Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [110,4,Mod(31,110)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(110, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 6]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("110.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 110.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.1 |
|
−0.618034 | + | 1.90211i | −5.73804 | + | 4.16893i | −3.23607 | − | 2.35114i | −1.54508 | − | 4.75528i | −4.38347 | − | 13.4909i | −9.28009 | − | 6.74238i | 6.47214 | − | 4.70228i | 7.20166 | − | 22.1644i | 10.0000 | ||||||||||||||||||||||||||||||||||||||
31.2 | −0.618034 | + | 1.90211i | −0.396392 | + | 0.287995i | −3.23607 | − | 2.35114i | −1.54508 | − | 4.75528i | −0.302816 | − | 0.931973i | 19.1679 | + | 13.9263i | 6.47214 | − | 4.70228i | −8.26927 | + | 25.4502i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
31.3 | −0.618034 | + | 1.90211i | 5.32541 | − | 3.86914i | −3.23607 | − | 2.35114i | −1.54508 | − | 4.75528i | 4.06825 | + | 12.5208i | 7.43847 | + | 5.40436i | 6.47214 | − | 4.70228i | 5.04633 | − | 15.5310i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
71.1 | −0.618034 | − | 1.90211i | −5.73804 | − | 4.16893i | −3.23607 | + | 2.35114i | −1.54508 | + | 4.75528i | −4.38347 | + | 13.4909i | −9.28009 | + | 6.74238i | 6.47214 | + | 4.70228i | 7.20166 | + | 22.1644i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
71.2 | −0.618034 | − | 1.90211i | −0.396392 | − | 0.287995i | −3.23607 | + | 2.35114i | −1.54508 | + | 4.75528i | −0.302816 | + | 0.931973i | 19.1679 | − | 13.9263i | 6.47214 | + | 4.70228i | −8.26927 | − | 25.4502i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
71.3 | −0.618034 | − | 1.90211i | 5.32541 | + | 3.86914i | −3.23607 | + | 2.35114i | −1.54508 | + | 4.75528i | 4.06825 | − | 12.5208i | 7.43847 | − | 5.40436i | 6.47214 | + | 4.70228i | 5.04633 | + | 15.5310i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
81.1 | 1.61803 | + | 1.17557i | −2.51400 | + | 7.73730i | 1.23607 | + | 3.80423i | 4.04508 | − | 2.93893i | −13.1635 | + | 9.56383i | 7.65943 | + | 23.5733i | −2.47214 | + | 7.60845i | −31.7021 | − | 23.0330i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
81.2 | 1.61803 | + | 1.17557i | 0.292839 | − | 0.901266i | 1.23607 | + | 3.80423i | 4.04508 | − | 2.93893i | 1.53333 | − | 1.11403i | 2.73261 | + | 8.41010i | −2.47214 | + | 7.60845i | 21.1169 | + | 15.3423i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
81.3 | 1.61803 | + | 1.17557i | 2.53018 | − | 7.78709i | 1.23607 | + | 3.80423i | 4.04508 | − | 2.93893i | 13.2482 | − | 9.62537i | −8.71828 | − | 26.8321i | −2.47214 | + | 7.60845i | −32.3935 | − | 23.5353i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
91.1 | 1.61803 | − | 1.17557i | −2.51400 | − | 7.73730i | 1.23607 | − | 3.80423i | 4.04508 | + | 2.93893i | −13.1635 | − | 9.56383i | 7.65943 | − | 23.5733i | −2.47214 | − | 7.60845i | −31.7021 | + | 23.0330i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
91.2 | 1.61803 | − | 1.17557i | 0.292839 | + | 0.901266i | 1.23607 | − | 3.80423i | 4.04508 | + | 2.93893i | 1.53333 | + | 1.11403i | 2.73261 | − | 8.41010i | −2.47214 | − | 7.60845i | 21.1169 | − | 15.3423i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
91.3 | 1.61803 | − | 1.17557i | 2.53018 | + | 7.78709i | 1.23607 | − | 3.80423i | 4.04508 | + | 2.93893i | 13.2482 | + | 9.62537i | −8.71828 | + | 26.8321i | −2.47214 | − | 7.60845i | −32.3935 | + | 23.5353i | 10.0000 | |||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 110.4.g.c | ✓ | 12 |
11.c | even | 5 | 1 | inner | 110.4.g.c | ✓ | 12 |
11.c | even | 5 | 1 | 1210.4.a.bd | 6 | ||
11.d | odd | 10 | 1 | 1210.4.a.bg | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
110.4.g.c | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
110.4.g.c | ✓ | 12 | 11.c | even | 5 | 1 | inner |
1210.4.a.bd | 6 | 11.c | even | 5 | 1 | ||
1210.4.a.bg | 6 | 11.d | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .