L(s) = 1 | + 3-s + 11-s + 23-s − 27-s − 31-s + 33-s + 37-s − 2·47-s + 49-s − 2·53-s − 59-s + 67-s + 69-s − 71-s − 81-s − 89-s − 93-s + 97-s − 2·103-s + 111-s + 113-s + ⋯ |
L(s) = 1 | + 3-s + 11-s + 23-s − 27-s − 31-s + 33-s + 37-s − 2·47-s + 49-s − 2·53-s − 59-s + 67-s + 69-s − 71-s − 81-s − 89-s − 93-s + 97-s − 2·103-s + 111-s + 113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.432648494\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.432648494\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 3 | \( 1 - T + T^{2} \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 - T + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 + T )^{2} \) |
| 53 | \( ( 1 + T )^{2} \) |
| 59 | \( 1 + T + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.694491748062756641011246352633, −9.234998055604318450713514121998, −8.495821575895335710433655452420, −7.71196370436021627551023001648, −6.82044501060196204280740388653, −5.89671648638049700732012787382, −4.72288648487013544354478803953, −3.67217217624074011508594178346, −2.88161968926659634223196273119, −1.62500272502175647556573203193,
1.62500272502175647556573203193, 2.88161968926659634223196273119, 3.67217217624074011508594178346, 4.72288648487013544354478803953, 5.89671648638049700732012787382, 6.82044501060196204280740388653, 7.71196370436021627551023001648, 8.495821575895335710433655452420, 9.234998055604318450713514121998, 9.694491748062756641011246352633