Properties

Label 110.4.g.c
Level $110$
Weight $4$
Character orbit 110.g
Analytic conductor $6.490$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,4,Mod(31,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.31");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 110.g (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.49021010063\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 80 x^{10} - 71 x^{9} + 3603 x^{8} - 191 x^{7} + 110280 x^{6} + 142285 x^{5} + \cdots + 2085136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta_{8} - 2 \beta_{5} + \cdots + 2) q^{2} - \beta_{4} q^{3} - 4 \beta_{2} q^{4} + 5 \beta_{5} q^{5} - 2 \beta_{3} q^{6} + (\beta_{11} + \beta_{9} + 2 \beta_{7} + \cdots + 5) q^{7} + 8 \beta_{8} q^{8}+ \cdots + (9 \beta_{11} + 15 \beta_{10} + \cdots + 220) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - q^{3} - 12 q^{4} + 15 q^{5} + 2 q^{6} + 38 q^{7} + 24 q^{8} - 78 q^{9} + 120 q^{10} + 66 q^{11} + 16 q^{12} + 57 q^{13} - 76 q^{14} + 5 q^{15} - 48 q^{16} - 157 q^{17} - 24 q^{18} + 331 q^{19}+ \cdots + 3455 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - x^{11} + 80 x^{10} - 71 x^{9} + 3603 x^{8} - 191 x^{7} + 110280 x^{6} + 142285 x^{5} + \cdots + 2085136 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 48\!\cdots\!35 \nu^{11} + \cdots + 23\!\cdots\!92 ) / 12\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 87\!\cdots\!97 \nu^{11} + \cdots - 14\!\cdots\!80 ) / 17\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 52\!\cdots\!83 \nu^{11} + \cdots + 32\!\cdots\!98 ) / 43\!\cdots\!49 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 20\!\cdots\!11 \nu^{11} + \cdots + 32\!\cdots\!32 ) / 12\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 38\!\cdots\!65 \nu^{11} + \cdots - 18\!\cdots\!32 ) / 18\!\cdots\!68 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 37\!\cdots\!71 \nu^{11} + \cdots + 58\!\cdots\!68 ) / 17\!\cdots\!96 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 29\!\cdots\!33 \nu^{11} + \cdots + 17\!\cdots\!64 ) / 12\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 45\!\cdots\!43 \nu^{11} + \cdots + 27\!\cdots\!00 ) / 18\!\cdots\!68 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 33\!\cdots\!33 \nu^{11} + \cdots + 16\!\cdots\!60 ) / 93\!\cdots\!34 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 37\!\cdots\!40 \nu^{11} + \cdots - 71\!\cdots\!60 ) / 93\!\cdots\!34 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{10} - 3\beta_{9} + 6\beta_{8} + 3\beta_{6} - 34\beta_{5} - 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{11} - 61\beta_{7} + 9\beta_{4} - 9\beta_{3} + 12\beta_{2} - 12 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -27\beta_{10} + 186\beta_{9} - 1822\beta_{8} + 660\beta_{5} - 18\beta_{4} + 9\beta_{3} + 660\beta_{2} - 9\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 213 \beta_{11} + 213 \beta_{10} - 996 \beta_{8} + 3811 \beta_{7} - 2803 \beta_{4} + 3811 \beta_{3} + \cdots + 546 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 3024 \beta_{11} - 3024 \beta_{9} + 783 \beta_{7} - 8622 \beta_{6} - 56286 \beta_{5} - 783 \beta_{4} + \cdots + 56286 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 675 \beta_{11} - 14481 \beta_{10} + 14481 \beta_{9} + 67536 \beta_{8} - 86076 \beta_{7} + \cdots - 67536 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 741027 \beta_{11} + 258903 \beta_{10} + 5821360 \beta_{8} + 76464 \beta_{7} + 258903 \beta_{6} + \cdots - 10143112 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 111888 \beta_{10} - 970419 \beta_{9} + 2936304 \beta_{8} + 4171494 \beta_{5} + 8973007 \beta_{4} + \cdots - 6616197 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 47738031 \beta_{11} - 47738031 \beta_{10} + 19960479 \beta_{9} - 314604246 \beta_{8} + \cdots + 658936114 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 12371238 \beta_{11} + 12371238 \beta_{9} + 482105151 \beta_{7} + 52375686 \beta_{6} - 242945736 \beta_{5} + \cdots + 242945736 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
5.73804 + 4.16893i
0.396392 + 0.287995i
−5.32541 3.86914i
5.73804 4.16893i
0.396392 0.287995i
−5.32541 + 3.86914i
2.51400 + 7.73730i
−0.292839 0.901266i
−2.53018 7.78709i
2.51400 7.73730i
−0.292839 + 0.901266i
−2.53018 + 7.78709i
−0.618034 + 1.90211i −5.73804 + 4.16893i −3.23607 2.35114i −1.54508 4.75528i −4.38347 13.4909i −9.28009 6.74238i 6.47214 4.70228i 7.20166 22.1644i 10.0000
31.2 −0.618034 + 1.90211i −0.396392 + 0.287995i −3.23607 2.35114i −1.54508 4.75528i −0.302816 0.931973i 19.1679 + 13.9263i 6.47214 4.70228i −8.26927 + 25.4502i 10.0000
31.3 −0.618034 + 1.90211i 5.32541 3.86914i −3.23607 2.35114i −1.54508 4.75528i 4.06825 + 12.5208i 7.43847 + 5.40436i 6.47214 4.70228i 5.04633 15.5310i 10.0000
71.1 −0.618034 1.90211i −5.73804 4.16893i −3.23607 + 2.35114i −1.54508 + 4.75528i −4.38347 + 13.4909i −9.28009 + 6.74238i 6.47214 + 4.70228i 7.20166 + 22.1644i 10.0000
71.2 −0.618034 1.90211i −0.396392 0.287995i −3.23607 + 2.35114i −1.54508 + 4.75528i −0.302816 + 0.931973i 19.1679 13.9263i 6.47214 + 4.70228i −8.26927 25.4502i 10.0000
71.3 −0.618034 1.90211i 5.32541 + 3.86914i −3.23607 + 2.35114i −1.54508 + 4.75528i 4.06825 12.5208i 7.43847 5.40436i 6.47214 + 4.70228i 5.04633 + 15.5310i 10.0000
81.1 1.61803 + 1.17557i −2.51400 + 7.73730i 1.23607 + 3.80423i 4.04508 2.93893i −13.1635 + 9.56383i 7.65943 + 23.5733i −2.47214 + 7.60845i −31.7021 23.0330i 10.0000
81.2 1.61803 + 1.17557i 0.292839 0.901266i 1.23607 + 3.80423i 4.04508 2.93893i 1.53333 1.11403i 2.73261 + 8.41010i −2.47214 + 7.60845i 21.1169 + 15.3423i 10.0000
81.3 1.61803 + 1.17557i 2.53018 7.78709i 1.23607 + 3.80423i 4.04508 2.93893i 13.2482 9.62537i −8.71828 26.8321i −2.47214 + 7.60845i −32.3935 23.5353i 10.0000
91.1 1.61803 1.17557i −2.51400 7.73730i 1.23607 3.80423i 4.04508 + 2.93893i −13.1635 9.56383i 7.65943 23.5733i −2.47214 7.60845i −31.7021 + 23.0330i 10.0000
91.2 1.61803 1.17557i 0.292839 + 0.901266i 1.23607 3.80423i 4.04508 + 2.93893i 1.53333 + 1.11403i 2.73261 8.41010i −2.47214 7.60845i 21.1169 15.3423i 10.0000
91.3 1.61803 1.17557i 2.53018 + 7.78709i 1.23607 3.80423i 4.04508 + 2.93893i 13.2482 + 9.62537i −8.71828 + 26.8321i −2.47214 7.60845i −32.3935 + 23.5353i 10.0000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 110.4.g.c 12
11.c even 5 1 inner 110.4.g.c 12
11.c even 5 1 1210.4.a.bd 6
11.d odd 10 1 1210.4.a.bg 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.4.g.c 12 1.a even 1 1 trivial
110.4.g.c 12 11.c even 5 1 inner
1210.4.a.bd 6 11.c even 5 1
1210.4.a.bg 6 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + T_{3}^{11} + 80 T_{3}^{10} + 71 T_{3}^{9} + 3603 T_{3}^{8} + 191 T_{3}^{7} + 110280 T_{3}^{6} + \cdots + 2085136 \) acting on \(S_{4}^{\mathrm{new}}(110, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 16)^{3} \) Copy content Toggle raw display
$3$ \( T^{12} + T^{11} + \cdots + 2085136 \) Copy content Toggle raw display
$5$ \( (T^{4} - 5 T^{3} + \cdots + 625)^{3} \) Copy content Toggle raw display
$7$ \( T^{12} + \cdots + 238773729813025 \) Copy content Toggle raw display
$11$ \( T^{12} + \cdots + 55\!\cdots\!81 \) Copy content Toggle raw display
$13$ \( T^{12} + \cdots + 81\!\cdots\!61 \) Copy content Toggle raw display
$17$ \( T^{12} + \cdots + 10\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( T^{12} + \cdots + 16\!\cdots\!61 \) Copy content Toggle raw display
$23$ \( (T^{6} - 236 T^{5} + \cdots + 35478920461)^{2} \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 23\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 99\!\cdots\!61 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 15\!\cdots\!01 \) Copy content Toggle raw display
$43$ \( (T^{6} + \cdots + 78741334432420)^{2} \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 68\!\cdots\!21 \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 14\!\cdots\!25 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 98\!\cdots\!21 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( (T^{6} + \cdots + 13\!\cdots\!44)^{2} \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 21\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 17\!\cdots\!76 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 51\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( (T^{6} + \cdots + 27\!\cdots\!19)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 22\!\cdots\!36 \) Copy content Toggle raw display
show more
show less