L(s) = 1 | + (0.151 + 0.0492i)3-s + (−1.93 + 0.628i)7-s + (−2.40 − 1.74i)9-s + (2.88 + 1.63i)11-s + (−0.384 + 0.528i)13-s + (2.52 + 3.47i)17-s + (0.919 − 2.82i)19-s − 0.324·21-s + 6.11i·23-s + (−0.559 − 0.770i)27-s + (2.63 + 8.11i)29-s + (4.34 + 3.15i)31-s + (0.357 + 0.389i)33-s + (−3.28 + 1.06i)37-s + (−0.0843 + 0.0612i)39-s + ⋯ |
L(s) = 1 | + (0.0875 + 0.0284i)3-s + (−0.731 + 0.237i)7-s + (−0.802 − 0.582i)9-s + (0.870 + 0.492i)11-s + (−0.106 + 0.146i)13-s + (0.612 + 0.843i)17-s + (0.210 − 0.649i)19-s − 0.0708·21-s + 1.27i·23-s + (−0.107 − 0.148i)27-s + (0.489 + 1.50i)29-s + (0.780 + 0.567i)31-s + (0.0622 + 0.0678i)33-s + (−0.540 + 0.175i)37-s + (−0.0134 + 0.00980i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.320 - 0.947i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.320 - 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.287535350\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.287535350\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (-2.88 - 1.63i)T \) |
good | 3 | \( 1 + (-0.151 - 0.0492i)T + (2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (1.93 - 0.628i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (0.384 - 0.528i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.52 - 3.47i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.919 + 2.82i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 6.11iT - 23T^{2} \) |
| 29 | \( 1 + (-2.63 - 8.11i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-4.34 - 3.15i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (3.28 - 1.06i)T + (29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.47 + 4.53i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 10.1iT - 43T^{2} \) |
| 47 | \( 1 + (-6.94 - 2.25i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (6.53 - 8.99i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (1.70 + 5.24i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-7.77 + 5.64i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 5.60iT - 67T^{2} \) |
| 71 | \( 1 + (0.0442 - 0.0321i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (6.78 - 2.20i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.37 - 1.72i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (7.25 + 9.98i)T + (-25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 0.00487T + 89T^{2} \) |
| 97 | \( 1 + (10.7 - 14.7i)T + (-29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.795586355369149215741290075620, −9.240017956252944615584756944464, −8.575943188820311522775710300553, −7.46342977767049513090816107466, −6.56700328388650369729293164589, −5.93875388231027215972275861976, −4.85386047636054773540423104868, −3.62181558279128363125791730473, −2.94785858244070016772457318457, −1.35799894403851293058557352023,
0.60622658304716839612024982453, 2.40547602522024944569772199486, 3.33821494920828442366848636194, 4.36919214863017046308314193776, 5.56081271233961343205614175715, 6.26543845457092303110864537684, 7.17342767226686509074474028157, 8.163316362729138706568539141366, 8.781250904515375357787719940940, 9.818642012087489242936422310128