Properties

Label 110.4.g.d.91.4
Level $110$
Weight $4$
Character 110.91
Analytic conductor $6.490$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [110,4,Mod(31,110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(110, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 6]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("110.31");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 110.g (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.49021010063\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 36 x^{14} + 201 x^{13} + 7402 x^{12} + 11076 x^{11} + 759461 x^{10} + 2416768 x^{9} + \cdots + 19847025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.4
Root \(2.44673 - 7.53026i\) of defining polynomial
Character \(\chi\) \(=\) 110.91
Dual form 110.4.g.d.81.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61803 + 1.17557i) q^{2} +(2.75575 + 8.48132i) q^{3} +(1.23607 - 3.80423i) q^{4} +(-4.04508 - 2.93893i) q^{5} +(-14.4293 - 10.4835i) q^{6} +(-4.06895 + 12.5230i) q^{7} +(2.47214 + 7.60845i) q^{8} +(-42.4952 + 30.8746i) q^{9} +10.0000 q^{10} +(-22.6415 + 28.6070i) q^{11} +35.6711 q^{12} +(30.1829 - 21.9291i) q^{13} +(-8.13791 - 25.0459i) q^{14} +(13.7787 - 42.4066i) q^{15} +(-12.9443 - 9.40456i) q^{16} +(-89.8939 - 65.3118i) q^{17} +(32.4634 - 99.9122i) q^{18} +(4.51654 + 13.9005i) q^{19} +(-16.1803 + 11.7557i) q^{20} -117.424 q^{21} +(3.00517 - 72.9038i) q^{22} +115.962 q^{23} +(-57.7171 + 41.9339i) q^{24} +(7.72542 + 23.7764i) q^{25} +(-23.0577 + 70.9642i) q^{26} +(-184.168 - 133.806i) q^{27} +(42.6106 + 30.9584i) q^{28} +(-27.4099 + 84.3591i) q^{29} +(27.5575 + 84.8132i) q^{30} +(-187.286 + 136.071i) q^{31} +32.0000 q^{32} +(-305.020 - 113.196i) q^{33} +222.230 q^{34} +(53.2633 - 38.6980i) q^{35} +(64.9269 + 199.824i) q^{36} +(-35.0763 + 107.954i) q^{37} +(-23.6489 - 17.1819i) q^{38} +(269.164 + 195.559i) q^{39} +(12.3607 - 38.0423i) q^{40} +(-76.4263 - 235.216i) q^{41} +(189.996 - 138.040i) q^{42} +515.836 q^{43} +(80.8411 + 121.494i) q^{44} +262.635 q^{45} +(-187.630 + 136.321i) q^{46} +(140.825 + 433.414i) q^{47} +(44.0920 - 135.701i) q^{48} +(137.225 + 99.6997i) q^{49} +(-40.4508 - 29.3893i) q^{50} +(306.205 - 942.402i) q^{51} +(-46.1153 - 141.928i) q^{52} +(-423.785 + 307.897i) q^{53} +455.287 q^{54} +(175.661 - 49.1761i) q^{55} -105.339 q^{56} +(-105.448 + 76.6124i) q^{57} +(-54.8198 - 168.718i) q^{58} +(-205.805 + 633.404i) q^{59} +(-144.293 - 104.835i) q^{60} +(534.389 + 388.257i) q^{61} +(143.073 - 440.335i) q^{62} +(-213.730 - 657.792i) q^{63} +(-51.7771 + 37.6183i) q^{64} -186.540 q^{65} +(626.602 - 175.417i) q^{66} +250.611 q^{67} +(-359.576 + 261.247i) q^{68} +(319.561 + 983.508i) q^{69} +(-40.6895 + 125.230i) q^{70} +(-480.261 - 348.930i) q^{71} +(-339.961 - 246.996i) q^{72} +(-114.142 + 351.292i) q^{73} +(-70.1526 - 215.907i) q^{74} +(-180.366 + 131.044i) q^{75} +58.4633 q^{76} +(-266.117 - 399.939i) q^{77} -665.411 q^{78} +(-42.8752 + 31.1507i) q^{79} +(24.7214 + 76.0845i) q^{80} +(189.072 - 581.905i) q^{81} +(400.173 + 290.743i) q^{82} +(97.6363 + 70.9369i) q^{83} +(-145.144 + 446.708i) q^{84} +(171.682 + 528.383i) q^{85} +(-834.640 + 606.401i) q^{86} -791.011 q^{87} +(-273.628 - 101.546i) q^{88} -308.723 q^{89} +(-424.952 + 308.746i) q^{90} +(151.805 + 467.207i) q^{91} +(143.337 - 441.144i) q^{92} +(-1670.17 - 1213.45i) q^{93} +(-737.368 - 535.729i) q^{94} +(22.5827 - 69.5023i) q^{95} +(88.1839 + 271.402i) q^{96} +(1139.34 - 827.777i) q^{97} -339.239 q^{98} +(78.9262 - 1914.71i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} - 3 q^{3} - 16 q^{4} - 20 q^{5} - 16 q^{6} - 38 q^{7} - 32 q^{8} + 25 q^{9} + 160 q^{10} + 65 q^{11} + 88 q^{12} + 85 q^{13} - 76 q^{14} - 15 q^{15} - 64 q^{16} + 109 q^{17} - 280 q^{18}+ \cdots + 10702 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61803 + 1.17557i −0.572061 + 0.415627i
\(3\) 2.75575 + 8.48132i 0.530344 + 1.63223i 0.753500 + 0.657448i \(0.228364\pi\)
−0.223156 + 0.974783i \(0.571636\pi\)
\(4\) 1.23607 3.80423i 0.154508 0.475528i
\(5\) −4.04508 2.93893i −0.361803 0.262866i
\(6\) −14.4293 10.4835i −0.981788 0.713311i
\(7\) −4.06895 + 12.5230i −0.219703 + 0.676176i 0.779083 + 0.626920i \(0.215685\pi\)
−0.998786 + 0.0492555i \(0.984315\pi\)
\(8\) 2.47214 + 7.60845i 0.109254 + 0.336249i
\(9\) −42.4952 + 30.8746i −1.57390 + 1.14350i
\(10\) 10.0000 0.316228
\(11\) −22.6415 + 28.6070i −0.620607 + 0.784122i
\(12\) 35.6711 0.858114
\(13\) 30.1829 21.9291i 0.643940 0.467850i −0.217262 0.976113i \(-0.569712\pi\)
0.861202 + 0.508264i \(0.169712\pi\)
\(14\) −8.13791 25.0459i −0.155353 0.478129i
\(15\) 13.7787 42.4066i 0.237177 0.729956i
\(16\) −12.9443 9.40456i −0.202254 0.146946i
\(17\) −89.8939 65.3118i −1.28250 0.931790i −0.282873 0.959157i \(-0.591288\pi\)
−0.999625 + 0.0273672i \(0.991288\pi\)
\(18\) 32.4634 99.9122i 0.425095 1.30831i
\(19\) 4.51654 + 13.9005i 0.0545350 + 0.167841i 0.974614 0.223891i \(-0.0718759\pi\)
−0.920079 + 0.391732i \(0.871876\pi\)
\(20\) −16.1803 + 11.7557i −0.180902 + 0.131433i
\(21\) −117.424 −1.22019
\(22\) 3.00517 72.9038i 0.0291229 0.706507i
\(23\) 115.962 1.05129 0.525645 0.850704i \(-0.323824\pi\)
0.525645 + 0.850704i \(0.323824\pi\)
\(24\) −57.7171 + 41.9339i −0.490894 + 0.356655i
\(25\) 7.72542 + 23.7764i 0.0618034 + 0.190211i
\(26\) −23.0577 + 70.9642i −0.173922 + 0.535278i
\(27\) −184.168 133.806i −1.31271 0.953737i
\(28\) 42.6106 + 30.9584i 0.287595 + 0.208950i
\(29\) −27.4099 + 84.3591i −0.175514 + 0.540175i −0.999657 0.0262065i \(-0.991657\pi\)
0.824143 + 0.566382i \(0.191657\pi\)
\(30\) 27.5575 + 84.8132i 0.167709 + 0.516157i
\(31\) −187.286 + 136.071i −1.08508 + 0.788357i −0.978562 0.205954i \(-0.933970\pi\)
−0.106518 + 0.994311i \(0.533970\pi\)
\(32\) 32.0000 0.176777
\(33\) −305.020 113.196i −1.60900 0.597119i
\(34\) 222.230 1.12095
\(35\) 53.2633 38.6980i 0.257233 0.186890i
\(36\) 64.9269 + 199.824i 0.300587 + 0.925113i
\(37\) −35.0763 + 107.954i −0.155851 + 0.479662i −0.998246 0.0591995i \(-0.981145\pi\)
0.842395 + 0.538861i \(0.181145\pi\)
\(38\) −23.6489 17.1819i −0.100957 0.0733494i
\(39\) 269.164 + 195.559i 1.10515 + 0.802937i
\(40\) 12.3607 38.0423i 0.0488599 0.150375i
\(41\) −76.4263 235.216i −0.291117 0.895965i −0.984498 0.175394i \(-0.943880\pi\)
0.693382 0.720570i \(-0.256120\pi\)
\(42\) 189.996 138.040i 0.698025 0.507145i
\(43\) 515.836 1.82940 0.914700 0.404134i \(-0.132427\pi\)
0.914700 + 0.404134i \(0.132427\pi\)
\(44\) 80.8411 + 121.494i 0.276983 + 0.416270i
\(45\) 262.635 0.870028
\(46\) −187.630 + 136.321i −0.601403 + 0.436945i
\(47\) 140.825 + 433.414i 0.437051 + 1.34511i 0.890970 + 0.454062i \(0.150026\pi\)
−0.453919 + 0.891043i \(0.649974\pi\)
\(48\) 44.0920 135.701i 0.132586 0.408058i
\(49\) 137.225 + 99.6997i 0.400073 + 0.290670i
\(50\) −40.4508 29.3893i −0.114412 0.0831254i
\(51\) 306.205 942.402i 0.840731 2.58750i
\(52\) −46.1153 141.928i −0.122982 0.378498i
\(53\) −423.785 + 307.897i −1.09833 + 0.797981i −0.980786 0.195088i \(-0.937501\pi\)
−0.117540 + 0.993068i \(0.537501\pi\)
\(54\) 455.287 1.14735
\(55\) 175.661 49.1761i 0.430656 0.120562i
\(56\) −105.339 −0.251367
\(57\) −105.448 + 76.6124i −0.245034 + 0.178027i
\(58\) −54.8198 168.718i −0.124107 0.381962i
\(59\) −205.805 + 633.404i −0.454129 + 1.39766i 0.418027 + 0.908435i \(0.362722\pi\)
−0.872155 + 0.489229i \(0.837278\pi\)
\(60\) −144.293 104.835i −0.310469 0.225569i
\(61\) 534.389 + 388.257i 1.12166 + 0.814937i 0.984461 0.175606i \(-0.0561884\pi\)
0.137204 + 0.990543i \(0.456188\pi\)
\(62\) 143.073 440.335i 0.293070 0.901977i
\(63\) −213.730 657.792i −0.427419 1.31546i
\(64\) −51.7771 + 37.6183i −0.101127 + 0.0734732i
\(65\) −186.540 −0.355961
\(66\) 626.602 175.417i 1.16863 0.327156i
\(67\) 250.611 0.456971 0.228485 0.973547i \(-0.426623\pi\)
0.228485 + 0.973547i \(0.426623\pi\)
\(68\) −359.576 + 261.247i −0.641249 + 0.465895i
\(69\) 319.561 + 983.508i 0.557545 + 1.71595i
\(70\) −40.6895 + 125.230i −0.0694761 + 0.213826i
\(71\) −480.261 348.930i −0.802767 0.583244i 0.108958 0.994046i \(-0.465249\pi\)
−0.911725 + 0.410802i \(0.865249\pi\)
\(72\) −339.961 246.996i −0.556456 0.404289i
\(73\) −114.142 + 351.292i −0.183004 + 0.563228i −0.999908 0.0135454i \(-0.995688\pi\)
0.816905 + 0.576773i \(0.195688\pi\)
\(74\) −70.1526 215.907i −0.110204 0.339172i
\(75\) −180.366 + 131.044i −0.277692 + 0.201755i
\(76\) 58.4633 0.0882394
\(77\) −266.117 399.939i −0.393855 0.591913i
\(78\) −665.411 −0.965935
\(79\) −42.8752 + 31.1507i −0.0610612 + 0.0443636i −0.617897 0.786259i \(-0.712015\pi\)
0.556836 + 0.830623i \(0.312015\pi\)
\(80\) 24.7214 + 76.0845i 0.0345492 + 0.106331i
\(81\) 189.072 581.905i 0.259359 0.798223i
\(82\) 400.173 + 290.743i 0.538924 + 0.391551i
\(83\) 97.6363 + 70.9369i 0.129120 + 0.0938113i 0.650471 0.759531i \(-0.274572\pi\)
−0.521351 + 0.853343i \(0.674572\pi\)
\(84\) −145.144 + 446.708i −0.188530 + 0.580236i
\(85\) 171.682 + 528.383i 0.219077 + 0.674250i
\(86\) −834.640 + 606.401i −1.04653 + 0.760348i
\(87\) −791.011 −0.974773
\(88\) −273.628 101.546i −0.331464 0.123010i
\(89\) −308.723 −0.367691 −0.183846 0.982955i \(-0.558855\pi\)
−0.183846 + 0.982955i \(0.558855\pi\)
\(90\) −424.952 + 308.746i −0.497709 + 0.361607i
\(91\) 151.805 + 467.207i 0.174873 + 0.538205i
\(92\) 143.337 441.144i 0.162433 0.499918i
\(93\) −1670.17 1213.45i −1.86225 1.35300i
\(94\) −737.368 535.729i −0.809082 0.587832i
\(95\) 22.5827 69.5023i 0.0243888 0.0750610i
\(96\) 88.1839 + 271.402i 0.0937524 + 0.288540i
\(97\) 1139.34 827.777i 1.19260 0.866475i 0.199063 0.979987i \(-0.436210\pi\)
0.993537 + 0.113512i \(0.0362101\pi\)
\(98\) −339.239 −0.349676
\(99\) 78.9262 1914.71i 0.0801250 1.94379i
\(100\) 100.000 0.100000
\(101\) 907.129 659.068i 0.893690 0.649304i −0.0431475 0.999069i \(-0.513739\pi\)
0.936837 + 0.349765i \(0.113739\pi\)
\(102\) 612.410 + 1884.80i 0.594486 + 1.82964i
\(103\) 41.5073 127.746i 0.0397071 0.122206i −0.929238 0.369482i \(-0.879535\pi\)
0.968945 + 0.247276i \(0.0795353\pi\)
\(104\) 241.463 + 175.433i 0.227667 + 0.165410i
\(105\) 474.991 + 345.101i 0.441470 + 0.320747i
\(106\) 323.743 996.377i 0.296648 0.912988i
\(107\) −219.360 675.122i −0.198190 0.609968i −0.999925 0.0122866i \(-0.996089\pi\)
0.801734 0.597681i \(-0.203911\pi\)
\(108\) −736.670 + 535.222i −0.656353 + 0.476869i
\(109\) 1489.08 1.30851 0.654257 0.756273i \(-0.272982\pi\)
0.654257 + 0.756273i \(0.272982\pi\)
\(110\) −226.415 + 286.070i −0.196253 + 0.247961i
\(111\) −1012.25 −0.865573
\(112\) 170.443 123.834i 0.143797 0.104475i
\(113\) 225.947 + 695.393i 0.188100 + 0.578912i 0.999988 0.00490117i \(-0.00156010\pi\)
−0.811888 + 0.583813i \(0.801560\pi\)
\(114\) 80.5550 247.923i 0.0661813 0.203685i
\(115\) −469.075 340.803i −0.380360 0.276348i
\(116\) 287.040 + 208.547i 0.229750 + 0.166923i
\(117\) −605.574 + 1863.76i −0.478507 + 1.47269i
\(118\) −411.611 1266.81i −0.321117 0.988298i
\(119\) 1183.67 859.987i 0.911823 0.662478i
\(120\) 356.711 0.271360
\(121\) −305.724 1295.41i −0.229695 0.973263i
\(122\) −1321.08 −0.980371
\(123\) 1784.33 1296.39i 1.30803 0.950339i
\(124\) 286.147 + 880.669i 0.207232 + 0.637794i
\(125\) 38.6271 118.882i 0.0276393 0.0850651i
\(126\) 1119.10 + 813.076i 0.791251 + 0.574877i
\(127\) −1326.38 963.672i −0.926750 0.673324i 0.0184446 0.999830i \(-0.494129\pi\)
−0.945195 + 0.326506i \(0.894129\pi\)
\(128\) 39.5542 121.735i 0.0273135 0.0840623i
\(129\) 1421.51 + 4374.97i 0.970211 + 2.98600i
\(130\) 301.829 219.291i 0.203632 0.147947i
\(131\) −2250.95 −1.50127 −0.750636 0.660716i \(-0.770253\pi\)
−0.750636 + 0.660716i \(0.770253\pi\)
\(132\) −807.649 + 1020.45i −0.532552 + 0.672866i
\(133\) −192.452 −0.125472
\(134\) −405.498 + 294.611i −0.261415 + 0.189929i
\(135\) 351.729 + 1082.51i 0.224237 + 0.690131i
\(136\) 274.691 845.413i 0.173196 0.533041i
\(137\) 1987.30 + 1443.86i 1.23932 + 0.900416i 0.997553 0.0699191i \(-0.0222741\pi\)
0.241764 + 0.970335i \(0.422274\pi\)
\(138\) −1673.24 1215.68i −1.03214 0.749897i
\(139\) 236.550 728.027i 0.144345 0.444248i −0.852581 0.522595i \(-0.824964\pi\)
0.996926 + 0.0783467i \(0.0249641\pi\)
\(140\) −81.3791 250.459i −0.0491271 0.151198i
\(141\) −3287.85 + 2388.76i −1.96373 + 1.42674i
\(142\) 1187.27 0.701644
\(143\) −56.0585 + 1359.95i −0.0327822 + 0.795278i
\(144\) 840.431 0.486360
\(145\) 358.801 260.684i 0.205495 0.149301i
\(146\) −228.283 702.584i −0.129403 0.398262i
\(147\) −467.428 + 1438.60i −0.262264 + 0.807166i
\(148\) 367.324 + 266.876i 0.204012 + 0.148224i
\(149\) −1106.10 803.625i −0.608154 0.441849i 0.240610 0.970622i \(-0.422652\pi\)
−0.848764 + 0.528772i \(0.822652\pi\)
\(150\) 137.787 424.066i 0.0750020 0.230832i
\(151\) 330.130 + 1016.03i 0.177918 + 0.547574i 0.999755 0.0221483i \(-0.00705061\pi\)
−0.821837 + 0.569723i \(0.807051\pi\)
\(152\) −94.5956 + 68.7277i −0.0504784 + 0.0366747i
\(153\) 5836.53 3.08402
\(154\) 900.743 + 334.276i 0.471324 + 0.174914i
\(155\) 1157.49 0.599817
\(156\) 1076.66 782.237i 0.552574 0.401469i
\(157\) −356.866 1098.32i −0.181408 0.558315i 0.818460 0.574563i \(-0.194828\pi\)
−0.999868 + 0.0162476i \(0.994828\pi\)
\(158\) 32.7537 100.806i 0.0164921 0.0507574i
\(159\) −3779.22 2745.76i −1.88498 1.36952i
\(160\) −129.443 94.0456i −0.0639584 0.0464685i
\(161\) −471.843 + 1452.18i −0.230972 + 0.710857i
\(162\) 378.145 + 1163.81i 0.183394 + 0.564429i
\(163\) 2581.10 1875.28i 1.24029 0.901125i 0.242675 0.970108i \(-0.421975\pi\)
0.997618 + 0.0689825i \(0.0219753\pi\)
\(164\) −989.283 −0.471037
\(165\) 901.155 + 1354.32i 0.425181 + 0.638991i
\(166\) −241.370 −0.112855
\(167\) 3416.08 2481.93i 1.58290 1.15004i 0.669622 0.742702i \(-0.266456\pi\)
0.913276 0.407341i \(-0.133544\pi\)
\(168\) −290.289 893.416i −0.133311 0.410289i
\(169\) −248.792 + 765.703i −0.113242 + 0.348522i
\(170\) −898.939 653.118i −0.405562 0.294658i
\(171\) −621.102 451.257i −0.277759 0.201804i
\(172\) 637.608 1962.36i 0.282658 0.869931i
\(173\) −617.437 1900.28i −0.271346 0.835117i −0.990163 0.139918i \(-0.955316\pi\)
0.718817 0.695199i \(-0.244684\pi\)
\(174\) 1279.88 929.889i 0.557630 0.405142i
\(175\) −329.185 −0.142195
\(176\) 562.115 157.363i 0.240744 0.0673961i
\(177\) −5939.25 −2.52215
\(178\) 499.524 362.925i 0.210342 0.152822i
\(179\) −923.426 2842.01i −0.385587 1.18672i −0.936053 0.351858i \(-0.885550\pi\)
0.550466 0.834857i \(-0.314450\pi\)
\(180\) 324.634 999.122i 0.134427 0.413723i
\(181\) −432.634 314.327i −0.177665 0.129081i 0.495398 0.868666i \(-0.335022\pi\)
−0.673064 + 0.739584i \(0.735022\pi\)
\(182\) −794.860 577.500i −0.323731 0.235204i
\(183\) −1820.29 + 5602.26i −0.735297 + 2.26301i
\(184\) 286.673 + 882.289i 0.114858 + 0.353496i
\(185\) 459.154 333.595i 0.182474 0.132575i
\(186\) 4128.89 1.62766
\(187\) 3903.71 1092.84i 1.52656 0.427360i
\(188\) 1822.87 0.707164
\(189\) 2425.01 1761.87i 0.933299 0.678082i
\(190\) 45.1654 + 139.005i 0.0172455 + 0.0530761i
\(191\) −1200.12 + 3693.60i −0.454649 + 1.39926i 0.416899 + 0.908953i \(0.363117\pi\)
−0.871547 + 0.490311i \(0.836883\pi\)
\(192\) −461.737 335.472i −0.173557 0.126097i
\(193\) 1949.53 + 1416.42i 0.727101 + 0.528270i 0.888645 0.458596i \(-0.151647\pi\)
−0.161544 + 0.986865i \(0.551647\pi\)
\(194\) −870.376 + 2678.74i −0.322110 + 0.991353i
\(195\) −514.058 1582.11i −0.188782 0.581011i
\(196\) 548.900 398.799i 0.200036 0.145335i
\(197\) 1603.00 0.579742 0.289871 0.957066i \(-0.406388\pi\)
0.289871 + 0.957066i \(0.406388\pi\)
\(198\) 2123.17 + 3190.84i 0.762055 + 1.14527i
\(199\) −2028.13 −0.722464 −0.361232 0.932476i \(-0.617644\pi\)
−0.361232 + 0.932476i \(0.617644\pi\)
\(200\) −161.803 + 117.557i −0.0572061 + 0.0415627i
\(201\) 690.622 + 2125.52i 0.242352 + 0.745882i
\(202\) −692.985 + 2132.79i −0.241377 + 0.742883i
\(203\) −944.895 686.506i −0.326693 0.237356i
\(204\) −3206.62 2329.75i −1.10053 0.799582i
\(205\) −382.131 + 1176.08i −0.130191 + 0.400688i
\(206\) 83.0145 + 255.492i 0.0280772 + 0.0864126i
\(207\) −4927.81 + 3580.26i −1.65462 + 1.20215i
\(208\) −596.929 −0.198988
\(209\) −499.912 185.523i −0.165453 0.0614014i
\(210\) −1174.24 −0.385859
\(211\) 1942.72 1411.47i 0.633850 0.460519i −0.223882 0.974616i \(-0.571873\pi\)
0.857732 + 0.514097i \(0.171873\pi\)
\(212\) 647.485 + 1992.75i 0.209762 + 0.645580i
\(213\) 1635.91 5034.81i 0.526247 1.61962i
\(214\) 1148.59 + 834.497i 0.366896 + 0.266566i
\(215\) −2086.60 1516.00i −0.661883 0.480886i
\(216\) 562.766 1732.02i 0.177275 0.545596i
\(217\) −941.953 2899.03i −0.294673 0.906909i
\(218\) −2409.38 + 1750.52i −0.748550 + 0.543853i
\(219\) −3293.96 −1.01637
\(220\) 30.0517 729.038i 0.00920948 0.223417i
\(221\) −4145.49 −1.26179
\(222\) 1637.86 1189.97i 0.495161 0.359756i
\(223\) 1654.73 + 5092.73i 0.496900 + 1.52930i 0.813974 + 0.580901i \(0.197300\pi\)
−0.317074 + 0.948401i \(0.602700\pi\)
\(224\) −130.207 + 400.734i −0.0388383 + 0.119532i
\(225\) −1062.38 771.864i −0.314779 0.228700i
\(226\) −1183.07 859.553i −0.348216 0.252994i
\(227\) −603.683 + 1857.94i −0.176510 + 0.543243i −0.999699 0.0245248i \(-0.992193\pi\)
0.823189 + 0.567768i \(0.192193\pi\)
\(228\) 161.110 + 495.846i 0.0467972 + 0.144027i
\(229\) −3264.56 + 2371.84i −0.942044 + 0.684435i −0.948912 0.315541i \(-0.897814\pi\)
0.00686776 + 0.999976i \(0.497814\pi\)
\(230\) 1159.62 0.332447
\(231\) 2658.66 3359.16i 0.757260 0.956780i
\(232\) −709.603 −0.200809
\(233\) −2815.20 + 2045.36i −0.791544 + 0.575090i −0.908421 0.418056i \(-0.862711\pi\)
0.116878 + 0.993146i \(0.462711\pi\)
\(234\) −1211.15 3727.53i −0.338356 1.04135i
\(235\) 704.124 2167.07i 0.195455 0.601549i
\(236\) 2155.22 + 1565.86i 0.594462 + 0.431902i
\(237\) −382.352 277.795i −0.104795 0.0761381i
\(238\) −904.244 + 2782.98i −0.246275 + 0.757956i
\(239\) 1102.95 + 3394.53i 0.298510 + 0.918719i 0.982020 + 0.188778i \(0.0604525\pi\)
−0.683510 + 0.729941i \(0.739547\pi\)
\(240\) −577.171 + 419.339i −0.155234 + 0.112784i
\(241\) −3290.24 −0.879433 −0.439716 0.898137i \(-0.644921\pi\)
−0.439716 + 0.898137i \(0.644921\pi\)
\(242\) 2017.52 + 1736.62i 0.535914 + 0.461299i
\(243\) −690.023 −0.182160
\(244\) 2137.56 1553.03i 0.560832 0.407468i
\(245\) −262.076 806.588i −0.0683406 0.210331i
\(246\) −1363.11 + 4195.21i −0.353287 + 1.08730i
\(247\) 441.147 + 320.512i 0.113642 + 0.0825656i
\(248\) −1498.28 1088.57i −0.383634 0.278726i
\(249\) −332.578 + 1023.57i −0.0846436 + 0.260506i
\(250\) 77.2542 + 237.764i 0.0195440 + 0.0601501i
\(251\) 5670.81 4120.09i 1.42605 1.03609i 0.435315 0.900278i \(-0.356637\pi\)
0.990735 0.135808i \(-0.0433631\pi\)
\(252\) −2766.57 −0.691579
\(253\) −2625.55 + 3317.32i −0.652438 + 0.824340i
\(254\) 3278.99 0.810010
\(255\) −4008.27 + 2912.18i −0.984345 + 0.715168i
\(256\) 79.1084 + 243.470i 0.0193136 + 0.0594410i
\(257\) 2526.59 7776.05i 0.613247 1.88738i 0.188484 0.982076i \(-0.439642\pi\)
0.424763 0.905305i \(-0.360358\pi\)
\(258\) −7443.14 5407.76i −1.79608 1.30493i
\(259\) −1209.18 878.517i −0.290095 0.210766i
\(260\) −230.577 + 709.642i −0.0549990 + 0.169270i
\(261\) −1439.76 4431.12i −0.341451 1.05088i
\(262\) 3642.12 2646.15i 0.858820 0.623969i
\(263\) 3740.41 0.876972 0.438486 0.898738i \(-0.355515\pi\)
0.438486 + 0.898738i \(0.355515\pi\)
\(264\) 107.198 2600.56i 0.0249908 0.606264i
\(265\) 2619.13 0.607140
\(266\) 311.395 226.241i 0.0717776 0.0521495i
\(267\) −850.762 2618.38i −0.195003 0.600157i
\(268\) 309.773 953.382i 0.0706059 0.217303i
\(269\) 515.124 + 374.259i 0.116757 + 0.0848290i 0.644631 0.764493i \(-0.277011\pi\)
−0.527874 + 0.849322i \(0.677011\pi\)
\(270\) −1841.68 1338.06i −0.415114 0.301598i
\(271\) 845.375 2601.80i 0.189494 0.583202i −0.810503 0.585735i \(-0.800806\pi\)
0.999997 + 0.00253235i \(0.000806073\pi\)
\(272\) 549.383 + 1690.83i 0.122468 + 0.376917i
\(273\) −3544.20 + 2575.01i −0.785731 + 0.570867i
\(274\) −4912.87 −1.08320
\(275\) −855.088 317.333i −0.187504 0.0695850i
\(276\) 4136.49 0.902128
\(277\) −3652.26 + 2653.52i −0.792213 + 0.575577i −0.908619 0.417625i \(-0.862863\pi\)
0.116406 + 0.993202i \(0.462863\pi\)
\(278\) 473.101 + 1456.05i 0.102067 + 0.314131i
\(279\) 3757.60 11564.7i 0.806315 2.48158i
\(280\) 426.106 + 309.584i 0.0909454 + 0.0660757i
\(281\) 513.424 + 373.024i 0.108998 + 0.0791914i 0.640949 0.767584i \(-0.278541\pi\)
−0.531951 + 0.846775i \(0.678541\pi\)
\(282\) 2511.69 7730.19i 0.530387 1.63236i
\(283\) 524.670 + 1614.77i 0.110206 + 0.339180i 0.990917 0.134474i \(-0.0429346\pi\)
−0.880711 + 0.473654i \(0.842935\pi\)
\(284\) −1921.04 + 1395.72i −0.401383 + 0.291622i
\(285\) 651.704 0.135451
\(286\) −1508.01 2266.35i −0.311786 0.468573i
\(287\) 3256.57 0.669789
\(288\) −1359.85 + 987.986i −0.278228 + 0.202144i
\(289\) 2297.09 + 7069.72i 0.467554 + 1.43898i
\(290\) −274.099 + 843.591i −0.0555023 + 0.170818i
\(291\) 10160.4 + 7381.94i 2.04677 + 1.48707i
\(292\) 1195.31 + 868.441i 0.239555 + 0.174047i
\(293\) −1262.46 + 3885.44i −0.251718 + 0.774710i 0.742740 + 0.669580i \(0.233526\pi\)
−0.994458 + 0.105130i \(0.966474\pi\)
\(294\) −934.856 2877.19i −0.185449 0.570752i
\(295\) 2694.03 1957.33i 0.531703 0.386305i
\(296\) −908.074 −0.178313
\(297\) 7997.61 2238.93i 1.56252 0.437426i
\(298\) 2734.42 0.531546
\(299\) 3500.06 2542.94i 0.676968 0.491846i
\(300\) 275.575 + 848.132i 0.0530344 + 0.163223i
\(301\) −2098.91 + 6459.78i −0.401924 + 1.23700i
\(302\) −1728.58 1255.89i −0.329367 0.239299i
\(303\) 8089.58 + 5877.42i 1.53378 + 1.11435i
\(304\) 72.2646 222.408i 0.0136337 0.0419603i
\(305\) −1020.59 3141.06i −0.191603 0.589694i
\(306\) −9443.70 + 6861.25i −1.76425 + 1.28180i
\(307\) −6741.77 −1.25333 −0.626666 0.779288i \(-0.715581\pi\)
−0.626666 + 0.779288i \(0.715581\pi\)
\(308\) −1850.40 + 518.017i −0.342325 + 0.0958337i
\(309\) 1197.84 0.220527
\(310\) −1872.86 + 1360.71i −0.343132 + 0.249300i
\(311\) 2455.92 + 7558.55i 0.447789 + 1.37815i 0.879396 + 0.476092i \(0.157947\pi\)
−0.431606 + 0.902062i \(0.642053\pi\)
\(312\) −822.493 + 2531.37i −0.149245 + 0.459329i
\(313\) −2835.85 2060.36i −0.512113 0.372072i 0.301511 0.953463i \(-0.402509\pi\)
−0.813625 + 0.581391i \(0.802509\pi\)
\(314\) 1868.57 + 1357.60i 0.335827 + 0.243993i
\(315\) −1068.65 + 3288.96i −0.191148 + 0.588292i
\(316\) 65.5075 + 201.611i 0.0116617 + 0.0358909i
\(317\) −1490.12 + 1082.63i −0.264016 + 0.191819i −0.711916 0.702265i \(-0.752172\pi\)
0.447899 + 0.894084i \(0.352172\pi\)
\(318\) 9342.75 1.64753
\(319\) −1792.66 2694.13i −0.314638 0.472861i
\(320\) 320.000 0.0559017
\(321\) 5121.42 3720.93i 0.890499 0.646985i
\(322\) −943.685 2904.36i −0.163322 0.502652i
\(323\) 501.855 1544.55i 0.0864519 0.266072i
\(324\) −1979.99 1438.55i −0.339505 0.246665i
\(325\) 754.572 + 548.228i 0.128788 + 0.0935700i
\(326\) −1971.79 + 6068.54i −0.334992 + 1.03100i
\(327\) 4103.53 + 12629.4i 0.693962 + 2.13580i
\(328\) 1600.69 1162.97i 0.269462 0.195775i
\(329\) −6000.63 −1.00555
\(330\) −3050.20 1131.96i −0.508811 0.188826i
\(331\) 2810.69 0.466736 0.233368 0.972389i \(-0.425025\pi\)
0.233368 + 0.972389i \(0.425025\pi\)
\(332\) 390.545 283.748i 0.0645601 0.0469056i
\(333\) −1842.45 5670.48i −0.303200 0.933154i
\(334\) −2609.65 + 8031.68i −0.427526 + 1.31579i
\(335\) −1013.74 736.528i −0.165334 0.120122i
\(336\) 1519.97 + 1104.32i 0.246789 + 0.179303i
\(337\) 1637.54 5039.84i 0.264697 0.814652i −0.727067 0.686567i \(-0.759117\pi\)
0.991763 0.128085i \(-0.0408831\pi\)
\(338\) −497.584 1531.41i −0.0800740 0.246442i
\(339\) −5275.20 + 3832.65i −0.845160 + 0.614045i
\(340\) 2222.30 0.354474
\(341\) 347.845 8438.53i 0.0552400 1.34009i
\(342\) 1535.45 0.242771
\(343\) −5460.76 + 3967.47i −0.859630 + 0.624558i
\(344\) 1275.22 + 3924.71i 0.199869 + 0.615134i
\(345\) 1597.81 4917.54i 0.249342 0.767396i
\(346\) 3232.94 + 2348.87i 0.502324 + 0.364960i
\(347\) 708.845 + 515.006i 0.109662 + 0.0796743i 0.641265 0.767320i \(-0.278410\pi\)
−0.531603 + 0.846994i \(0.678410\pi\)
\(348\) −977.743 + 3009.18i −0.150611 + 0.463532i
\(349\) −3438.09 10581.4i −0.527326 1.62294i −0.759669 0.650310i \(-0.774639\pi\)
0.232343 0.972634i \(-0.425361\pi\)
\(350\) 532.633 386.980i 0.0813441 0.0590999i
\(351\) −8492.95 −1.29151
\(352\) −724.529 + 915.425i −0.109709 + 0.138614i
\(353\) 6910.71 1.04198 0.520992 0.853562i \(-0.325562\pi\)
0.520992 + 0.853562i \(0.325562\pi\)
\(354\) 9609.91 6982.01i 1.44283 1.04828i
\(355\) 917.216 + 2822.90i 0.137129 + 0.422040i
\(356\) −381.602 + 1174.45i −0.0568114 + 0.174848i
\(357\) 10555.7 + 7669.18i 1.56490 + 1.13696i
\(358\) 4835.12 + 3512.92i 0.713810 + 0.518614i
\(359\) −320.713 + 987.054i −0.0471493 + 0.145111i −0.971860 0.235561i \(-0.924307\pi\)
0.924710 + 0.380672i \(0.124307\pi\)
\(360\) 649.269 + 1998.24i 0.0950540 + 0.292546i
\(361\) 5376.22 3906.06i 0.783820 0.569479i
\(362\) 1069.53 0.155285
\(363\) 10144.3 6162.77i 1.46677 0.891079i
\(364\) 1965.00 0.282951
\(365\) 1494.13 1085.55i 0.214264 0.155672i
\(366\) −3640.57 11204.5i −0.519934 1.60019i
\(367\) −426.294 + 1312.00i −0.0606332 + 0.186610i −0.976785 0.214221i \(-0.931279\pi\)
0.916152 + 0.400831i \(0.131279\pi\)
\(368\) −1501.04 1090.57i −0.212628 0.154483i
\(369\) 10509.9 + 7635.91i 1.48272 + 1.07726i
\(370\) −350.763 + 1079.54i −0.0492846 + 0.151682i
\(371\) −2131.43 6559.85i −0.298270 0.917980i
\(372\) −6680.69 + 4853.80i −0.931123 + 0.676500i
\(373\) 5503.51 0.763971 0.381985 0.924168i \(-0.375240\pi\)
0.381985 + 0.924168i \(0.375240\pi\)
\(374\) −5031.62 + 6357.34i −0.695666 + 0.878958i
\(375\) 1114.72 0.153504
\(376\) −2949.47 + 2142.92i −0.404541 + 0.293916i
\(377\) 1022.61 + 3147.27i 0.139701 + 0.429955i
\(378\) −1852.54 + 5701.54i −0.252076 + 0.775809i
\(379\) −5229.64 3799.55i −0.708782 0.514960i 0.173998 0.984746i \(-0.444331\pi\)
−0.882781 + 0.469786i \(0.844331\pi\)
\(380\) −236.489 171.819i −0.0319253 0.0231951i
\(381\) 4518.04 13905.1i 0.607523 1.86976i
\(382\) −2400.25 7387.20i −0.321485 0.989429i
\(383\) 10074.2 7319.36i 1.34405 0.976506i 0.344760 0.938691i \(-0.387960\pi\)
0.999285 0.0378152i \(-0.0120398\pi\)
\(384\) 1141.48 0.151695
\(385\) −98.9258 + 2399.89i −0.0130954 + 0.317687i
\(386\) −4819.51 −0.635510
\(387\) −21920.5 + 15926.2i −2.87928 + 2.09192i
\(388\) −1740.75 5357.49i −0.227766 0.700993i
\(389\) 608.074 1871.46i 0.0792560 0.243925i −0.903576 0.428428i \(-0.859068\pi\)
0.982832 + 0.184503i \(0.0590676\pi\)
\(390\) 2691.64 + 1955.59i 0.349479 + 0.253911i
\(391\) −10424.3 7573.66i −1.34828 0.979582i
\(392\) −419.322 + 1290.54i −0.0540280 + 0.166281i
\(393\) −6203.06 19091.0i −0.796190 2.45042i
\(394\) −2593.71 + 1884.44i −0.331648 + 0.240956i
\(395\) 264.983 0.0337538
\(396\) −7186.42 2666.96i −0.911948 0.338434i
\(397\) −5489.87 −0.694027 −0.347013 0.937860i \(-0.612804\pi\)
−0.347013 + 0.937860i \(0.612804\pi\)
\(398\) 3281.58 2384.21i 0.413294 0.300276i
\(399\) −530.351 1632.25i −0.0665432 0.204799i
\(400\) 123.607 380.423i 0.0154508 0.0475528i
\(401\) 1628.97 + 1183.51i 0.202859 + 0.147386i 0.684577 0.728940i \(-0.259987\pi\)
−0.481718 + 0.876327i \(0.659987\pi\)
\(402\) −3616.14 2627.28i −0.448649 0.325962i
\(403\) −2668.90 + 8214.02i −0.329894 + 1.01531i
\(404\) −1385.97 4265.58i −0.170680 0.525298i
\(405\) −2474.99 + 1798.18i −0.303662 + 0.220624i
\(406\) 2335.91 0.285540
\(407\) −2294.05 3447.66i −0.279391 0.419888i
\(408\) 7927.20 0.961899
\(409\) −4665.17 + 3389.45i −0.564005 + 0.409773i −0.832922 0.553390i \(-0.813334\pi\)
0.268918 + 0.963163i \(0.413334\pi\)
\(410\) −764.263 2352.16i −0.0920591 0.283329i
\(411\) −6769.32 + 20833.8i −0.812423 + 2.50038i
\(412\) −434.670 315.806i −0.0519773 0.0377637i
\(413\) −7094.68 5154.58i −0.845293 0.614142i
\(414\) 3764.51 11586.0i 0.446898 1.37541i
\(415\) −186.469 573.892i −0.0220564 0.0678825i
\(416\) 965.852 701.732i 0.113834 0.0827049i
\(417\) 6826.50 0.801668
\(418\) 1026.97 287.500i 0.120169 0.0336413i
\(419\) 6853.60 0.799094 0.399547 0.916713i \(-0.369167\pi\)
0.399547 + 0.916713i \(0.369167\pi\)
\(420\) 1899.96 1380.40i 0.220735 0.160373i
\(421\) 2230.65 + 6865.24i 0.258231 + 0.794753i 0.993176 + 0.116626i \(0.0372080\pi\)
−0.734945 + 0.678127i \(0.762792\pi\)
\(422\) −1484.11 + 4567.61i −0.171197 + 0.526890i
\(423\) −19365.8 14070.1i −2.22600 1.61729i
\(424\) −3390.28 2463.18i −0.388317 0.282129i
\(425\) 858.411 2641.92i 0.0979742 0.301534i
\(426\) 3271.82 + 10069.6i 0.372113 + 1.14524i
\(427\) −7036.52 + 5112.33i −0.797474 + 0.579398i
\(428\) −2839.46 −0.320679
\(429\) −11688.7 + 3272.23i −1.31546 + 0.368263i
\(430\) 5158.36 0.578507
\(431\) −10069.3 + 7315.77i −1.12534 + 0.817606i −0.985010 0.172499i \(-0.944816\pi\)
−0.140329 + 0.990105i \(0.544816\pi\)
\(432\) 1125.53 + 3464.03i 0.125352 + 0.385795i
\(433\) −4337.62 + 13349.8i −0.481415 + 1.48164i 0.355692 + 0.934603i \(0.384245\pi\)
−0.837107 + 0.547040i \(0.815755\pi\)
\(434\) 4932.13 + 3583.40i 0.545507 + 0.396334i
\(435\) 3199.71 + 2324.72i 0.352676 + 0.256234i
\(436\) 1840.60 5664.80i 0.202176 0.622235i
\(437\) 523.745 + 1611.92i 0.0573321 + 0.176450i
\(438\) 5329.75 3872.29i 0.581427 0.422432i
\(439\) 8289.51 0.901223 0.450611 0.892720i \(-0.351206\pi\)
0.450611 + 0.892720i \(0.351206\pi\)
\(440\) 808.411 + 1214.94i 0.0875898 + 0.131636i
\(441\) −8909.58 −0.962054
\(442\) 6707.54 4873.31i 0.721821 0.524434i
\(443\) −3386.55 10422.7i −0.363205 1.11783i −0.951097 0.308891i \(-0.900042\pi\)
0.587892 0.808939i \(-0.299958\pi\)
\(444\) −1251.21 + 3850.83i −0.133738 + 0.411605i
\(445\) 1248.81 + 907.313i 0.133032 + 0.0966534i
\(446\) −8664.26 6294.96i −0.919876 0.668329i
\(447\) 3767.68 11595.7i 0.398670 1.22698i
\(448\) −260.413 801.469i −0.0274629 0.0845220i
\(449\) 4902.38 3561.79i 0.515273 0.374368i −0.299547 0.954082i \(-0.596836\pi\)
0.814820 + 0.579714i \(0.196836\pi\)
\(450\) 2626.35 0.275127
\(451\) 8459.23 + 3139.32i 0.883215 + 0.327771i
\(452\) 2924.72 0.304352
\(453\) −7707.56 + 5599.87i −0.799410 + 0.580805i
\(454\) −1207.37 3715.89i −0.124812 0.384131i
\(455\) 759.024 2336.04i 0.0782057 0.240692i
\(456\) −843.583 612.899i −0.0866325 0.0629422i
\(457\) −7888.56 5731.37i −0.807464 0.586657i 0.105630 0.994405i \(-0.466314\pi\)
−0.913094 + 0.407749i \(0.866314\pi\)
\(458\) 2493.90 7675.44i 0.254437 0.783078i
\(459\) 7816.47 + 24056.6i 0.794862 + 2.44633i
\(460\) −1876.30 + 1363.21i −0.190180 + 0.138174i
\(461\) −13314.3 −1.34514 −0.672570 0.740034i \(-0.734810\pi\)
−0.672570 + 0.740034i \(0.734810\pi\)
\(462\) −352.880 + 8560.67i −0.0355356 + 0.862075i
\(463\) −5092.01 −0.511114 −0.255557 0.966794i \(-0.582259\pi\)
−0.255557 + 0.966794i \(0.582259\pi\)
\(464\) 1148.16 834.188i 0.114875 0.0834617i
\(465\) 3189.75 + 9817.03i 0.318109 + 0.979040i
\(466\) 2150.62 6618.92i 0.213789 0.657974i
\(467\) 7638.91 + 5549.99i 0.756930 + 0.549942i 0.897967 0.440062i \(-0.145044\pi\)
−0.141037 + 0.990004i \(0.545044\pi\)
\(468\) 6341.65 + 4607.48i 0.626374 + 0.455087i
\(469\) −1019.73 + 3138.39i −0.100398 + 0.308993i
\(470\) 1408.25 + 4334.14i 0.138208 + 0.425360i
\(471\) 8331.77 6053.39i 0.815091 0.592198i
\(472\) −5328.00 −0.519579
\(473\) −11679.3 + 14756.5i −1.13534 + 1.43447i
\(474\) 945.226 0.0915942
\(475\) −295.611 + 214.774i −0.0285549 + 0.0207463i
\(476\) −1808.49 5565.95i −0.174143 0.535956i
\(477\) 8502.60 26168.3i 0.816158 2.51188i
\(478\) −5775.12 4195.87i −0.552610 0.401495i
\(479\) 6527.94 + 4742.83i 0.622691 + 0.452412i 0.853861 0.520502i \(-0.174255\pi\)
−0.231169 + 0.972914i \(0.574255\pi\)
\(480\) 440.920 1357.01i 0.0419274 0.129039i
\(481\) 1308.63 + 4027.54i 0.124051 + 0.381788i
\(482\) 5323.73 3867.91i 0.503090 0.365516i
\(483\) −13616.7 −1.28278
\(484\) −5305.94 438.177i −0.498304 0.0411511i
\(485\) −7041.49 −0.659253
\(486\) 1116.48 811.171i 0.104207 0.0757108i
\(487\) −322.392 992.222i −0.0299979 0.0923241i 0.934937 0.354815i \(-0.115456\pi\)
−0.964935 + 0.262491i \(0.915456\pi\)
\(488\) −1632.95 + 5025.70i −0.151476 + 0.466194i
\(489\) 23017.7 + 16723.4i 2.12863 + 1.54654i
\(490\) 1372.25 + 996.997i 0.126514 + 0.0919178i
\(491\) 330.465 1017.07i 0.0303741 0.0934818i −0.934720 0.355384i \(-0.884350\pi\)
0.965094 + 0.261903i \(0.0843499\pi\)
\(492\) −2726.21 8390.42i −0.249811 0.768840i
\(493\) 7973.62 5793.18i 0.728426 0.529232i
\(494\) −1090.58 −0.0993266
\(495\) −5946.45 + 7513.19i −0.539945 + 0.682208i
\(496\) 3703.96 0.335308
\(497\) 6323.79 4594.50i 0.570746 0.414671i
\(498\) −665.155 2047.14i −0.0598520 0.184206i
\(499\) 719.282 2213.72i 0.0645280 0.198597i −0.913594 0.406627i \(-0.866705\pi\)
0.978123 + 0.208030i \(0.0667050\pi\)
\(500\) −404.508 293.893i −0.0361803 0.0262866i
\(501\) 30463.9 + 22133.3i 2.71662 + 1.97374i
\(502\) −4332.12 + 13332.9i −0.385163 + 1.18541i
\(503\) −395.305 1216.62i −0.0350413 0.107846i 0.932006 0.362443i \(-0.118057\pi\)
−0.967047 + 0.254597i \(0.918057\pi\)
\(504\) 4476.41 3252.30i 0.395625 0.287439i
\(505\) −5606.36 −0.494020
\(506\) 348.485 8454.05i 0.0306167 0.742744i
\(507\) −7179.78 −0.628925
\(508\) −5305.52 + 3854.69i −0.463375 + 0.336662i
\(509\) −554.075 1705.27i −0.0482494 0.148496i 0.924029 0.382322i \(-0.124875\pi\)
−0.972279 + 0.233826i \(0.924875\pi\)
\(510\) 3062.05 9424.02i 0.265862 0.818240i
\(511\) −3934.77 2858.78i −0.340634 0.247485i
\(512\) −414.217 300.946i −0.0357538 0.0259767i
\(513\) 1028.16 3164.35i 0.0884881 0.272339i
\(514\) 5053.19 + 15552.1i 0.433631 + 1.33458i
\(515\) −543.337 + 394.758i −0.0464899 + 0.0337769i
\(516\) 18400.4 1.56983
\(517\) −15587.2 5784.57i −1.32596 0.492080i
\(518\) 2989.25 0.253552
\(519\) 14415.3 10473.4i 1.21920 0.885799i
\(520\) −461.153 1419.28i −0.0388902 0.119692i
\(521\) 5905.86 18176.4i 0.496623 1.52845i −0.317790 0.948161i \(-0.602941\pi\)
0.814413 0.580286i \(-0.197059\pi\)
\(522\) 7538.68 + 5477.17i 0.632105 + 0.459251i
\(523\) 3148.37 + 2287.42i 0.263229 + 0.191247i 0.711569 0.702616i \(-0.247985\pi\)
−0.448341 + 0.893863i \(0.647985\pi\)
\(524\) −2782.33 + 8563.13i −0.231959 + 0.713897i
\(525\) −907.152 2791.93i −0.0754121 0.232095i
\(526\) −6052.11 + 4397.12i −0.501682 + 0.364493i
\(527\) 25722.9 2.12620
\(528\) 2883.70 + 4333.82i 0.237683 + 0.357207i
\(529\) 1280.11 0.105212
\(530\) −4237.85 + 3078.97i −0.347321 + 0.252344i
\(531\) −10810.3 33270.8i −0.883481 2.71907i
\(532\) −237.884 + 732.133i −0.0193865 + 0.0596654i
\(533\) −7464.85 5423.53i −0.606639 0.440749i
\(534\) 4454.65 + 3236.49i 0.360995 + 0.262278i
\(535\) −1096.80 + 3375.61i −0.0886335 + 0.272786i
\(536\) 619.545 + 1906.76i 0.0499259 + 0.153656i
\(537\) 21559.3 15663.7i 1.73250 1.25873i
\(538\) −1273.46 −0.102049
\(539\) −5959.09 + 1668.24i −0.476208 + 0.133314i
\(540\) 4552.87 0.362823
\(541\) −699.242 + 508.029i −0.0555689 + 0.0403731i −0.615223 0.788353i \(-0.710934\pi\)
0.559654 + 0.828726i \(0.310934\pi\)
\(542\) 1690.75 + 5203.59i 0.133992 + 0.412386i
\(543\) 1473.68 4535.51i 0.116467 0.358448i
\(544\) −2876.61 2089.98i −0.226716 0.164719i
\(545\) −6023.45 4376.29i −0.473425 0.343963i
\(546\) 2707.53 8332.91i 0.212219 0.653142i
\(547\) 2413.70 + 7428.61i 0.188670 + 0.580667i 0.999992 0.00393263i \(-0.00125180\pi\)
−0.811322 + 0.584599i \(0.801252\pi\)
\(548\) 7949.19 5775.43i 0.619658 0.450208i
\(549\) −34696.2 −2.69726
\(550\) 1756.61 491.761i 0.136185 0.0381250i
\(551\) −1296.43 −0.100235
\(552\) −6692.98 + 4862.73i −0.516072 + 0.374949i
\(553\) −215.641 663.675i −0.0165823 0.0510349i
\(554\) 2790.08 8586.98i 0.213970 0.658530i
\(555\) 4094.64 + 2974.93i 0.313167 + 0.227529i
\(556\) −2477.19 1799.78i −0.188950 0.137280i
\(557\) 399.566 1229.74i 0.0303952 0.0935469i −0.934708 0.355416i \(-0.884339\pi\)
0.965103 + 0.261870i \(0.0843390\pi\)
\(558\) 7515.21 + 23129.4i 0.570151 + 1.75474i
\(559\) 15569.4 11311.8i 1.17802 0.855884i
\(560\) −1053.39 −0.0794892
\(561\) 20026.4 + 30097.0i 1.50716 + 2.26506i
\(562\) −1269.25 −0.0952674
\(563\) −6478.23 + 4706.71i −0.484947 + 0.352334i −0.803238 0.595659i \(-0.796891\pi\)
0.318291 + 0.947993i \(0.396891\pi\)
\(564\) 5023.38 + 15460.4i 0.375040 + 1.15425i
\(565\) 1129.73 3476.96i 0.0841208 0.258897i
\(566\) −2747.21 1995.96i −0.204017 0.148227i
\(567\) 6517.84 + 4735.49i 0.482758 + 0.350744i
\(568\) 1467.55 4516.64i 0.108410 0.333652i
\(569\) −1663.74 5120.46i −0.122579 0.377260i 0.870873 0.491508i \(-0.163554\pi\)
−0.993452 + 0.114248i \(0.963554\pi\)
\(570\) −1054.48 + 766.124i −0.0774864 + 0.0562972i
\(571\) 3495.65 0.256197 0.128098 0.991761i \(-0.459113\pi\)
0.128098 + 0.991761i \(0.459113\pi\)
\(572\) 5104.27 + 1894.25i 0.373112 + 0.138466i
\(573\) −34633.8 −2.52504
\(574\) −5269.24 + 3828.33i −0.383160 + 0.278382i
\(575\) 895.853 + 2757.15i 0.0649733 + 0.199967i
\(576\) 1038.83 3197.19i 0.0751468 0.231278i
\(577\) 13265.8 + 9638.13i 0.957124 + 0.695391i 0.952481 0.304598i \(-0.0985221\pi\)
0.00464297 + 0.999989i \(0.498522\pi\)
\(578\) −12027.7 8738.66i −0.865550 0.628859i
\(579\) −6640.68 + 20437.9i −0.476645 + 1.46696i
\(580\) −548.198 1687.18i −0.0392460 0.120787i
\(581\) −1285.62 + 934.055i −0.0918010 + 0.0666973i
\(582\) −25117.8 −1.78895
\(583\) 787.094 19094.5i 0.0559144 1.35645i
\(584\) −2954.96 −0.209379
\(585\) 7927.07 5759.35i 0.560246 0.407042i
\(586\) −2524.91 7770.88i −0.177992 0.547803i
\(587\) −3188.39 + 9812.85i −0.224189 + 0.689983i 0.774184 + 0.632961i \(0.218160\pi\)
−0.998373 + 0.0570219i \(0.981840\pi\)
\(588\) 4894.97 + 3556.40i 0.343308 + 0.249428i
\(589\) −2737.33 1988.79i −0.191494 0.139128i
\(590\) −2058.05 + 6334.04i −0.143608 + 0.441980i
\(591\) 4417.47 + 13595.6i 0.307462 + 0.946272i
\(592\) 1469.29 1067.50i 0.102006 0.0741118i
\(593\) 23386.5 1.61951 0.809753 0.586771i \(-0.199601\pi\)
0.809753 + 0.586771i \(0.199601\pi\)
\(594\) −10308.4 + 13024.4i −0.712052 + 0.899660i
\(595\) −7315.49 −0.504043
\(596\) −4424.38 + 3214.50i −0.304077 + 0.220925i
\(597\) −5589.02 17201.2i −0.383155 1.17923i
\(598\) −2673.80 + 8229.12i −0.182843 + 0.562732i
\(599\) 5680.23 + 4126.93i 0.387459 + 0.281505i 0.764413 0.644727i \(-0.223029\pi\)
−0.376955 + 0.926232i \(0.623029\pi\)
\(600\) −1442.93 1048.35i −0.0981788 0.0713311i
\(601\) −1552.71 + 4778.76i −0.105385 + 0.324342i −0.989821 0.142320i \(-0.954544\pi\)
0.884436 + 0.466662i \(0.154544\pi\)
\(602\) −4197.82 12919.6i −0.284203 0.874688i
\(603\) −10649.8 + 7737.51i −0.719225 + 0.522547i
\(604\) 4273.29 0.287877
\(605\) −2570.44 + 6138.55i −0.172733 + 0.412509i
\(606\) −19998.5 −1.34057
\(607\) −9551.25 + 6939.39i −0.638671 + 0.464022i −0.859393 0.511315i \(-0.829159\pi\)
0.220722 + 0.975337i \(0.429159\pi\)
\(608\) 144.529 + 444.815i 0.00964051 + 0.0296704i
\(609\) 3218.59 9905.79i 0.214160 0.659118i
\(610\) 5343.89 + 3882.57i 0.354701 + 0.257706i
\(611\) 13754.9 + 9993.51i 0.910742 + 0.661693i
\(612\) 7214.35 22203.5i 0.476508 1.46654i
\(613\) 4412.76 + 13581.1i 0.290750 + 0.894837i 0.984616 + 0.174732i \(0.0559060\pi\)
−0.693866 + 0.720104i \(0.744094\pi\)
\(614\) 10908.4 7925.43i 0.716983 0.520919i
\(615\) −11027.8 −0.723061
\(616\) 2385.04 3013.44i 0.156000 0.197102i
\(617\) −14756.0 −0.962813 −0.481407 0.876497i \(-0.659874\pi\)
−0.481407 + 0.876497i \(0.659874\pi\)
\(618\) −1938.15 + 1408.15i −0.126155 + 0.0916568i
\(619\) −2810.63 8650.22i −0.182502 0.561683i 0.817395 0.576078i \(-0.195418\pi\)
−0.999896 + 0.0143954i \(0.995418\pi\)
\(620\) 1430.73 4403.35i 0.0926769 0.285230i
\(621\) −21356.4 15516.3i −1.38004 1.00265i
\(622\) −12859.4 9342.88i −0.828961 0.602275i
\(623\) 1256.18 3866.12i 0.0807828 0.248624i
\(624\) −1644.99 5062.75i −0.105532 0.324795i
\(625\) −505.636 + 367.366i −0.0323607 + 0.0235114i
\(626\) 7010.59 0.447603
\(627\) 195.848 4751.17i 0.0124744 0.302621i
\(628\) −4619.37 −0.293524
\(629\) 10203.8 7413.49i 0.646823 0.469945i
\(630\) −2137.30 6577.92i −0.135162 0.415985i
\(631\) −4400.95 + 13544.7i −0.277653 + 0.854528i 0.710852 + 0.703341i \(0.248309\pi\)
−0.988505 + 0.151186i \(0.951691\pi\)
\(632\) −343.002 249.205i −0.0215884 0.0156849i
\(633\) 17324.8 + 12587.2i 1.08783 + 0.790356i
\(634\) 1138.35 3503.47i 0.0713084 0.219465i
\(635\) 2533.16 + 7796.27i 0.158308 + 0.487222i
\(636\) −15116.9 + 10983.1i −0.942489 + 0.684759i
\(637\) 6328.17 0.393613
\(638\) 6067.73 + 2251.80i 0.376526 + 0.139733i
\(639\) 31181.8 1.93041
\(640\) −517.771 + 376.183i −0.0319792 + 0.0232343i
\(641\) 3339.99 + 10279.4i 0.205806 + 0.633407i 0.999679 + 0.0253231i \(0.00806145\pi\)
−0.793873 + 0.608084i \(0.791939\pi\)
\(642\) −3912.42 + 12041.2i −0.240515 + 0.740230i
\(643\) 6763.22 + 4913.77i 0.414799 + 0.301369i 0.775542 0.631296i \(-0.217477\pi\)
−0.360743 + 0.932665i \(0.617477\pi\)
\(644\) 4941.20 + 3589.99i 0.302346 + 0.219667i
\(645\) 7107.56 21874.8i 0.433892 1.33538i
\(646\) 1003.71 + 3089.10i 0.0611307 + 0.188141i
\(647\) 15018.0 10911.2i 0.912546 0.663003i −0.0291115 0.999576i \(-0.509268\pi\)
0.941657 + 0.336573i \(0.109268\pi\)
\(648\) 4894.81 0.296738
\(649\) −13460.1 20228.7i −0.814104 1.22349i
\(650\) −1865.40 −0.112565
\(651\) 21991.8 15978.0i 1.32401 0.961947i
\(652\) −3943.58 12137.1i −0.236875 0.729026i
\(653\) −4958.44 + 15260.5i −0.297150 + 0.914532i 0.685341 + 0.728222i \(0.259653\pi\)
−0.982491 + 0.186310i \(0.940347\pi\)
\(654\) −21486.3 15610.7i −1.28468 0.933377i
\(655\) 9105.29 + 6615.38i 0.543165 + 0.394633i
\(656\) −1222.82 + 3763.45i −0.0727791 + 0.223991i
\(657\) −5995.51 18452.3i −0.356023 1.09573i
\(658\) 9709.23 7054.17i 0.575236 0.417933i
\(659\) 16099.2 0.951645 0.475822 0.879541i \(-0.342151\pi\)
0.475822 + 0.879541i \(0.342151\pi\)
\(660\) 6266.02 1754.17i 0.369552 0.103456i
\(661\) −17086.4 −1.00542 −0.502711 0.864454i \(-0.667664\pi\)
−0.502711 + 0.864454i \(0.667664\pi\)
\(662\) −4547.79 + 3304.17i −0.267002 + 0.193988i
\(663\) −11423.9 35159.2i −0.669183 2.05953i
\(664\) −298.350 + 918.226i −0.0174371 + 0.0536658i
\(665\) 778.487 + 565.604i 0.0453961 + 0.0329822i
\(666\) 9647.19 + 7009.09i 0.561293 + 0.407803i
\(667\) −3178.50 + 9782.42i −0.184516 + 0.567881i
\(668\) −5219.30 16063.4i −0.302307 0.930404i
\(669\) −38633.0 + 28068.5i −2.23264 + 1.62211i
\(670\) 2506.11 0.144507
\(671\) −23206.2 + 6496.57i −1.33512 + 0.373766i
\(672\) −3757.57 −0.215702
\(673\) 13407.5 9741.12i 0.767936 0.557938i −0.133398 0.991063i \(-0.542589\pi\)
0.901334 + 0.433124i \(0.142589\pi\)
\(674\) 3275.09 + 10079.7i 0.187169 + 0.576046i
\(675\) 1758.64 5412.55i 0.100282 0.308636i
\(676\) 2605.38 + 1892.92i 0.148235 + 0.107699i
\(677\) 18150.1 + 13186.8i 1.03038 + 0.748612i 0.968384 0.249464i \(-0.0802545\pi\)
0.0619925 + 0.998077i \(0.480255\pi\)
\(678\) 4029.89 12402.7i 0.228270 0.702543i
\(679\) 5730.30 + 17636.1i 0.323872 + 0.996774i
\(680\) −3595.76 + 2612.47i −0.202781 + 0.147329i
\(681\) −17421.4 −0.980309
\(682\) 9357.26 + 14062.7i 0.525379 + 0.789575i
\(683\) 4461.39 0.249942 0.124971 0.992160i \(-0.460116\pi\)
0.124971 + 0.992160i \(0.460116\pi\)
\(684\) −2484.41 + 1805.03i −0.138880 + 0.100902i
\(685\) −3795.40 11681.0i −0.211701 0.651547i
\(686\) 4171.65 12839.0i 0.232178 0.714571i
\(687\) −29112.6 21151.6i −1.61676 1.17465i
\(688\) −6677.12 4851.21i −0.370004 0.268824i
\(689\) −6039.11 + 18586.5i −0.333921 + 1.02770i
\(690\) 3195.61 + 9835.08i 0.176311 + 0.542631i
\(691\) 27297.1 19832.5i 1.50280 1.09184i 0.533544 0.845772i \(-0.320860\pi\)
0.969251 0.246073i \(-0.0791402\pi\)
\(692\) −7992.27 −0.439047
\(693\) 23656.6 + 8779.24i 1.29674 + 0.481235i
\(694\) −1752.36 −0.0958484
\(695\) −3096.48 + 2249.73i −0.169002 + 0.122787i
\(696\) −1955.49 6018.37i −0.106498 0.327767i
\(697\) −8492.11 + 26136.0i −0.461494 + 1.42033i
\(698\) 18002.1 + 13079.3i 0.976202 + 0.709252i
\(699\) −25105.3 18240.1i −1.35847 0.986986i
\(700\) −406.895 + 1252.30i −0.0219703 + 0.0676176i
\(701\) −2045.60 6295.69i −0.110216 0.339208i 0.880704 0.473668i \(-0.157070\pi\)
−0.990919 + 0.134459i \(0.957070\pi\)
\(702\) 13741.9 9984.06i 0.738823 0.536786i
\(703\) −1659.03 −0.0890064
\(704\) 96.1654 2332.92i 0.00514825 0.124894i
\(705\) 20320.0 1.08553
\(706\) −11181.8 + 8124.03i −0.596078 + 0.433076i
\(707\) 4562.41 + 14041.6i 0.242697 + 0.746945i
\(708\) −7341.32 + 22594.2i −0.389694 + 1.19936i
\(709\) 11330.0 + 8231.74i 0.600152 + 0.436036i 0.845933 0.533289i \(-0.179044\pi\)
−0.245781 + 0.969325i \(0.579044\pi\)
\(710\) −4802.61 3489.30i −0.253857 0.184438i
\(711\) 860.227 2647.51i 0.0453742 0.139647i
\(712\) −763.204 2348.90i −0.0401718 0.123636i
\(713\) −21717.9 + 15779.0i −1.14073 + 0.828792i
\(714\) −26095.2 −1.36777
\(715\) 4223.56 5336.36i 0.220912 0.279117i
\(716\) −11953.1 −0.623893
\(717\) −25750.6 + 18708.9i −1.34125 + 0.974474i
\(718\) −641.426 1974.11i −0.0333396 0.102609i
\(719\) 3763.15 11581.8i 0.195190 0.600734i −0.804784 0.593568i \(-0.797719\pi\)
0.999974 0.00716651i \(-0.00228119\pi\)
\(720\) −3399.61 2469.96i −0.175967 0.127847i
\(721\) 1430.87 + 1039.59i 0.0739089 + 0.0536980i
\(722\) −4107.07 + 12640.3i −0.211703 + 0.651554i
\(723\) −9067.08 27905.6i −0.466402 1.43544i
\(724\) −1730.54 + 1257.31i −0.0888327 + 0.0645407i
\(725\) −2217.51 −0.113595
\(726\) −9169.07 + 21896.9i −0.468728 + 1.11938i
\(727\) 2934.33 0.149695 0.0748475 0.997195i \(-0.476153\pi\)
0.0748475 + 0.997195i \(0.476153\pi\)
\(728\) −3179.44 + 2310.00i −0.161865 + 0.117602i
\(729\) −7006.48 21563.7i −0.355966 1.09555i
\(730\) −1141.42 + 3512.92i −0.0578709 + 0.178108i
\(731\) −46370.5 33690.1i −2.34620 1.70462i
\(732\) 19062.3 + 13849.6i 0.962517 + 0.699309i
\(733\) 3366.47 10360.9i 0.169636 0.522087i −0.829712 0.558192i \(-0.811495\pi\)
0.999348 + 0.0361053i \(0.0114952\pi\)
\(734\) −852.588 2624.00i −0.0428741 0.131953i
\(735\) 6118.71 4445.50i 0.307064 0.223095i
\(736\) 3710.77 0.185844
\(737\) −5674.22 + 7169.25i −0.283599 + 0.358321i
\(738\) −25982.0 −1.29595
\(739\) 1132.52 822.823i 0.0563740 0.0409581i −0.559241 0.829005i \(-0.688908\pi\)
0.615615 + 0.788047i \(0.288908\pi\)
\(740\) −701.526 2159.07i −0.0348495 0.107256i
\(741\) −1502.68 + 4624.76i −0.0744969 + 0.229278i
\(742\) 11160.3 + 8108.42i 0.552166 + 0.401172i
\(743\) 29439.4 + 21389.0i 1.45360 + 1.05610i 0.984973 + 0.172709i \(0.0552519\pi\)
0.468629 + 0.883395i \(0.344748\pi\)
\(744\) 5103.59 15707.2i 0.251488 0.773999i
\(745\) 2112.45 + 6501.47i 0.103885 + 0.319725i
\(746\) −8904.87 + 6469.77i −0.437038 + 0.317527i
\(747\) −6339.22 −0.310495
\(748\) 667.839 16201.4i 0.0326452 0.791955i
\(749\) 9347.09 0.455988
\(750\) −1803.66 + 1310.44i −0.0878138 + 0.0638005i
\(751\) 2954.88 + 9094.18i 0.143575 + 0.441879i 0.996825 0.0796233i \(-0.0253717\pi\)
−0.853250 + 0.521502i \(0.825372\pi\)
\(752\) 2253.20 6934.62i 0.109263 0.336276i
\(753\) 50571.1 + 36742.1i 2.44743 + 1.77816i
\(754\) −5354.46 3890.24i −0.258618 0.187897i
\(755\) 1650.65 5080.17i 0.0795672 0.244883i
\(756\) −3705.09 11403.1i −0.178244 0.548580i
\(757\) −8509.39 + 6182.44i −0.408559 + 0.296835i −0.773018 0.634384i \(-0.781254\pi\)
0.364459 + 0.931219i \(0.381254\pi\)
\(758\) 12928.4 0.619498
\(759\) −35370.6 13126.4i −1.69153 0.627746i
\(760\) 584.633 0.0279038
\(761\) −6609.22 + 4801.88i −0.314828 + 0.228736i −0.733965 0.679187i \(-0.762333\pi\)
0.419137 + 0.907923i \(0.362333\pi\)
\(762\) 9036.08 + 27810.2i 0.429584 + 1.32212i
\(763\) −6059.00 + 18647.7i −0.287484 + 0.884785i
\(764\) 12567.9 + 9131.08i 0.595143 + 0.432396i
\(765\) −23609.3 17153.1i −1.11581 0.810683i
\(766\) −7696.03 + 23685.9i −0.363014 + 1.11724i
\(767\) 7678.20 + 23631.1i 0.361465 + 1.11248i
\(768\) −1846.95 + 1341.89i −0.0867786 + 0.0630484i
\(769\) −26522.3 −1.24372 −0.621858 0.783130i \(-0.713622\pi\)
−0.621858 + 0.783130i \(0.713622\pi\)
\(770\) −2661.17 3999.39i −0.124548 0.187179i
\(771\) 72913.8 3.40587
\(772\) 7798.13 5665.68i 0.363550 0.264135i
\(773\) −587.486 1808.09i −0.0273356 0.0841302i 0.936458 0.350780i \(-0.114083\pi\)
−0.963794 + 0.266649i \(0.914083\pi\)
\(774\) 16745.8 51538.2i 0.777668 2.39342i
\(775\) −4682.14 3401.77i −0.217016 0.157671i
\(776\) 9114.70 + 6622.22i 0.421648 + 0.306345i
\(777\) 4118.80 12676.4i 0.190169 0.585280i
\(778\) 1216.15 + 3742.92i 0.0560425 + 0.172481i
\(779\) 2924.43 2124.72i 0.134504 0.0977228i
\(780\) −6654.11 −0.305456
\(781\) 20855.7 5838.53i 0.955537 0.267502i
\(782\) 25770.2 1.17844
\(783\) 16335.7 11868.6i 0.745583 0.541698i
\(784\) −838.644 2581.08i −0.0382035 0.117578i
\(785\) −1784.33 + 5491.60i −0.0811280 + 0.249686i
\(786\) 32479.6 + 23597.8i 1.47393 + 1.07087i
\(787\) −29966.0 21771.5i −1.35727 0.986114i −0.998613 0.0526445i \(-0.983235\pi\)
−0.358656 0.933470i \(-0.616765\pi\)
\(788\) 1981.42 6098.18i 0.0895750 0.275683i
\(789\) 10307.6 + 31723.6i 0.465097 + 1.43142i
\(790\) −428.752 + 311.507i −0.0193093 + 0.0140290i
\(791\) −9627.74 −0.432772
\(792\) 14763.1 4132.91i 0.662352 0.185425i
\(793\) 24643.5 1.10355
\(794\) 8882.79 6453.73i 0.397026 0.288456i
\(795\) 7217.67 + 22213.7i 0.321993 + 0.990992i
\(796\) −2506.91 + 7715.47i −0.111627 + 0.343552i
\(797\) −2291.10 1664.58i −0.101825 0.0739804i 0.535708 0.844404i \(-0.320045\pi\)
−0.637533 + 0.770423i \(0.720045\pi\)
\(798\) 2776.95 + 2017.57i 0.123187 + 0.0895004i
\(799\) 15647.7 48158.8i 0.692838 2.13234i
\(800\) 247.214 + 760.845i 0.0109254 + 0.0336249i
\(801\) 13119.2 9531.67i 0.578708 0.420456i
\(802\) −4027.02 −0.177306
\(803\) −7465.08 11219.0i −0.328066 0.493040i
\(804\) 8939.60 0.392133
\(805\) 6176.50 4487.49i 0.270426 0.196476i
\(806\) −5337.79 16428.0i −0.233270 0.717932i
\(807\) −1754.66 + 5400.29i −0.0765391 + 0.235563i
\(808\) 7257.03 + 5272.54i 0.315967 + 0.229564i
\(809\) −34633.9 25163.0i −1.50515 1.09355i −0.968274 0.249891i \(-0.919605\pi\)
−0.536873 0.843663i \(-0.680395\pi\)
\(810\) 1890.72 5819.05i 0.0820164 0.252420i
\(811\) −3995.43 12296.7i −0.172994 0.532422i 0.826542 0.562875i \(-0.190305\pi\)
−0.999536 + 0.0304535i \(0.990305\pi\)
\(812\) −3779.58 + 2746.02i −0.163346 + 0.118678i
\(813\) 24396.3 1.05242
\(814\) 7764.83 + 2881.61i 0.334345 + 0.124079i
\(815\) −15952.1 −0.685617
\(816\) −12826.5 + 9318.98i −0.550265 + 0.399791i
\(817\) 2329.79 + 7170.36i 0.0997663 + 0.307049i
\(818\) 3563.88 10968.5i 0.152332 0.468831i
\(819\) −20875.8 15167.1i −0.890670 0.647110i
\(820\) 4001.73 + 2907.43i 0.170423 + 0.123819i
\(821\) −13166.6 + 40522.7i −0.559706 + 1.72260i 0.123474 + 0.992348i \(0.460596\pi\)
−0.683180 + 0.730250i \(0.739404\pi\)
\(822\) −13538.6 41667.6i −0.574470 1.76804i
\(823\) −9967.00 + 7241.45i −0.422148 + 0.306709i −0.778502 0.627643i \(-0.784020\pi\)
0.356353 + 0.934351i \(0.384020\pi\)
\(824\) 1074.56 0.0454298
\(825\) 334.993 8126.76i 0.0141369 0.342955i
\(826\) 17539.0 0.738813
\(827\) −4427.29 + 3216.61i −0.186157 + 0.135251i −0.676961 0.736019i \(-0.736703\pi\)
0.490804 + 0.871270i \(0.336703\pi\)
\(828\) 7529.03 + 23172.0i 0.316005 + 0.972562i
\(829\) 10644.6 32760.8i 0.445963 1.37253i −0.435462 0.900207i \(-0.643415\pi\)
0.881424 0.472325i \(-0.156585\pi\)
\(830\) 976.363 + 709.369i 0.0408314 + 0.0296657i
\(831\) −32570.1 23663.6i −1.35962 0.987821i
\(832\) −737.845 + 2270.85i −0.0307454 + 0.0946246i
\(833\) −5824.12 17924.8i −0.242249 0.745567i
\(834\) −11045.5 + 8025.04i −0.458603 + 0.333195i
\(835\) −21112.5 −0.875005
\(836\) −1323.70 + 1672.46i −0.0547620 + 0.0691905i
\(837\) 52699.0 2.17628
\(838\) −11089.4 + 8056.89i −0.457131 + 0.332125i
\(839\) 9078.19 + 27939.8i 0.373556 + 1.14969i 0.944447 + 0.328662i \(0.106598\pi\)
−0.570891 + 0.821026i \(0.693402\pi\)
\(840\) −1451.44 + 4467.08i −0.0596185 + 0.183487i
\(841\) 13366.0 + 9710.94i 0.548033 + 0.398169i
\(842\) −11679.8 8485.90i −0.478045 0.347320i
\(843\) −1748.87 + 5382.48i −0.0714524 + 0.219908i
\(844\) −2968.21 9135.22i −0.121055 0.372568i
\(845\) 3256.73 2366.15i 0.132586 0.0963291i
\(846\) 47875.0 1.94560
\(847\) 17466.4 + 1442.41i 0.708561 + 0.0585147i
\(848\) 8381.22 0.339401
\(849\) −12249.5 + 8899.79i −0.495173 + 0.359764i
\(850\) 1716.82 + 5283.83i 0.0692782 + 0.213216i
\(851\) −4067.50 + 12518.5i −0.163845 + 0.504264i
\(852\) −17131.4 12446.7i −0.688866 0.500490i
\(853\) −7735.24 5619.98i −0.310492 0.225585i 0.421616 0.906775i \(-0.361463\pi\)
−0.732107 + 0.681189i \(0.761463\pi\)
\(854\) 5375.43 16543.9i 0.215390 0.662903i
\(855\) 1186.20 + 3650.74i 0.0474470 + 0.146027i
\(856\) 4594.35 3337.99i 0.183448 0.133283i
\(857\) 43615.6 1.73848 0.869241 0.494389i \(-0.164608\pi\)
0.869241 + 0.494389i \(0.164608\pi\)
\(858\) 15065.9 19035.4i 0.599466 0.757411i
\(859\) 37037.9 1.47115 0.735574 0.677444i \(-0.236912\pi\)
0.735574 + 0.677444i \(0.236912\pi\)
\(860\) −8346.40 + 6064.01i −0.330942 + 0.240443i
\(861\) 8974.29 + 27620.0i 0.355218 + 1.09325i
\(862\) 7692.26 23674.3i 0.303943 0.935442i
\(863\) 33836.3 + 24583.5i 1.33465 + 0.969679i 0.999623 + 0.0274696i \(0.00874495\pi\)
0.335026 + 0.942209i \(0.391255\pi\)
\(864\) −5893.36 4281.78i −0.232056 0.168598i
\(865\) −3087.18 + 9501.38i −0.121350 + 0.373476i
\(866\) −8675.24 26699.6i −0.340412 1.04768i
\(867\) −53630.4 + 38964.7i −2.10079 + 1.52631i
\(868\) −12192.9 −0.476790
\(869\) 79.6320 1931.83i 0.00310855 0.0754118i
\(870\) −7910.11 −0.308250
\(871\) 7564.17 5495.69i 0.294262 0.213794i
\(872\) 3681.21 + 11329.6i 0.142960 + 0.439987i
\(873\) −22859.1 + 70353.1i −0.886212 + 2.72748i
\(874\) −2742.37 1992.44i −0.106135 0.0771115i
\(875\) 1331.58 + 967.451i 0.0514465 + 0.0373781i
\(876\) −4071.56 + 12531.0i −0.157038 + 0.483314i
\(877\) 243.776 + 750.267i 0.00938625 + 0.0288879i 0.955640 0.294537i \(-0.0951656\pi\)
−0.946254 + 0.323425i \(0.895166\pi\)
\(878\) −13412.7 + 9744.90i −0.515555 + 0.374572i
\(879\) −36432.7 −1.39800
\(880\) −2736.28 1015.46i −0.104818 0.0388992i
\(881\) −7477.50 −0.285952 −0.142976 0.989726i \(-0.545667\pi\)
−0.142976 + 0.989726i \(0.545667\pi\)
\(882\) 14416.0 10473.8i 0.550354 0.399855i
\(883\) −6661.32 20501.4i −0.253875 0.781346i −0.994049 0.108931i \(-0.965257\pi\)
0.740175 0.672415i \(-0.234743\pi\)
\(884\) −5124.10 + 15770.4i −0.194957 + 0.600017i
\(885\) 24024.8 + 17455.0i 0.912524 + 0.662988i
\(886\) 17732.2 + 12883.2i 0.672376 + 0.488510i
\(887\) −7958.25 + 24493.0i −0.301254 + 0.927163i 0.679795 + 0.733402i \(0.262069\pi\)
−0.981049 + 0.193761i \(0.937931\pi\)
\(888\) −2502.42 7701.66i −0.0945673 0.291048i
\(889\) 17465.0 12689.1i 0.658895 0.478715i
\(890\) −3087.23 −0.116274
\(891\) 12365.7 + 18584.0i 0.464945 + 0.698752i
\(892\) 21419.2 0.804001
\(893\) −5388.62 + 3915.06i −0.201930 + 0.146711i
\(894\) 7535.37 + 23191.5i 0.281902 + 0.867605i
\(895\) −4617.13 + 14210.1i −0.172440 + 0.530715i
\(896\) 1363.54 + 990.670i 0.0508401 + 0.0369375i
\(897\) 31212.7 + 22677.4i 1.16183 + 0.844120i
\(898\) −3745.09 + 11526.2i −0.139171 + 0.428323i
\(899\) −6345.33 19528.9i −0.235405 0.724501i
\(900\) −4249.52 + 3087.46i −0.157390 + 0.114350i
\(901\) 58205.0 2.15215
\(902\) −17377.8 + 4864.91i −0.641483 + 0.179583i
\(903\) −60571.6 −2.23222
\(904\) −4732.29 + 3438.21i −0.174108 + 0.126497i
\(905\) 826.258 + 2542.96i 0.0303489 + 0.0934042i
\(906\) 5888.05 18121.6i 0.215913 0.664513i
\(907\) −24654.1 17912.3i −0.902566 0.655753i 0.0365577 0.999332i \(-0.488361\pi\)
−0.939124 + 0.343579i \(0.888361\pi\)
\(908\) 6321.85 + 4593.09i 0.231055 + 0.167871i
\(909\) −18200.2 + 56014.4i −0.664094 + 2.04387i
\(910\) 1518.05 + 4672.07i 0.0552998 + 0.170195i
\(911\) −23414.7 + 17011.8i −0.851552 + 0.618689i −0.925574 0.378568i \(-0.876417\pi\)
0.0740212 + 0.997257i \(0.476417\pi\)
\(912\) 2085.45 0.0757195
\(913\) −4239.93 + 1186.96i −0.153692 + 0.0430260i
\(914\) 19501.6 0.705749
\(915\) 23827.8 17311.9i 0.860901 0.625481i
\(916\) 4987.80 + 15350.9i 0.179914 + 0.553720i
\(917\) 9159.02 28188.6i 0.329834 1.01512i
\(918\) −40927.6 29735.6i −1.47147 1.06909i
\(919\) 15000.0 + 10898.1i 0.538416 + 0.391182i 0.823496 0.567322i \(-0.192020\pi\)
−0.285080 + 0.958504i \(0.592020\pi\)
\(920\) 1433.37 4411.44i 0.0513659 0.158088i
\(921\) −18578.6 57179.1i −0.664697 2.04573i
\(922\) 21543.0 15651.9i 0.769503 0.559076i
\(923\) −22147.4 −0.789805
\(924\) −9492.70 14266.3i −0.337973 0.507929i
\(925\) −2837.73 −0.100869
\(926\) 8239.05 5986.02i 0.292389 0.212433i
\(927\) 2180.25 + 6710.12i 0.0772479 + 0.237744i
\(928\) −877.117 + 2699.49i −0.0310267 + 0.0954904i
\(929\) −37135.9 26980.8i −1.31151 0.952866i −0.999997 0.00262392i \(-0.999165\pi\)
−0.311511 0.950242i \(-0.600835\pi\)
\(930\) −16701.7 12134.5i −0.588894 0.427856i
\(931\) −766.092 + 2357.79i −0.0269685 + 0.0830004i
\(932\) 4301.24 + 13237.8i 0.151171 + 0.465258i
\(933\) −57338.6 + 41658.9i −2.01198 + 1.46179i
\(934\) −18884.4 −0.661581
\(935\) −19002.6 7052.08i −0.664655 0.246661i
\(936\) −15677.4 −0.547471
\(937\) −13281.2 + 9649.33i −0.463049 + 0.336425i −0.794726 0.606968i \(-0.792385\pi\)
0.331677 + 0.943393i \(0.392385\pi\)
\(938\) −2039.45 6276.79i −0.0709920 0.218491i
\(939\) 9659.72 29729.5i 0.335711 1.03321i
\(940\) −7373.68 5357.29i −0.255854 0.185889i
\(941\) −24120.9 17524.9i −0.835621 0.607114i 0.0855232 0.996336i \(-0.472744\pi\)
−0.921144 + 0.389222i \(0.872744\pi\)
\(942\) −6364.91 + 19589.2i −0.220149 + 0.677548i
\(943\) −8862.52 27276.0i −0.306048 0.941919i
\(944\) 8620.89 6263.44i 0.297231 0.215951i
\(945\) −14987.4 −0.515915
\(946\) 1550.17 37606.4i 0.0532775 1.29248i
\(947\) 763.316 0.0261927 0.0130963 0.999914i \(-0.495831\pi\)
0.0130963 + 0.999914i \(0.495831\pi\)
\(948\) −1529.41 + 1111.18i −0.0523975 + 0.0380690i
\(949\) 4258.41 + 13106.0i 0.145662 + 0.448303i
\(950\) 225.827 695.023i 0.00771241 0.0237364i
\(951\) −13288.5 9654.68i −0.453113 0.329206i
\(952\) 9469.36 + 6879.89i 0.322378 + 0.234221i
\(953\) 15970.6 49152.5i 0.542853 1.67073i −0.183188 0.983078i \(-0.558642\pi\)
0.726041 0.687651i \(-0.241358\pi\)
\(954\) 17005.2 + 52336.6i 0.577111 + 1.77616i
\(955\) 15709.8 11413.9i 0.532312 0.386747i
\(956\) 14276.9 0.482999
\(957\) 17909.7 22628.5i 0.604951 0.764341i
\(958\) −16138.0 −0.544252
\(959\) −26167.6 + 19011.9i −0.881121 + 0.640172i
\(960\) 881.839 + 2714.02i 0.0296471 + 0.0912445i
\(961\) 7354.65 22635.3i 0.246875 0.759803i
\(962\) −6852.07 4978.32i −0.229646 0.166848i
\(963\) 30165.9 + 21916.8i 1.00943 + 0.733394i
\(964\) −4066.97 + 12516.8i −0.135880 + 0.418195i
\(965\) −3723.28 11459.1i −0.124204 0.382260i
\(966\) 22032.3 16007.4i 0.733827 0.533157i
\(967\) −15749.8 −0.523765 −0.261883 0.965100i \(-0.584343\pi\)
−0.261883 + 0.965100i \(0.584343\pi\)
\(968\) 9100.30 5528.52i 0.302164 0.183567i
\(969\) 14482.8 0.480139
\(970\) 11393.4 8277.77i 0.377133 0.274003i
\(971\) −9339.59 28744.3i −0.308673 0.949999i −0.978281 0.207284i \(-0.933538\pi\)
0.669608 0.742715i \(-0.266462\pi\)
\(972\) −852.915 + 2625.00i −0.0281453 + 0.0866224i
\(973\) 8154.54 + 5924.62i 0.268677 + 0.195205i
\(974\) 1688.07 + 1226.45i 0.0555331 + 0.0403471i
\(975\) −2570.29 + 7910.54i −0.0844258 + 0.259836i
\(976\) −3265.90 10051.4i −0.107109 0.329649i
\(977\) −16624.7 + 12078.5i −0.544392 + 0.395524i −0.825714 0.564090i \(-0.809227\pi\)
0.281322 + 0.959614i \(0.409227\pi\)
\(978\) −56903.0 −1.86049
\(979\) 6989.95 8831.63i 0.228192 0.288315i
\(980\) −3392.39 −0.110577
\(981\) −63278.7 + 45974.7i −2.05946 + 1.49629i
\(982\) 660.930 + 2034.13i 0.0214777 + 0.0661016i
\(983\) −6321.65 + 19456.0i −0.205116 + 0.631283i 0.794592 + 0.607143i \(0.207685\pi\)
−0.999709 + 0.0241395i \(0.992315\pi\)
\(984\) 14274.6 + 10371.1i 0.462458 + 0.335996i
\(985\) −6484.27 4711.10i −0.209752 0.152394i
\(986\) −6091.31 + 18747.1i −0.196741 + 0.605507i
\(987\) −16536.2 50893.3i −0.533287 1.64129i
\(988\) 1764.59 1282.05i 0.0568209 0.0412828i
\(989\) 59817.2 1.92323
\(990\) 789.262 19147.1i 0.0253378 0.614681i
\(991\) −43831.3 −1.40499 −0.702497 0.711687i \(-0.747931\pi\)
−0.702497 + 0.711687i \(0.747931\pi\)
\(992\) −5993.14 + 4354.27i −0.191817 + 0.139363i
\(993\) 7745.56 + 23838.4i 0.247531 + 0.761821i
\(994\) −4830.95 + 14868.1i −0.154153 + 0.474435i
\(995\) 8203.96 + 5960.53i 0.261390 + 0.189911i
\(996\) 3482.80 + 2530.40i 0.110800 + 0.0805008i
\(997\) 9180.40 28254.4i 0.291621 0.897517i −0.692715 0.721212i \(-0.743585\pi\)
0.984336 0.176305i \(-0.0564145\pi\)
\(998\) 1438.56 + 4427.45i 0.0456282 + 0.140429i
\(999\) 20904.7 15188.2i 0.662058 0.481013i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.4.g.d.91.4 yes 16
11.2 odd 10 1210.4.a.bi.1.7 8
11.4 even 5 inner 110.4.g.d.81.4 16
11.9 even 5 1210.4.a.bj.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.4.g.d.81.4 16 11.4 even 5 inner
110.4.g.d.91.4 yes 16 1.1 even 1 trivial
1210.4.a.bi.1.7 8 11.2 odd 10
1210.4.a.bj.1.7 8 11.9 even 5