 23.5733i −2.47214 + 7.60845i −31.7021 23.0330i 10.0000
81.2 1.61803 + 1.17557i 0.292839 0.901266i 1.23607 + 3.80423i 4.04508 2.93893i 1.53333 1.11403i 2.73261 + 8.41010i −2.47214 + 7.60845i 21.1169 + 15.3423i 10.0000
81.3 1.61803 + 1.17557i 2.53018 7.78709i 1.23607 + 3.80423i 4.04508 2.93893i 13.2482 9.62537i −8.71828 26.8321i −2.47214 + 7.60845i −32.3935 23.5353i 10.0000
91.1 1.61803 1.17557i −2.51400 7.73730i 1.23607 3.80423i 4.04508 + 2.93893i −13.1635 9.56383i 7.65943 23.5733i −2.47214 7.60845i −31.7021 + 23.0330i 10.0000
91.2 1.61803 1.17557i 0.292839 + 0.901266i 1.23607 3.80423i 4.04508 + 2.93893i 1.53333 + 1.11403i 2.73261 8.41010i −2.47214 7.60845i 21.1169 15.3423i 10.0000
91.3 1.61803 1.17557i 2.53018 + 7.78709i 1.23607 3.80423i 4.04508 + 2.93893i 13.2482 + 9.62537i −8.71828 + 26.8321i −2.47214 7.60845i −32.3935 + 23.5353i 10.0000
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 110.4.g.c 12
11.c even 5 1 inner 110.4.g.c 12
11.c even 5 1 1210.4.a.bd 6
11.d odd 10 1 1210.4.a.bg 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.4.g.c 12 1.a even 1 1 trivial
110.4.g.c 12 11.c even 5 1 inner
1210.4.a.bd 6 11.c even 5 1
1210.4.a.bg 6 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T312+T311+80T310+71T39+3603T38+191T37+110280T36++2085136 T_{3}^{12} + T_{3}^{11} + 80 T_{3}^{10} + 71 T_{3}^{9} + 3603 T_{3}^{8} + 191 T_{3}^{7} + 110280 T_{3}^{6} + \cdots + 2085136 acting on S4new(110,[χ])S_{4}^{\mathrm{new}}(110, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T42T3+4T2++16)3 (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 16)^{3} Copy content Toggle raw display
33 T12+T11++2085136 T^{12} + T^{11} + \cdots + 2085136 Copy content Toggle raw display
55 (T45T3++625)3 (T^{4} - 5 T^{3} + \cdots + 625)^{3} Copy content Toggle raw display
77 T12++238773729813025 T^{12} + \cdots + 238773729813025 Copy content Toggle raw display
1111 T12++55 ⁣ ⁣81 T^{12} + \cdots + 55\!\cdots\!81 Copy content Toggle raw display
1313 T12++81 ⁣ ⁣61 T^{12} + \cdots + 81\!\cdots\!61 Copy content Toggle raw display
1717 T12++10 ⁣ ⁣56 T^{12} + \cdots + 10\!\cdots\!56 Copy content Toggle raw display
1919 T12++16 ⁣ ⁣61 T^{12} + \cdots + 16\!\cdots\!61 Copy content Toggle raw display
2323 (T6236T5++35478920461)2 (T^{6} - 236 T^{5} + \cdots + 35478920461)^{2} Copy content Toggle raw display
2929 T12++38 ⁣ ⁣00 T^{12} + \cdots + 38\!\cdots\!00 Copy content Toggle raw display
3131 T12++23 ⁣ ⁣16 T^{12} + \cdots + 23\!\cdots\!16 Copy content Toggle raw display
3737 T12++99 ⁣ ⁣61 T^{12} + \cdots + 99\!\cdots\!61 Copy content Toggle raw display
4141 T12++15 ⁣ ⁣01 T^{12} + \cdots + 15\!\cdots\!01 Copy content Toggle raw display
4343 (T6++78741334432420)2 (T^{6} + \cdots + 78741334432420)^{2} Copy content Toggle raw display
4747 T12++68 ⁣ ⁣21 T^{12} + \cdots + 68\!\cdots\!21 Copy content Toggle raw display
5353 T12++14 ⁣ ⁣25 T^{12} + \cdots + 14\!\cdots\!25 Copy content Toggle raw display
5959 T12++98 ⁣ ⁣21 T^{12} + \cdots + 98\!\cdots\!21 Copy content Toggle raw display
6161 T12++58 ⁣ ⁣00 T^{12} + \cdots + 58\!\cdots\!00 Copy content Toggle raw display
6767 (T6++13 ⁣ ⁣44)2 (T^{6} + \cdots + 13\!\cdots\!44)^{2} Copy content Toggle raw display
7171 T12++12 ⁣ ⁣00 T^{12} + \cdots + 12\!\cdots\!00 Copy content Toggle raw display
7373 T12++21 ⁣ ⁣76 T^{12} + \cdots + 21\!\cdots\!76 Copy content Toggle raw display
7979 T12++17 ⁣ ⁣76 T^{12} + \cdots + 17\!\cdots\!76 Copy content Toggle raw display
8383 T12++51 ⁣ ⁣56 T^{12} + \cdots + 51\!\cdots\!56 Copy content Toggle raw display
8989 (T6++27 ⁣ ⁣19)2 (T^{6} + \cdots + 27\!\cdots\!19)^{2} Copy content Toggle raw display
9797 T12++22 ⁣ ⁣36 T^{12} + \cdots + 22\!\cdots\!36 Copy content Toggle raw display
show more
show less