L(s) = 1 | + (−1.61 + 1.17i)2-s + (2.75 + 8.48i)3-s + (1.23 − 3.80i)4-s + (−4.04 − 2.93i)5-s + (−14.4 − 10.4i)6-s + (−4.06 + 12.5i)7-s + (2.47 + 7.60i)8-s + (−42.4 + 30.8i)9-s + 10·10-s + (−22.6 + 28.6i)11-s + 35.6·12-s + (30.1 − 21.9i)13-s + (−8.13 − 25.0i)14-s + (13.7 − 42.4i)15-s + (−12.9 − 9.40i)16-s + (−89.8 − 65.3i)17-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (0.530 + 1.63i)3-s + (0.154 − 0.475i)4-s + (−0.361 − 0.262i)5-s + (−0.981 − 0.713i)6-s + (−0.219 + 0.676i)7-s + (0.109 + 0.336i)8-s + (−1.57 + 1.14i)9-s + 0.316·10-s + (−0.620 + 0.784i)11-s + 0.858·12-s + (0.643 − 0.467i)13-s + (−0.155 − 0.478i)14-s + (0.237 − 0.729i)15-s + (−0.202 − 0.146i)16-s + (−1.28 − 0.931i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.969+0.246i)Λ(4−s)
Λ(s)=(=(110s/2ΓC(s+3/2)L(s)(−0.969+0.246i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.969+0.246i
|
Analytic conductor: |
6.49021 |
Root analytic conductor: |
2.54758 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :3/2), −0.969+0.246i)
|
Particular Values
L(2) |
≈ |
0.111396−0.889443i |
L(21) |
≈ |
0.111396−0.889443i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.61−1.17i)T |
| 5 | 1+(4.04+2.93i)T |
| 11 | 1+(22.6−28.6i)T |
good | 3 | 1+(−2.75−8.48i)T+(−21.8+15.8i)T2 |
| 7 | 1+(4.06−12.5i)T+(−277.−201.i)T2 |
| 13 | 1+(−30.1+21.9i)T+(678.−2.08e3i)T2 |
| 17 | 1+(89.8+65.3i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(−4.51−13.9i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1−115.T+1.21e4T2 |
| 29 | 1+(27.4−84.3i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(187.−136.i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(35.0−107.i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(76.4+235.i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1−515.T+7.95e4T2 |
| 47 | 1+(−140.−433.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(423.−307.i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(205.−633.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−534.−388.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1−250.T+3.00e5T2 |
| 71 | 1+(480.+348.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(114.−351.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(42.8−31.1i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(−97.6−70.9i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1+308.T+7.04e5T2 |
| 97 | 1+(−1.13e3+827.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.14858672599048319745728969917, −12.73754488324799772949984363602, −11.14943607240331795881868248875, −10.41793934802532273933545290692, −9.102542136718754068826686876244, −8.895655914603639466237322029325, −7.39608625150754877526191142022, −5.51112973487993451903397347953, −4.48569264321580585308730226090, −2.83698525724171550229723781892,
0.53945698517672758868091614437, 2.14656679710626155014866764338, 3.61592363421056632079031212342, 6.31550153523085924872067962589, 7.23303017381603742202126246468, 8.166510661083178972841997063705, 9.031537116189002221348299621544, 10.81391341813184069843814777204, 11.45956454155948261106852707268, 12.96853072122802934594090747551