L(s) = 1 | + (1.61 − 1.17i)2-s + (0.292 + 0.901i)3-s + (1.23 − 3.80i)4-s + (4.04 + 2.93i)5-s + (1.53 + 1.11i)6-s + (2.73 − 8.41i)7-s + (−2.47 − 7.60i)8-s + (21.1 − 15.3i)9-s + 10·10-s + (36.3 + 3.21i)11-s + 3.79·12-s + (2.56 − 1.86i)13-s + (−5.46 − 16.8i)14-s + (−1.46 + 4.50i)15-s + (−12.9 − 9.40i)16-s + (16.7 + 12.1i)17-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.0563 + 0.173i)3-s + (0.154 − 0.475i)4-s + (0.361 + 0.262i)5-s + (0.104 + 0.0757i)6-s + (0.147 − 0.454i)7-s + (−0.109 − 0.336i)8-s + (0.782 − 0.568i)9-s + 0.316·10-s + (0.996 + 0.0881i)11-s + 0.0911·12-s + (0.0546 − 0.0397i)13-s + (−0.104 − 0.321i)14-s + (−0.0252 + 0.0775i)15-s + (−0.202 − 0.146i)16-s + (0.239 + 0.173i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(0.738+0.674i)Λ(4−s)
Λ(s)=(=(110s/2ΓC(s+3/2)L(s)(0.738+0.674i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
0.738+0.674i
|
Analytic conductor: |
6.49021 |
Root analytic conductor: |
2.54758 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :3/2), 0.738+0.674i)
|
Particular Values
L(2) |
≈ |
2.30080−0.892840i |
L(21) |
≈ |
2.30080−0.892840i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.61+1.17i)T |
| 5 | 1+(−4.04−2.93i)T |
| 11 | 1+(−36.3−3.21i)T |
good | 3 | 1+(−0.292−0.901i)T+(−21.8+15.8i)T2 |
| 7 | 1+(−2.73+8.41i)T+(−277.−201.i)T2 |
| 13 | 1+(−2.56+1.86i)T+(678.−2.08e3i)T2 |
| 17 | 1+(−16.7−12.1i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(14.3+44.2i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1+43.9T+1.21e4T2 |
| 29 | 1+(13.0−40.0i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(177.−129.i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(18.4−56.8i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(−22.2−68.5i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1+368.T+7.95e4T2 |
| 47 | 1+(−83.7−257.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(460.−334.i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(−41.7+128.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(61.3+44.5i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1−113.T+3.00e5T2 |
| 71 | 1+(458.+333.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(215.−661.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(−590.+428.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(924.+671.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1−1.08e3T+7.04e5T2 |
| 97 | 1+(−186.+135.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.03492399378651129323639061788, −12.11482171655512763353171240966, −10.97955991924758293313335293073, −10.01486204400581518037910477213, −9.050860902788494435512807669128, −7.22015598294542195166866029520, −6.21111910319215405663270185075, −4.59554029092388674146781058612, −3.44839032844192127786490174052, −1.46364707852849424203940481894,
1.89169770517639109155226621848, 3.91720347718470053841834797362, 5.26873521580286128125988650321, 6.44729556227921941692255667658, 7.66270566153220231078969519544, 8.857012785562844139846156790905, 10.06060843938190990550091767720, 11.50989739757048926926578388379, 12.45645143323966976279389075854, 13.36208250479887831870688617184