Properties

Label 1100.2.cb.b.1049.3
Level $1100$
Weight $2$
Character 1100.1049
Analytic conductor $8.784$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,2,Mod(49,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1100.cb (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.78354422234\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 11x^{14} + 56x^{12} - 141x^{10} + 551x^{8} - 1245x^{6} + 1400x^{4} + 125x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 1049.3
Root \(-0.456994 + 0.628998i\) of defining polynomial
Character \(\chi\) \(=\) 1100.1049
Dual form 1100.2.cb.b.949.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.151646 + 0.0492728i) q^{3} +(-1.93586 + 0.628998i) q^{7} +(-2.40648 - 1.74841i) q^{9} +(2.88699 + 1.63256i) q^{11} +(-0.384126 + 0.528704i) q^{13} +(2.52570 + 3.47632i) q^{17} +(0.919194 - 2.82899i) q^{19} -0.324558 q^{21} +6.11210i q^{23} +(-0.559952 - 0.770708i) q^{27} +(2.63577 + 8.11208i) q^{29} +(4.34733 + 3.15852i) q^{31} +(0.357361 + 0.389823i) q^{33} +(-3.28598 + 1.06768i) q^{37} +(-0.0843020 + 0.0612490i) q^{39} +(1.47374 - 4.53569i) q^{41} +10.1305i q^{43} +(6.94734 + 2.25733i) q^{47} +(-2.31122 + 1.67920i) q^{49} +(0.211724 + 0.651620i) q^{51} +(-6.53617 + 8.99626i) q^{53} +(0.278785 - 0.383714i) q^{57} +(-1.70562 - 5.24935i) q^{59} +(7.77155 - 5.64636i) q^{61} +(5.75835 + 1.87100i) q^{63} -5.60966i q^{67} +(-0.301160 + 0.926876i) q^{69} +(-0.0442449 + 0.0321458i) q^{71} +(-6.78819 + 2.20562i) q^{73} +(-6.61569 - 1.34450i) q^{77} +(2.37100 + 1.72263i) q^{79} +(2.71064 + 8.34250i) q^{81} +(-7.25807 - 9.98988i) q^{83} +1.36004i q^{87} -0.00487932 q^{89} +(0.411059 - 1.26511i) q^{91} +(0.503626 + 0.693182i) q^{93} +(-10.7307 + 14.7696i) q^{97} +(-4.09311 - 8.97639i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{9} + 10 q^{11} + 14 q^{19} - 56 q^{21} + 2 q^{29} + 44 q^{31} - 54 q^{39} + 48 q^{41} + 54 q^{49} - 94 q^{51} + 18 q^{59} + 44 q^{61} - 22 q^{69} - 44 q^{71} + 50 q^{79} - 56 q^{81} - 16 q^{89}+ \cdots - 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.151646 + 0.0492728i 0.0875530 + 0.0284477i 0.352466 0.935825i \(-0.385343\pi\)
−0.264913 + 0.964272i \(0.585343\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.93586 + 0.628998i −0.731685 + 0.237739i −0.651082 0.759007i \(-0.725685\pi\)
−0.0806031 + 0.996746i \(0.525685\pi\)
\(8\) 0 0
\(9\) −2.40648 1.74841i −0.802161 0.582804i
\(10\) 0 0
\(11\) 2.88699 + 1.63256i 0.870461 + 0.492237i
\(12\) 0 0
\(13\) −0.384126 + 0.528704i −0.106537 + 0.146636i −0.858957 0.512048i \(-0.828887\pi\)
0.752419 + 0.658685i \(0.228887\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.52570 + 3.47632i 0.612572 + 0.843132i 0.996786 0.0801115i \(-0.0255276\pi\)
−0.384214 + 0.923244i \(0.625528\pi\)
\(18\) 0 0
\(19\) 0.919194 2.82899i 0.210878 0.649015i −0.788543 0.614980i \(-0.789164\pi\)
0.999421 0.0340351i \(-0.0108358\pi\)
\(20\) 0 0
\(21\) −0.324558 −0.0708243
\(22\) 0 0
\(23\) 6.11210i 1.27446i 0.770673 + 0.637230i \(0.219920\pi\)
−0.770673 + 0.637230i \(0.780080\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.559952 0.770708i −0.107763 0.148323i
\(28\) 0 0
\(29\) 2.63577 + 8.11208i 0.489451 + 1.50638i 0.825429 + 0.564505i \(0.190933\pi\)
−0.335978 + 0.941870i \(0.609067\pi\)
\(30\) 0 0
\(31\) 4.34733 + 3.15852i 0.780803 + 0.567286i 0.905220 0.424944i \(-0.139706\pi\)
−0.124417 + 0.992230i \(0.539706\pi\)
\(32\) 0 0
\(33\) 0.357361 + 0.389823i 0.0622085 + 0.0678594i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.28598 + 1.06768i −0.540212 + 0.175526i −0.566399 0.824131i \(-0.691664\pi\)
0.0261862 + 0.999657i \(0.491664\pi\)
\(38\) 0 0
\(39\) −0.0843020 + 0.0612490i −0.0134991 + 0.00980769i
\(40\) 0 0
\(41\) 1.47374 4.53569i 0.230159 0.708356i −0.767568 0.640968i \(-0.778533\pi\)
0.997727 0.0673885i \(-0.0214667\pi\)
\(42\) 0 0
\(43\) 10.1305i 1.54489i 0.635081 + 0.772446i \(0.280967\pi\)
−0.635081 + 0.772446i \(0.719033\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.94734 + 2.25733i 1.01337 + 0.329265i 0.768197 0.640213i \(-0.221154\pi\)
0.245177 + 0.969478i \(0.421154\pi\)
\(48\) 0 0
\(49\) −2.31122 + 1.67920i −0.330174 + 0.239885i
\(50\) 0 0
\(51\) 0.211724 + 0.651620i 0.0296473 + 0.0912450i
\(52\) 0 0
\(53\) −6.53617 + 8.99626i −0.897812 + 1.23573i 0.0733491 + 0.997306i \(0.476631\pi\)
−0.971161 + 0.238425i \(0.923369\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.278785 0.383714i 0.0369259 0.0508242i
\(58\) 0 0
\(59\) −1.70562 5.24935i −0.222052 0.683407i −0.998577 0.0533204i \(-0.983020\pi\)
0.776525 0.630086i \(-0.216980\pi\)
\(60\) 0 0
\(61\) 7.77155 5.64636i 0.995045 0.722942i 0.0340247 0.999421i \(-0.489168\pi\)
0.961020 + 0.276479i \(0.0891675\pi\)
\(62\) 0 0
\(63\) 5.75835 + 1.87100i 0.725484 + 0.235724i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.60966i 0.685329i −0.939458 0.342664i \(-0.888671\pi\)
0.939458 0.342664i \(-0.111329\pi\)
\(68\) 0 0
\(69\) −0.301160 + 0.926876i −0.0362555 + 0.111583i
\(70\) 0 0
\(71\) −0.0442449 + 0.0321458i −0.00525091 + 0.00381501i −0.590408 0.807105i \(-0.701033\pi\)
0.585157 + 0.810920i \(0.301033\pi\)
\(72\) 0 0
\(73\) −6.78819 + 2.20562i −0.794497 + 0.258148i −0.678018 0.735045i \(-0.737161\pi\)
−0.116479 + 0.993193i \(0.537161\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.61569 1.34450i −0.753927 0.153220i
\(78\) 0 0
\(79\) 2.37100 + 1.72263i 0.266759 + 0.193811i 0.713121 0.701041i \(-0.247281\pi\)
−0.446363 + 0.894852i \(0.647281\pi\)
\(80\) 0 0
\(81\) 2.71064 + 8.34250i 0.301183 + 0.926945i
\(82\) 0 0
\(83\) −7.25807 9.98988i −0.796677 1.09653i −0.993244 0.116041i \(-0.962980\pi\)
0.196568 0.980490i \(-0.437020\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.36004i 0.145811i
\(88\) 0 0
\(89\) −0.00487932 −0.000517207 −0.000258603 1.00000i \(-0.500082\pi\)
−0.000258603 1.00000i \(0.500082\pi\)
\(90\) 0 0
\(91\) 0.411059 1.26511i 0.0430907 0.132620i
\(92\) 0 0
\(93\) 0.503626 + 0.693182i 0.0522236 + 0.0718797i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.7307 + 14.7696i −1.08954 + 1.49962i −0.240973 + 0.970532i \(0.577467\pi\)
−0.848566 + 0.529090i \(0.822533\pi\)
\(98\) 0 0
\(99\) −4.09311 8.97639i −0.411373 0.902161i
\(100\) 0 0
\(101\) −2.14782 1.56048i −0.213716 0.155274i 0.475777 0.879566i \(-0.342167\pi\)
−0.689493 + 0.724292i \(0.742167\pi\)
\(102\) 0 0
\(103\) 15.6546 5.08650i 1.54250 0.501188i 0.590433 0.807086i \(-0.298957\pi\)
0.952064 + 0.305898i \(0.0989568\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.6988 + 3.80116i 1.13096 + 0.367472i 0.813942 0.580946i \(-0.197317\pi\)
0.317021 + 0.948419i \(0.397317\pi\)
\(108\) 0 0
\(109\) 8.73635 0.836790 0.418395 0.908265i \(-0.362593\pi\)
0.418395 + 0.908265i \(0.362593\pi\)
\(110\) 0 0
\(111\) −0.550915 −0.0522905
\(112\) 0 0
\(113\) 1.57099 + 0.510445i 0.147786 + 0.0480186i 0.381976 0.924172i \(-0.375244\pi\)
−0.234190 + 0.972191i \(0.575244\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.84878 0.600707i 0.170920 0.0555353i
\(118\) 0 0
\(119\) −7.07599 5.14101i −0.648655 0.471275i
\(120\) 0 0
\(121\) 5.66947 + 9.42641i 0.515406 + 0.856946i
\(122\) 0 0
\(123\) 0.446973 0.615205i 0.0403022 0.0554712i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.61841 + 2.22754i 0.143610 + 0.197663i 0.874763 0.484552i \(-0.161017\pi\)
−0.731152 + 0.682214i \(0.761017\pi\)
\(128\) 0 0
\(129\) −0.499160 + 1.53626i −0.0439486 + 0.135260i
\(130\) 0 0
\(131\) −2.85760 −0.249670 −0.124835 0.992178i \(-0.539840\pi\)
−0.124835 + 0.992178i \(0.539840\pi\)
\(132\) 0 0
\(133\) 6.05469i 0.525008i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.91464 8.14080i −0.505322 0.695516i 0.477800 0.878469i \(-0.341434\pi\)
−0.983122 + 0.182953i \(0.941434\pi\)
\(138\) 0 0
\(139\) −0.118702 0.365326i −0.0100682 0.0309866i 0.945896 0.324469i \(-0.105186\pi\)
−0.955964 + 0.293483i \(0.905186\pi\)
\(140\) 0 0
\(141\) 0.942313 + 0.684631i 0.0793571 + 0.0576563i
\(142\) 0 0
\(143\) −1.97211 + 0.899255i −0.164916 + 0.0751995i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.433226 + 0.140764i −0.0357319 + 0.0116100i
\(148\) 0 0
\(149\) −6.72161 + 4.88353i −0.550656 + 0.400075i −0.828027 0.560688i \(-0.810537\pi\)
0.277372 + 0.960763i \(0.410537\pi\)
\(150\) 0 0
\(151\) 1.65310 5.08772i 0.134527 0.414033i −0.860989 0.508624i \(-0.830154\pi\)
0.995516 + 0.0945910i \(0.0301543\pi\)
\(152\) 0 0
\(153\) 12.7817i 1.03334i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.14768 2.32242i −0.570447 0.185349i 0.00956968 0.999954i \(-0.496954\pi\)
−0.580016 + 0.814605i \(0.696954\pi\)
\(158\) 0 0
\(159\) −1.43446 + 1.04219i −0.113760 + 0.0826513i
\(160\) 0 0
\(161\) −3.84450 11.8321i −0.302989 0.932504i
\(162\) 0 0
\(163\) 1.78725 2.45994i 0.139988 0.192678i −0.733266 0.679942i \(-0.762005\pi\)
0.873255 + 0.487264i \(0.162005\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.10379 11.1539i 0.627090 0.863115i −0.370755 0.928731i \(-0.620901\pi\)
0.997845 + 0.0656157i \(0.0209011\pi\)
\(168\) 0 0
\(169\) 3.88525 + 11.9576i 0.298865 + 0.919812i
\(170\) 0 0
\(171\) −7.15826 + 5.20078i −0.547406 + 0.397714i
\(172\) 0 0
\(173\) 13.1240 + 4.26425i 0.997801 + 0.324205i 0.761986 0.647593i \(-0.224224\pi\)
0.235814 + 0.971798i \(0.424224\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.880084i 0.0661512i
\(178\) 0 0
\(179\) −1.54508 + 4.75528i −0.115485 + 0.355427i −0.992048 0.125861i \(-0.959831\pi\)
0.876563 + 0.481287i \(0.159831\pi\)
\(180\) 0 0
\(181\) −18.1760 + 13.2056i −1.35101 + 0.981567i −0.352051 + 0.935981i \(0.614516\pi\)
−0.998960 + 0.0455868i \(0.985484\pi\)
\(182\) 0 0
\(183\) 1.45674 0.473323i 0.107685 0.0349890i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.61635 + 14.1595i 0.118199 + 1.03544i
\(188\) 0 0
\(189\) 1.56876 + 1.13977i 0.114111 + 0.0829062i
\(190\) 0 0
\(191\) −2.22754 6.85567i −0.161179 0.496059i 0.837555 0.546353i \(-0.183984\pi\)
−0.998734 + 0.0502937i \(0.983984\pi\)
\(192\) 0 0
\(193\) −12.4352 17.1155i −0.895102 1.23200i −0.972004 0.234964i \(-0.924503\pi\)
0.0769019 0.997039i \(-0.475497\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.5970i 1.46748i −0.679432 0.733738i \(-0.737774\pi\)
0.679432 0.733738i \(-0.262226\pi\)
\(198\) 0 0
\(199\) 11.3763 0.806445 0.403223 0.915102i \(-0.367890\pi\)
0.403223 + 0.915102i \(0.367890\pi\)
\(200\) 0 0
\(201\) 0.276404 0.850683i 0.0194960 0.0600026i
\(202\) 0 0
\(203\) −10.2050 14.0459i −0.716248 0.985831i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 10.6865 14.7087i 0.742761 1.02232i
\(208\) 0 0
\(209\) 7.27222 6.66663i 0.503030 0.461141i
\(210\) 0 0
\(211\) −22.7568 16.5338i −1.56665 1.13823i −0.930282 0.366846i \(-0.880437\pi\)
−0.636364 0.771389i \(-0.719563\pi\)
\(212\) 0 0
\(213\) −0.00829349 + 0.00269472i −0.000568261 + 0.000184639i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −10.4025 3.37998i −0.706168 0.229448i
\(218\) 0 0
\(219\) −1.13808 −0.0769043
\(220\) 0 0
\(221\) −2.80813 −0.188895
\(222\) 0 0
\(223\) −18.6561 6.06173i −1.24930 0.405923i −0.391633 0.920122i \(-0.628090\pi\)
−0.857671 + 0.514198i \(0.828090\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.3306 4.98120i 1.01753 0.330614i 0.247678 0.968842i \(-0.420332\pi\)
0.769847 + 0.638228i \(0.220332\pi\)
\(228\) 0 0
\(229\) 3.13012 + 2.27416i 0.206844 + 0.150281i 0.686385 0.727239i \(-0.259197\pi\)
−0.479541 + 0.877520i \(0.659197\pi\)
\(230\) 0 0
\(231\) −0.936997 0.529862i −0.0616498 0.0348623i
\(232\) 0 0
\(233\) 16.7141 23.0050i 1.09498 1.50711i 0.253095 0.967441i \(-0.418551\pi\)
0.841881 0.539664i \(-0.181449\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.274674 + 0.378057i 0.0178420 + 0.0245574i
\(238\) 0 0
\(239\) 0.517313 1.59212i 0.0334622 0.102986i −0.932930 0.360057i \(-0.882757\pi\)
0.966393 + 0.257071i \(0.0827573\pi\)
\(240\) 0 0
\(241\) −21.4676 −1.38285 −0.691425 0.722448i \(-0.743017\pi\)
−0.691425 + 0.722448i \(0.743017\pi\)
\(242\) 0 0
\(243\) 4.25661i 0.273062i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.14261 + 1.57267i 0.0727026 + 0.100067i
\(248\) 0 0
\(249\) −0.608429 1.87255i −0.0385576 0.118668i
\(250\) 0 0
\(251\) 14.4964 + 10.5322i 0.915003 + 0.664789i 0.942275 0.334839i \(-0.108682\pi\)
−0.0272722 + 0.999628i \(0.508682\pi\)
\(252\) 0 0
\(253\) −9.97839 + 17.6456i −0.627336 + 1.10937i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.91807 0.948139i 0.182024 0.0591433i −0.216587 0.976263i \(-0.569492\pi\)
0.398611 + 0.917120i \(0.369492\pi\)
\(258\) 0 0
\(259\) 5.68962 4.13375i 0.353536 0.256859i
\(260\) 0 0
\(261\) 7.84031 24.1300i 0.485303 1.49361i
\(262\) 0 0
\(263\) 20.4278i 1.25963i −0.776744 0.629816i \(-0.783130\pi\)
0.776744 0.629816i \(-0.216870\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.000739930 0 0.000240418i −4.52830e−5 0 1.47133e-5i
\(268\) 0 0
\(269\) 6.56147 4.76718i 0.400060 0.290660i −0.369506 0.929228i \(-0.620473\pi\)
0.769565 + 0.638568i \(0.220473\pi\)
\(270\) 0 0
\(271\) 3.17624 + 9.77547i 0.192943 + 0.593818i 0.999994 + 0.00333647i \(0.00106203\pi\)
−0.807051 + 0.590481i \(0.798938\pi\)
\(272\) 0 0
\(273\) 0.124671 0.171595i 0.00754544 0.0103854i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9.81209 + 13.5052i −0.589551 + 0.811447i −0.994702 0.102802i \(-0.967219\pi\)
0.405151 + 0.914250i \(0.367219\pi\)
\(278\) 0 0
\(279\) −4.93937 15.2018i −0.295713 0.910110i
\(280\) 0 0
\(281\) −16.6701 + 12.1115i −0.994455 + 0.722514i −0.960892 0.276923i \(-0.910685\pi\)
−0.0335629 + 0.999437i \(0.510685\pi\)
\(282\) 0 0
\(283\) 27.9991 + 9.09747i 1.66437 + 0.540788i 0.981782 0.190011i \(-0.0608523\pi\)
0.682593 + 0.730799i \(0.260852\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.70743i 0.573011i
\(288\) 0 0
\(289\) −0.452393 + 1.39232i −0.0266113 + 0.0819012i
\(290\) 0 0
\(291\) −2.35501 + 1.71102i −0.138053 + 0.100301i
\(292\) 0 0
\(293\) 6.93732 2.25407i 0.405283 0.131684i −0.0992797 0.995060i \(-0.531654\pi\)
0.504562 + 0.863375i \(0.331654\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −0.358348 3.13919i −0.0207935 0.182154i
\(298\) 0 0
\(299\) −3.23149 2.34782i −0.186882 0.135778i
\(300\) 0 0
\(301\) −6.37208 19.6113i −0.367281 1.13037i
\(302\) 0 0
\(303\) −0.248819 0.342470i −0.0142943 0.0196744i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.71978i 0.155226i 0.996984 + 0.0776130i \(0.0247299\pi\)
−0.996984 + 0.0776130i \(0.975270\pi\)
\(308\) 0 0
\(309\) 2.62459 0.149308
\(310\) 0 0
\(311\) −4.70857 + 14.4915i −0.266999 + 0.821738i 0.724227 + 0.689561i \(0.242197\pi\)
−0.991226 + 0.132177i \(0.957803\pi\)
\(312\) 0 0
\(313\) −17.0233 23.4305i −0.962213 1.32437i −0.945884 0.324506i \(-0.894802\pi\)
−0.0163292 0.999867i \(-0.505198\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.57667 + 4.92286i −0.200886 + 0.276496i −0.897560 0.440892i \(-0.854662\pi\)
0.696674 + 0.717387i \(0.254662\pi\)
\(318\) 0 0
\(319\) −5.63403 + 27.7226i −0.315445 + 1.55217i
\(320\) 0 0
\(321\) 1.58678 + 1.15286i 0.0885654 + 0.0643465i
\(322\) 0 0
\(323\) 12.1561 3.94975i 0.676383 0.219770i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.32483 + 0.430465i 0.0732635 + 0.0238047i
\(328\) 0 0
\(329\) −14.8689 −0.819750
\(330\) 0 0
\(331\) 18.0542 0.992349 0.496175 0.868223i \(-0.334738\pi\)
0.496175 + 0.868223i \(0.334738\pi\)
\(332\) 0 0
\(333\) 9.77441 + 3.17590i 0.535634 + 0.174038i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −9.95528 + 3.23467i −0.542299 + 0.176204i −0.567341 0.823483i \(-0.692028\pi\)
0.0250425 + 0.999686i \(0.492028\pi\)
\(338\) 0 0
\(339\) 0.213083 + 0.154814i 0.0115731 + 0.00840834i
\(340\) 0 0
\(341\) 7.39422 + 16.2159i 0.400420 + 0.878141i
\(342\) 0 0
\(343\) 11.7929 16.2316i 0.636759 0.876424i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.1918 23.6624i −0.922902 1.27027i −0.962565 0.271052i \(-0.912628\pi\)
0.0396629 0.999213i \(-0.487372\pi\)
\(348\) 0 0
\(349\) −8.23527 + 25.3455i −0.440824 + 1.35672i 0.446176 + 0.894945i \(0.352786\pi\)
−0.886999 + 0.461770i \(0.847214\pi\)
\(350\) 0 0
\(351\) 0.622569 0.0332303
\(352\) 0 0
\(353\) 0.908792i 0.0483701i −0.999707 0.0241851i \(-0.992301\pi\)
0.999707 0.0241851i \(-0.00769909\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.819735 1.12827i −0.0433850 0.0597143i
\(358\) 0 0
\(359\) −10.3305 31.7939i −0.545221 1.67802i −0.720464 0.693493i \(-0.756071\pi\)
0.175243 0.984525i \(-0.443929\pi\)
\(360\) 0 0
\(361\) 8.21306 + 5.96714i 0.432266 + 0.314060i
\(362\) 0 0
\(363\) 0.395287 + 1.70883i 0.0207472 + 0.0896903i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.86120 2.87918i 0.462551 0.150292i −0.0684653 0.997653i \(-0.521810\pi\)
0.531016 + 0.847362i \(0.321810\pi\)
\(368\) 0 0
\(369\) −11.4768 + 8.33837i −0.597457 + 0.434078i
\(370\) 0 0
\(371\) 6.99445 21.5267i 0.363134 1.11761i
\(372\) 0 0
\(373\) 0.730613i 0.0378297i 0.999821 + 0.0189148i \(0.00602114\pi\)
−0.999821 + 0.0189148i \(0.993979\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.30136 1.72252i −0.273034 0.0887141i
\(378\) 0 0
\(379\) 24.5280 17.8206i 1.25992 0.915385i 0.261165 0.965294i \(-0.415893\pi\)
0.998754 + 0.0499093i \(0.0158932\pi\)
\(380\) 0 0
\(381\) 0.135668 + 0.417542i 0.00695046 + 0.0213913i
\(382\) 0 0
\(383\) −15.2208 + 20.9497i −0.777749 + 1.07048i 0.217778 + 0.975998i \(0.430119\pi\)
−0.995527 + 0.0944808i \(0.969881\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 17.7123 24.3789i 0.900369 1.23925i
\(388\) 0 0
\(389\) −1.72430 5.30686i −0.0874256 0.269068i 0.897780 0.440444i \(-0.145179\pi\)
−0.985206 + 0.171375i \(0.945179\pi\)
\(390\) 0 0
\(391\) −21.2476 + 15.4373i −1.07454 + 0.780698i
\(392\) 0 0
\(393\) −0.433344 0.140802i −0.0218593 0.00710252i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 31.4006i 1.57595i 0.615708 + 0.787974i \(0.288870\pi\)
−0.615708 + 0.787974i \(0.711130\pi\)
\(398\) 0 0
\(399\) −0.298332 + 0.918171i −0.0149353 + 0.0459660i
\(400\) 0 0
\(401\) −15.0194 + 10.9122i −0.750034 + 0.544932i −0.895837 0.444382i \(-0.853423\pi\)
0.145803 + 0.989314i \(0.453423\pi\)
\(402\) 0 0
\(403\) −3.33984 + 1.08518i −0.166369 + 0.0540567i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.2297 2.28219i −0.556634 0.113124i
\(408\) 0 0
\(409\) 5.05892 + 3.67552i 0.250147 + 0.181743i 0.705792 0.708419i \(-0.250591\pi\)
−0.455645 + 0.890162i \(0.650591\pi\)
\(410\) 0 0
\(411\) −0.495812 1.52595i −0.0244566 0.0752697i
\(412\) 0 0
\(413\) 6.60366 + 9.08915i 0.324945 + 0.447248i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.0612491i 0.00299938i
\(418\) 0 0
\(419\) −25.4340 −1.24253 −0.621266 0.783599i \(-0.713382\pi\)
−0.621266 + 0.783599i \(0.713382\pi\)
\(420\) 0 0
\(421\) 6.09077 18.7455i 0.296846 0.913598i −0.685749 0.727838i \(-0.740525\pi\)
0.982595 0.185760i \(-0.0594747\pi\)
\(422\) 0 0
\(423\) −12.7719 17.5790i −0.620992 0.854722i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −11.4931 + 15.8188i −0.556188 + 0.765527i
\(428\) 0 0
\(429\) −0.343372 + 0.0391970i −0.0165782 + 0.00189245i
\(430\) 0 0
\(431\) −13.1828 9.57788i −0.634994 0.461350i 0.223133 0.974788i \(-0.428372\pi\)
−0.858127 + 0.513438i \(0.828372\pi\)
\(432\) 0 0
\(433\) −22.5682 + 7.33287i −1.08456 + 0.352395i −0.796142 0.605110i \(-0.793129\pi\)
−0.288418 + 0.957505i \(0.593129\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.2911 + 5.61821i 0.827144 + 0.268755i
\(438\) 0 0
\(439\) 14.3276 0.683818 0.341909 0.939733i \(-0.388927\pi\)
0.341909 + 0.939733i \(0.388927\pi\)
\(440\) 0 0
\(441\) 8.49783 0.404658
\(442\) 0 0
\(443\) 7.15093 + 2.32348i 0.339751 + 0.110392i 0.473923 0.880566i \(-0.342838\pi\)
−0.134172 + 0.990958i \(0.542838\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −1.25993 + 0.409377i −0.0595927 + 0.0193629i
\(448\) 0 0
\(449\) 21.8022 + 15.8402i 1.02891 + 0.747546i 0.968090 0.250603i \(-0.0806290\pi\)
0.0608183 + 0.998149i \(0.480629\pi\)
\(450\) 0 0
\(451\) 11.6595 10.6885i 0.549023 0.503304i
\(452\) 0 0
\(453\) 0.501373 0.690081i 0.0235566 0.0324228i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.96323 9.58406i −0.325726 0.448323i 0.614479 0.788933i \(-0.289366\pi\)
−0.940205 + 0.340610i \(0.889366\pi\)
\(458\) 0 0
\(459\) 1.26496 3.89315i 0.0590433 0.181717i
\(460\) 0 0
\(461\) 40.9558 1.90750 0.953751 0.300599i \(-0.0971866\pi\)
0.953751 + 0.300599i \(0.0971866\pi\)
\(462\) 0 0
\(463\) 37.2115i 1.72937i 0.502317 + 0.864684i \(0.332481\pi\)
−0.502317 + 0.864684i \(0.667519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.89926 + 9.49602i 0.319260 + 0.439424i 0.938241 0.345982i \(-0.112454\pi\)
−0.618981 + 0.785406i \(0.712454\pi\)
\(468\) 0 0
\(469\) 3.52846 + 10.8595i 0.162929 + 0.501445i
\(470\) 0 0
\(471\) −0.969486 0.704373i −0.0446715 0.0324558i
\(472\) 0 0
\(473\) −16.5387 + 29.2468i −0.760452 + 1.34477i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 31.4583 10.2214i 1.44038 0.468007i
\(478\) 0 0
\(479\) 20.7572 15.0810i 0.948421 0.689068i −0.00201220 0.999998i \(-0.500641\pi\)
0.950433 + 0.310930i \(0.100641\pi\)
\(480\) 0 0
\(481\) 0.697744 2.14744i 0.0318144 0.0979147i
\(482\) 0 0
\(483\) 1.98373i 0.0902628i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7.90636 2.56893i −0.358272 0.116409i 0.124350 0.992238i \(-0.460315\pi\)
−0.482622 + 0.875829i \(0.660315\pi\)
\(488\) 0 0
\(489\) 0.392239 0.284978i 0.0177376 0.0128871i
\(490\) 0 0
\(491\) 7.45825 + 22.9541i 0.336586 + 1.03591i 0.965935 + 0.258783i \(0.0833215\pi\)
−0.629349 + 0.777123i \(0.716678\pi\)
\(492\) 0 0
\(493\) −21.5430 + 29.6515i −0.970250 + 1.33543i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.0654322 0.0900597i 0.00293504 0.00403973i
\(498\) 0 0
\(499\) 9.92681 + 30.5516i 0.444385 + 1.36768i 0.883157 + 0.469078i \(0.155414\pi\)
−0.438772 + 0.898599i \(0.644586\pi\)
\(500\) 0 0
\(501\) 1.77849 1.29215i 0.0794572 0.0577290i
\(502\) 0 0
\(503\) 36.2233 + 11.7697i 1.61512 + 0.524783i 0.970782 0.239962i \(-0.0771350\pi\)
0.644333 + 0.764745i \(0.277135\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.00476i 0.0890343i
\(508\) 0 0
\(509\) 12.9730 39.9268i 0.575019 1.76973i −0.0610967 0.998132i \(-0.519460\pi\)
0.636115 0.771594i \(-0.280540\pi\)
\(510\) 0 0
\(511\) 11.7536 8.53951i 0.519950 0.377766i
\(512\) 0 0
\(513\) −2.69503 + 0.875668i −0.118988 + 0.0386617i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.3717 + 17.8589i 0.720027 + 0.785432i
\(518\) 0 0
\(519\) 1.78010 + 1.29332i 0.0781376 + 0.0567703i
\(520\) 0 0
\(521\) −8.98355 27.6485i −0.393577 1.21130i −0.930065 0.367396i \(-0.880249\pi\)
0.536488 0.843908i \(-0.319751\pi\)
\(522\) 0 0
\(523\) 7.38957 + 10.1709i 0.323123 + 0.444741i 0.939418 0.342775i \(-0.111367\pi\)
−0.616294 + 0.787516i \(0.711367\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 23.0902i 1.00582i
\(528\) 0 0
\(529\) −14.3577 −0.624250
\(530\) 0 0
\(531\) −5.07348 + 15.6146i −0.220170 + 0.677615i
\(532\) 0 0
\(533\) 1.83194 + 2.52145i 0.0793501 + 0.109216i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.468613 + 0.644990i −0.0202221 + 0.0278334i
\(538\) 0 0
\(539\) −9.41386 + 1.07462i −0.405484 + 0.0462873i
\(540\) 0 0
\(541\) 16.1438 + 11.7292i 0.694076 + 0.504276i 0.877998 0.478665i \(-0.158879\pi\)
−0.183921 + 0.982941i \(0.558879\pi\)
\(542\) 0 0
\(543\) −3.40700 + 1.10700i −0.146208 + 0.0475060i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 24.6590 + 8.01221i 1.05434 + 0.342577i 0.784372 0.620291i \(-0.212985\pi\)
0.269972 + 0.962868i \(0.412985\pi\)
\(548\) 0 0
\(549\) −28.5743 −1.21952
\(550\) 0 0
\(551\) 25.3718 1.08087
\(552\) 0 0
\(553\) −5.67345 1.84342i −0.241260 0.0783901i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.38143 + 2.39837i −0.312761 + 0.101622i −0.461192 0.887301i \(-0.652578\pi\)
0.148430 + 0.988923i \(0.452578\pi\)
\(558\) 0 0
\(559\) −5.35605 3.89140i −0.226537 0.164589i
\(560\) 0 0
\(561\) −0.452565 + 2.22687i −0.0191073 + 0.0940187i
\(562\) 0 0
\(563\) −5.58253 + 7.68369i −0.235275 + 0.323829i −0.910287 0.413979i \(-0.864139\pi\)
0.675011 + 0.737808i \(0.264139\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −10.4948 14.4449i −0.440742 0.606629i
\(568\) 0 0
\(569\) −3.69665 + 11.3771i −0.154972 + 0.476954i −0.998158 0.0606674i \(-0.980677\pi\)
0.843186 + 0.537622i \(0.180677\pi\)
\(570\) 0 0
\(571\) −18.0419 −0.755028 −0.377514 0.926004i \(-0.623221\pi\)
−0.377514 + 0.926004i \(0.623221\pi\)
\(572\) 0 0
\(573\) 1.14939i 0.0480166i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −23.6493 32.5505i −0.984533 1.35509i −0.934351 0.356354i \(-0.884020\pi\)
−0.0501822 0.998740i \(-0.515980\pi\)
\(578\) 0 0
\(579\) −1.04241 3.20822i −0.0433212 0.133329i
\(580\) 0 0
\(581\) 20.3342 + 14.7737i 0.843605 + 0.612915i
\(582\) 0 0
\(583\) −33.5569 + 15.3014i −1.38978 + 0.633721i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −29.9577 + 9.73384i −1.23649 + 0.401759i −0.853060 0.521813i \(-0.825256\pi\)
−0.383426 + 0.923572i \(0.625256\pi\)
\(588\) 0 0
\(589\) 12.9314 9.39525i 0.532831 0.387124i
\(590\) 0 0
\(591\) 1.01487 3.12346i 0.0417463 0.128482i
\(592\) 0 0
\(593\) 15.9481i 0.654909i −0.944867 0.327454i \(-0.893809\pi\)
0.944867 0.327454i \(-0.106191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.72517 + 0.560543i 0.0706067 + 0.0229415i
\(598\) 0 0
\(599\) −35.3013 + 25.6479i −1.44237 + 1.04794i −0.454832 + 0.890577i \(0.650301\pi\)
−0.987540 + 0.157367i \(0.949699\pi\)
\(600\) 0 0
\(601\) 0.147257 + 0.453211i 0.00600675 + 0.0184869i 0.954015 0.299759i \(-0.0969063\pi\)
−0.948008 + 0.318246i \(0.896906\pi\)
\(602\) 0 0
\(603\) −9.80799 + 13.4995i −0.399412 + 0.549744i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −19.1994 + 26.4257i −0.779280 + 1.07259i 0.216081 + 0.976375i \(0.430673\pi\)
−0.995361 + 0.0962116i \(0.969327\pi\)
\(608\) 0 0
\(609\) −0.855461 2.63284i −0.0346650 0.106688i
\(610\) 0 0
\(611\) −3.86211 + 2.80599i −0.156244 + 0.113518i
\(612\) 0 0
\(613\) 46.3965 + 15.0751i 1.87394 + 0.608879i 0.989960 + 0.141344i \(0.0451425\pi\)
0.883975 + 0.467534i \(0.154858\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.77343i 0.312947i −0.987682 0.156473i \(-0.949987\pi\)
0.987682 0.156473i \(-0.0500125\pi\)
\(618\) 0 0
\(619\) −12.6221 + 38.8470i −0.507327 + 1.56139i 0.289497 + 0.957179i \(0.406512\pi\)
−0.796823 + 0.604212i \(0.793488\pi\)
\(620\) 0 0
\(621\) 4.71064 3.42248i 0.189032 0.137340i
\(622\) 0 0
\(623\) 0.00944566 0.00306908i 0.000378432 0.000122960i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.43129 0.652647i 0.0571601 0.0260642i
\(628\) 0 0
\(629\) −12.0110 8.72650i −0.478910 0.347949i
\(630\) 0 0
\(631\) 2.54159 + 7.82221i 0.101179 + 0.311397i 0.988815 0.149149i \(-0.0476535\pi\)
−0.887636 + 0.460546i \(0.847654\pi\)
\(632\) 0 0
\(633\) −2.63632 3.62859i −0.104784 0.144223i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.86697i 0.0739721i
\(638\) 0 0
\(639\) 0.162679 0.00643547
\(640\) 0 0
\(641\) −10.3204 + 31.7630i −0.407632 + 1.25456i 0.511046 + 0.859553i \(0.329258\pi\)
−0.918678 + 0.395008i \(0.870742\pi\)
\(642\) 0 0
\(643\) 1.07023 + 1.47304i 0.0422057 + 0.0580912i 0.829598 0.558361i \(-0.188569\pi\)
−0.787393 + 0.616452i \(0.788569\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.84479 10.7974i 0.308410 0.424491i −0.626474 0.779442i \(-0.715503\pi\)
0.934885 + 0.354952i \(0.115503\pi\)
\(648\) 0 0
\(649\) 3.64579 17.9394i 0.143110 0.704181i
\(650\) 0 0
\(651\) −1.41096 1.02512i −0.0552998 0.0401777i
\(652\) 0 0
\(653\) 21.4893 6.98228i 0.840940 0.273238i 0.143293 0.989680i \(-0.454231\pi\)
0.697646 + 0.716442i \(0.254231\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 20.1920 + 6.56077i 0.787764 + 0.255960i
\(658\) 0 0
\(659\) 16.9078 0.658636 0.329318 0.944219i \(-0.393181\pi\)
0.329318 + 0.944219i \(0.393181\pi\)
\(660\) 0 0
\(661\) 49.7772 1.93611 0.968055 0.250740i \(-0.0806738\pi\)
0.968055 + 0.250740i \(0.0806738\pi\)
\(662\) 0 0
\(663\) −0.425843 0.138365i −0.0165384 0.00537364i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −49.5818 + 16.1101i −1.91982 + 0.623786i
\(668\) 0 0
\(669\) −2.53045 1.83848i −0.0978327 0.0710796i
\(670\) 0 0
\(671\) 31.6545 3.61346i 1.22201 0.139496i
\(672\) 0 0
\(673\) 15.2075 20.9313i 0.586206 0.806843i −0.408153 0.912914i \(-0.633827\pi\)
0.994359 + 0.106071i \(0.0338269\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.0060 + 23.4068i 0.653595 + 0.899597i 0.999248 0.0387658i \(-0.0123426\pi\)
−0.345653 + 0.938362i \(0.612343\pi\)
\(678\) 0 0
\(679\) 11.4831 35.3413i 0.440681 1.35628i
\(680\) 0 0
\(681\) 2.57026 0.0984926
\(682\) 0 0
\(683\) 11.9698i 0.458011i −0.973425 0.229005i \(-0.926453\pi\)
0.973425 0.229005i \(-0.0735473\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0.362616 + 0.499098i 0.0138347 + 0.0190418i
\(688\) 0 0
\(689\) −2.24565 6.91140i −0.0855524 0.263303i
\(690\) 0 0
\(691\) 23.7872 + 17.2824i 0.904909 + 0.657455i 0.939722 0.341939i \(-0.111084\pi\)
−0.0348130 + 0.999394i \(0.511084\pi\)
\(692\) 0 0
\(693\) 13.5698 + 14.8025i 0.515474 + 0.562299i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 19.4897 6.33260i 0.738227 0.239864i
\(698\) 0 0
\(699\) 3.66815 2.66506i 0.138742 0.100802i
\(700\) 0 0
\(701\) 8.42772 25.9379i 0.318311 0.979659i −0.656060 0.754709i \(-0.727778\pi\)
0.974370 0.224950i \(-0.0722219\pi\)
\(702\) 0 0
\(703\) 10.2774i 0.387620i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.13941 + 1.66990i 0.193287 + 0.0628029i
\(708\) 0 0
\(709\) −6.16553 + 4.47952i −0.231552 + 0.168232i −0.697511 0.716574i \(-0.745709\pi\)
0.465960 + 0.884806i \(0.345709\pi\)
\(710\) 0 0
\(711\) −2.69390 8.29098i −0.101029 0.310936i
\(712\) 0 0
\(713\) −19.3052 + 26.5713i −0.722984 + 0.995102i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.156897 0.215950i 0.00585943 0.00806481i
\(718\) 0 0
\(719\) 6.58192 + 20.2571i 0.245464 + 0.755461i 0.995560 + 0.0941314i \(0.0300074\pi\)
−0.750096 + 0.661329i \(0.769993\pi\)
\(720\) 0 0
\(721\) −27.1057 + 19.6935i −1.00947 + 0.733423i
\(722\) 0 0
\(723\) −3.25548 1.05777i −0.121073 0.0393389i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6.19488i 0.229755i 0.993380 + 0.114878i \(0.0366476\pi\)
−0.993380 + 0.114878i \(0.963352\pi\)
\(728\) 0 0
\(729\) 7.92220 24.3820i 0.293415 0.903037i
\(730\) 0 0
\(731\) −35.2170 + 25.5866i −1.30255 + 0.946356i
\(732\) 0 0
\(733\) −9.70179 + 3.15230i −0.358344 + 0.116433i −0.482656 0.875810i \(-0.660328\pi\)
0.124312 + 0.992243i \(0.460328\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.15813 16.1950i 0.337344 0.596552i
\(738\) 0 0
\(739\) −3.50898 2.54942i −0.129080 0.0937819i 0.521372 0.853329i \(-0.325420\pi\)
−0.650452 + 0.759548i \(0.725420\pi\)
\(740\) 0 0
\(741\) 0.0957828 + 0.294789i 0.00351867 + 0.0108294i
\(742\) 0 0
\(743\) −4.41812 6.08102i −0.162085 0.223091i 0.720248 0.693717i \(-0.244028\pi\)
−0.882333 + 0.470626i \(0.844028\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 36.7306i 1.34390i
\(748\) 0 0
\(749\) −25.0381 −0.914871
\(750\) 0 0
\(751\) 12.5726 38.6946i 0.458782 1.41199i −0.407855 0.913047i \(-0.633723\pi\)
0.866637 0.498939i \(-0.166277\pi\)
\(752\) 0 0
\(753\) 1.67937 + 2.31145i 0.0611995 + 0.0842339i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −15.3986 + 21.1944i −0.559672 + 0.770323i −0.991285 0.131736i \(-0.957945\pi\)
0.431613 + 0.902059i \(0.357945\pi\)
\(758\) 0 0
\(759\) −2.38263 + 2.18422i −0.0864841 + 0.0792823i
\(760\) 0 0
\(761\) −28.4182 20.6470i −1.03016 0.748453i −0.0618172 0.998087i \(-0.519690\pi\)
−0.968340 + 0.249634i \(0.919690\pi\)
\(762\) 0 0
\(763\) −16.9123 + 5.49514i −0.612267 + 0.198938i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.43052 + 1.11464i 0.123869 + 0.0402475i
\(768\) 0 0
\(769\) 29.6963 1.07088 0.535439 0.844574i \(-0.320146\pi\)
0.535439 + 0.844574i \(0.320146\pi\)
\(770\) 0 0
\(771\) 0.489232 0.0176193
\(772\) 0 0
\(773\) 14.7162 + 4.78158i 0.529305 + 0.171981i 0.561464 0.827501i \(-0.310238\pi\)
−0.0321592 + 0.999483i \(0.510238\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.06649 0.346524i 0.0382602 0.0124315i
\(778\) 0 0
\(779\) −11.4768 8.33837i −0.411198 0.298753i
\(780\) 0 0
\(781\) −0.180215 + 0.0205721i −0.00644860 + 0.000736128i
\(782\) 0 0
\(783\) 4.77614 6.57379i 0.170685 0.234928i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −13.6720 18.8179i −0.487353 0.670784i 0.492544 0.870288i \(-0.336067\pi\)
−0.979897 + 0.199503i \(0.936067\pi\)
\(788\) 0 0
\(789\) 1.00654 3.09780i 0.0358336 0.110285i
\(790\) 0 0
\(791\) −3.36228 −0.119549
\(792\) 0 0
\(793\) 6.27776i 0.222930i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.08758 + 1.49693i 0.0385242 + 0.0530240i 0.827845 0.560958i \(-0.189567\pi\)
−0.789320 + 0.613982i \(0.789567\pi\)
\(798\) 0 0
\(799\) 9.69968 + 29.8525i 0.343150 + 1.05611i
\(800\) 0 0
\(801\) 0.0117420 + 0.00853106i 0.000414883 + 0.000301430i
\(802\) 0 0
\(803\) −23.1983 4.71455i −0.818649 0.166373i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.22991 0.399623i 0.0432950 0.0140674i
\(808\) 0 0
\(809\) 27.4388 19.9354i 0.964696 0.700893i 0.0104597 0.999945i \(-0.496671\pi\)
0.954237 + 0.299052i \(0.0966705\pi\)
\(810\) 0 0
\(811\) 17.3581 53.4228i 0.609526 1.87593i 0.147503 0.989062i \(-0.452876\pi\)
0.462024 0.886868i \(-0.347124\pi\)
\(812\) 0 0
\(813\) 1.63892i 0.0574793i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 28.6592 + 9.31193i 1.00266 + 0.325783i
\(818\) 0 0
\(819\) −3.20114 + 2.32576i −0.111857 + 0.0812688i
\(820\) 0 0
\(821\) 3.61846 + 11.1365i 0.126285 + 0.388666i 0.994133 0.108164i \(-0.0344972\pi\)
−0.867848 + 0.496830i \(0.834497\pi\)
\(822\) 0 0
\(823\) −8.50793 + 11.7102i −0.296568 + 0.408191i −0.931134 0.364678i \(-0.881179\pi\)
0.634566 + 0.772869i \(0.281179\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.3693 37.6707i 0.951725 1.30994i 0.000968458 1.00000i \(-0.499692\pi\)
0.950757 0.309938i \(-0.100308\pi\)
\(828\) 0 0
\(829\) −2.05309 6.31876i −0.0713068 0.219460i 0.909052 0.416683i \(-0.136808\pi\)
−0.980359 + 0.197223i \(0.936808\pi\)
\(830\) 0 0
\(831\) −2.15340 + 1.56454i −0.0747008 + 0.0542733i
\(832\) 0 0
\(833\) −11.6749 3.79339i −0.404510 0.131433i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 5.11914i 0.176943i
\(838\) 0 0
\(839\) −0.276899 + 0.852208i −0.00955962 + 0.0294215i −0.955723 0.294269i \(-0.904924\pi\)
0.946163 + 0.323691i \(0.104924\pi\)
\(840\) 0 0
\(841\) −35.3970 + 25.7174i −1.22059 + 0.886808i
\(842\) 0 0
\(843\) −3.12473 + 1.01529i −0.107621 + 0.0349683i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −16.9045 14.6821i −0.580844 0.504483i
\(848\) 0 0
\(849\) 3.79770 + 2.75919i 0.130337 + 0.0946952i
\(850\) 0 0
\(851\) −6.52577 20.0843i −0.223700 0.688479i
\(852\) 0 0
\(853\) −18.3274 25.2255i −0.627519 0.863706i 0.370354 0.928891i \(-0.379236\pi\)
−0.997873 + 0.0651850i \(0.979236\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45.0004i 1.53718i −0.639740 0.768592i \(-0.720958\pi\)
0.639740 0.768592i \(-0.279042\pi\)
\(858\) 0 0
\(859\) 31.3959 1.07122 0.535608 0.844467i \(-0.320083\pi\)
0.535608 + 0.844467i \(0.320083\pi\)
\(860\) 0 0
\(861\) −0.478312 + 1.47209i −0.0163008 + 0.0501688i
\(862\) 0 0
\(863\) −25.6652 35.3252i −0.873654 1.20248i −0.978138 0.207956i \(-0.933319\pi\)
0.104484 0.994527i \(-0.466681\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −0.137207 + 0.188850i −0.00465980 + 0.00641367i
\(868\) 0 0
\(869\) 4.03276 + 8.84405i 0.136802 + 0.300014i
\(870\) 0 0
\(871\) 2.96585 + 2.15482i 0.100494 + 0.0730131i
\(872\) 0 0
\(873\) 51.6465 16.7810i 1.74797 0.567950i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −24.7944 8.05620i −0.837248 0.272038i −0.141153 0.989988i \(-0.545081\pi\)
−0.696095 + 0.717949i \(0.745081\pi\)
\(878\) 0 0
\(879\) 1.16308 0.0392298
\(880\) 0 0
\(881\) −25.3513 −0.854106 −0.427053 0.904227i \(-0.640448\pi\)
−0.427053 + 0.904227i \(0.640448\pi\)
\(882\) 0 0
\(883\) 3.32728 + 1.08110i 0.111972 + 0.0363819i 0.364467 0.931216i \(-0.381251\pi\)
−0.252495 + 0.967598i \(0.581251\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 35.1849 11.4323i 1.18139 0.383858i 0.348510 0.937305i \(-0.386688\pi\)
0.832885 + 0.553447i \(0.186688\pi\)
\(888\) 0 0
\(889\) −4.53412 3.29423i −0.152070 0.110485i
\(890\) 0 0
\(891\) −5.79406 + 28.5101i −0.194108 + 0.955123i
\(892\) 0 0
\(893\) 12.7719 17.5790i 0.427396 0.588260i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −0.374360 0.515262i −0.0124995 0.0172041i
\(898\) 0 0
\(899\) −14.1636 + 43.5910i −0.472382 + 1.45384i
\(900\) 0 0
\(901\) −47.7823 −1.59186
\(902\) 0 0
\(903\) 3.28794i 0.109416i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.96077 + 2.69877i 0.0651063 + 0.0896111i 0.840328 0.542078i \(-0.182362\pi\)
−0.775222 + 0.631689i \(0.782362\pi\)
\(908\) 0 0
\(909\) 2.44032 + 7.51054i 0.0809404 + 0.249109i
\(910\) 0 0
\(911\) −22.5772 16.4033i −0.748017 0.543466i 0.147194 0.989108i \(-0.452976\pi\)
−0.895212 + 0.445641i \(0.852976\pi\)
\(912\) 0 0
\(913\) −4.64489 40.6900i −0.153723 1.34664i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.53190 1.79742i 0.182679 0.0593562i
\(918\) 0 0
\(919\) −39.9573 + 29.0307i −1.31807 + 0.957635i −0.318117 + 0.948051i \(0.603051\pi\)
−0.999954 + 0.00958329i \(0.996949\pi\)
\(920\) 0 0
\(921\) −0.134011 + 0.412444i −0.00441582 + 0.0135905i
\(922\) 0 0
\(923\) 0.0357405i 0.00117641i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −46.5659 15.1302i −1.52943 0.496940i
\(928\) 0 0
\(929\) 16.9604 12.3224i 0.556451 0.404286i −0.273707 0.961813i \(-0.588250\pi\)
0.830159 + 0.557527i \(0.188250\pi\)
\(930\) 0 0
\(931\) 2.62597 + 8.08191i 0.0860628 + 0.264874i
\(932\) 0 0
\(933\) −1.42807 + 1.96558i −0.0467531 + 0.0643501i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3.31452 4.56205i 0.108281 0.149036i −0.751437 0.659804i \(-0.770639\pi\)
0.859718 + 0.510769i \(0.170639\pi\)
\(938\) 0 0
\(939\) −1.42703 4.39194i −0.0465693 0.143325i
\(940\) 0 0
\(941\) 8.84980 6.42976i 0.288495 0.209604i −0.434119 0.900856i \(-0.642940\pi\)
0.722614 + 0.691251i \(0.242940\pi\)
\(942\) 0 0
\(943\) 27.7226 + 9.00762i 0.902772 + 0.293328i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.5884i 0.669032i −0.942390 0.334516i \(-0.891427\pi\)
0.942390 0.334516i \(-0.108573\pi\)
\(948\) 0 0
\(949\) 1.44140 4.43618i 0.0467899 0.144004i
\(950\) 0 0
\(951\) −0.784952 + 0.570301i −0.0254538 + 0.0184933i
\(952\) 0 0
\(953\) −1.40029 + 0.454983i −0.0453600 + 0.0147384i −0.331609 0.943417i \(-0.607592\pi\)
0.286249 + 0.958155i \(0.407592\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −2.22035 + 3.92642i −0.0717737 + 0.126923i
\(958\) 0 0
\(959\) 16.5704 + 12.0391i 0.535087 + 0.388764i
\(960\) 0 0
\(961\) −0.656515 2.02055i −0.0211779 0.0651789i
\(962\) 0 0
\(963\) −21.5069 29.6017i −0.693050 0.953901i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 5.72960i 0.184252i 0.995747 + 0.0921258i \(0.0293662\pi\)
−0.995747 + 0.0921258i \(0.970634\pi\)
\(968\) 0 0
\(969\) 2.03804 0.0654713
\(970\) 0 0
\(971\) 4.37523 13.4656i 0.140408 0.432131i −0.855984 0.517002i \(-0.827048\pi\)
0.996392 + 0.0848714i \(0.0270479\pi\)
\(972\) 0 0
\(973\) 0.459579 + 0.632556i 0.0147334 + 0.0202788i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.270689 0.372572i 0.00866012 0.0119196i −0.804665 0.593729i \(-0.797655\pi\)
0.813325 + 0.581809i \(0.197655\pi\)
\(978\) 0 0
\(979\) −0.0140866 0.00796580i −0.000450208 0.000254588i
\(980\) 0 0
\(981\) −21.0239 15.2747i −0.671240 0.487685i
\(982\) 0 0
\(983\) 12.5134 4.06585i 0.399115 0.129680i −0.102580 0.994725i \(-0.532710\pi\)
0.501696 + 0.865044i \(0.332710\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2.25481 0.732634i −0.0717715 0.0233200i
\(988\) 0 0
\(989\) −61.9188 −1.96890
\(990\) 0 0
\(991\) −37.4029 −1.18814 −0.594072 0.804412i \(-0.702480\pi\)
−0.594072 + 0.804412i \(0.702480\pi\)
\(992\) 0 0
\(993\) 2.73785 + 0.889582i 0.0868831 + 0.0282300i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 7.73384 2.51288i 0.244933 0.0795836i −0.183978 0.982930i \(-0.558897\pi\)
0.428911 + 0.903347i \(0.358897\pi\)
\(998\) 0 0
\(999\) 2.66286 + 1.93468i 0.0842493 + 0.0612107i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.2.cb.b.1049.3 16
5.2 odd 4 1100.2.n.b.301.2 8
5.3 odd 4 220.2.m.b.81.1 8
5.4 even 2 inner 1100.2.cb.b.1049.2 16
11.3 even 5 inner 1100.2.cb.b.949.2 16
15.8 even 4 1980.2.z.d.1621.2 8
20.3 even 4 880.2.bo.c.81.2 8
55.3 odd 20 220.2.m.b.201.1 yes 8
55.14 even 10 inner 1100.2.cb.b.949.3 16
55.28 even 20 2420.2.a.l.1.2 4
55.38 odd 20 2420.2.a.k.1.2 4
55.47 odd 20 1100.2.n.b.201.2 8
165.113 even 20 1980.2.z.d.1081.2 8
220.3 even 20 880.2.bo.c.641.2 8
220.83 odd 20 9680.2.a.co.1.3 4
220.203 even 20 9680.2.a.cp.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.m.b.81.1 8 5.3 odd 4
220.2.m.b.201.1 yes 8 55.3 odd 20
880.2.bo.c.81.2 8 20.3 even 4
880.2.bo.c.641.2 8 220.3 even 20
1100.2.n.b.201.2 8 55.47 odd 20
1100.2.n.b.301.2 8 5.2 odd 4
1100.2.cb.b.949.2 16 11.3 even 5 inner
1100.2.cb.b.949.3 16 55.14 even 10 inner
1100.2.cb.b.1049.2 16 5.4 even 2 inner
1100.2.cb.b.1049.3 16 1.1 even 1 trivial
1980.2.z.d.1081.2 8 165.113 even 20
1980.2.z.d.1621.2 8 15.8 even 4
2420.2.a.k.1.2 4 55.38 odd 20
2420.2.a.l.1.2 4 55.28 even 20
9680.2.a.co.1.3 4 220.83 odd 20
9680.2.a.cp.1.3 4 220.203 even 20