Properties

Label 880.2.bo.c.641.2
Level $880$
Weight $2$
Character 880.641
Analytic conductor $7.027$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(81,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 641.2
Root \(-0.628998 - 0.456994i\) of defining polynomial
Character \(\chi\) \(=\) 880.641
Dual form 880.2.bo.c.81.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0492728 + 0.151646i) q^{3} +(-0.809017 - 0.587785i) q^{5} +(-0.628998 + 1.93586i) q^{7} +(2.40648 - 1.74841i) q^{9} +(-2.88699 + 1.63256i) q^{11} +(-0.528704 + 0.384126i) q^{13} +(0.0492728 - 0.151646i) q^{15} +(3.47632 + 2.52570i) q^{17} +(0.919194 + 2.82899i) q^{19} -0.324558 q^{21} +6.11210 q^{23} +(0.309017 + 0.951057i) q^{25} +(0.770708 + 0.559952i) q^{27} +(-2.63577 + 8.11208i) q^{29} +(-4.34733 + 3.15852i) q^{31} +(-0.389823 - 0.357361i) q^{33} +(1.64674 - 1.19643i) q^{35} +(1.06768 - 3.28598i) q^{37} +(-0.0843020 - 0.0612490i) q^{39} +(1.47374 + 4.53569i) q^{41} +10.1305 q^{43} -2.97458 q^{45} +(-2.25733 - 6.94734i) q^{47} +(2.31122 + 1.67920i) q^{49} +(-0.211724 + 0.651620i) q^{51} +(-8.99626 + 6.53617i) q^{53} +(3.29522 + 0.376160i) q^{55} +(-0.383714 + 0.278785i) q^{57} +(-1.70562 + 5.24935i) q^{59} +(7.77155 + 5.64636i) q^{61} +(1.87100 + 5.75835i) q^{63} +0.653514 q^{65} +5.60966 q^{67} +(0.301160 + 0.926876i) q^{69} +(0.0442449 + 0.0321458i) q^{71} +(-2.20562 + 6.78819i) q^{73} +(-0.128998 + 0.0937225i) q^{75} +(-1.34450 - 6.61569i) q^{77} +(2.37100 - 1.72263i) q^{79} +(2.71064 - 8.34250i) q^{81} +(-9.98988 - 7.25807i) q^{83} +(-1.32784 - 4.08666i) q^{85} -1.36004 q^{87} +0.00487932 q^{89} +(-0.411059 - 1.26511i) q^{91} +(-0.693182 - 0.503626i) q^{93} +(0.919194 - 2.82899i) q^{95} +(14.7696 - 10.7307i) q^{97} +(-4.09311 + 8.97639i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 5 q^{3} - 2 q^{5} + q^{7} + 3 q^{9} - 5 q^{11} + 4 q^{13} - 5 q^{15} + 9 q^{17} + 7 q^{19} - 28 q^{21} + 10 q^{23} - 2 q^{25} + 10 q^{27} - q^{29} - 22 q^{31} + q^{33} - 4 q^{35} + 4 q^{37} - 27 q^{39}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0492728 + 0.151646i 0.0284477 + 0.0875530i 0.964272 0.264913i \(-0.0853432\pi\)
−0.935825 + 0.352466i \(0.885343\pi\)
\(4\) 0 0
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) −0.628998 + 1.93586i −0.237739 + 0.731685i 0.759007 + 0.651082i \(0.225685\pi\)
−0.996746 + 0.0806031i \(0.974315\pi\)
\(8\) 0 0
\(9\) 2.40648 1.74841i 0.802161 0.582804i
\(10\) 0 0
\(11\) −2.88699 + 1.63256i −0.870461 + 0.492237i
\(12\) 0 0
\(13\) −0.528704 + 0.384126i −0.146636 + 0.106537i −0.658685 0.752419i \(-0.728887\pi\)
0.512048 + 0.858957i \(0.328887\pi\)
\(14\) 0 0
\(15\) 0.0492728 0.151646i 0.0127222 0.0391549i
\(16\) 0 0
\(17\) 3.47632 + 2.52570i 0.843132 + 0.612572i 0.923244 0.384214i \(-0.125528\pi\)
−0.0801115 + 0.996786i \(0.525528\pi\)
\(18\) 0 0
\(19\) 0.919194 + 2.82899i 0.210878 + 0.649015i 0.999421 + 0.0340351i \(0.0108358\pi\)
−0.788543 + 0.614980i \(0.789164\pi\)
\(20\) 0 0
\(21\) −0.324558 −0.0708243
\(22\) 0 0
\(23\) 6.11210 1.27446 0.637230 0.770673i \(-0.280080\pi\)
0.637230 + 0.770673i \(0.280080\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 0.770708 + 0.559952i 0.148323 + 0.107763i
\(28\) 0 0
\(29\) −2.63577 + 8.11208i −0.489451 + 1.50638i 0.335978 + 0.941870i \(0.390933\pi\)
−0.825429 + 0.564505i \(0.809067\pi\)
\(30\) 0 0
\(31\) −4.34733 + 3.15852i −0.780803 + 0.567286i −0.905220 0.424944i \(-0.860294\pi\)
0.124417 + 0.992230i \(0.460294\pi\)
\(32\) 0 0
\(33\) −0.389823 0.357361i −0.0678594 0.0622085i
\(34\) 0 0
\(35\) 1.64674 1.19643i 0.278350 0.202233i
\(36\) 0 0
\(37\) 1.06768 3.28598i 0.175526 0.540212i −0.824131 0.566399i \(-0.808336\pi\)
0.999657 + 0.0261862i \(0.00833629\pi\)
\(38\) 0 0
\(39\) −0.0843020 0.0612490i −0.0134991 0.00980769i
\(40\) 0 0
\(41\) 1.47374 + 4.53569i 0.230159 + 0.708356i 0.997727 + 0.0673885i \(0.0214667\pi\)
−0.767568 + 0.640968i \(0.778533\pi\)
\(42\) 0 0
\(43\) 10.1305 1.54489 0.772446 0.635081i \(-0.219033\pi\)
0.772446 + 0.635081i \(0.219033\pi\)
\(44\) 0 0
\(45\) −2.97458 −0.443424
\(46\) 0 0
\(47\) −2.25733 6.94734i −0.329265 1.01337i −0.969478 0.245177i \(-0.921154\pi\)
0.640213 0.768197i \(-0.278846\pi\)
\(48\) 0 0
\(49\) 2.31122 + 1.67920i 0.330174 + 0.239885i
\(50\) 0 0
\(51\) −0.211724 + 0.651620i −0.0296473 + 0.0912450i
\(52\) 0 0
\(53\) −8.99626 + 6.53617i −1.23573 + 0.897812i −0.997306 0.0733491i \(-0.976631\pi\)
−0.238425 + 0.971161i \(0.576631\pi\)
\(54\) 0 0
\(55\) 3.29522 + 0.376160i 0.444328 + 0.0507214i
\(56\) 0 0
\(57\) −0.383714 + 0.278785i −0.0508242 + 0.0369259i
\(58\) 0 0
\(59\) −1.70562 + 5.24935i −0.222052 + 0.683407i 0.776525 + 0.630086i \(0.216980\pi\)
−0.998577 + 0.0533204i \(0.983020\pi\)
\(60\) 0 0
\(61\) 7.77155 + 5.64636i 0.995045 + 0.722942i 0.961020 0.276479i \(-0.0891675\pi\)
0.0340247 + 0.999421i \(0.489168\pi\)
\(62\) 0 0
\(63\) 1.87100 + 5.75835i 0.235724 + 0.725484i
\(64\) 0 0
\(65\) 0.653514 0.0810585
\(66\) 0 0
\(67\) 5.60966 0.685329 0.342664 0.939458i \(-0.388671\pi\)
0.342664 + 0.939458i \(0.388671\pi\)
\(68\) 0 0
\(69\) 0.301160 + 0.926876i 0.0362555 + 0.111583i
\(70\) 0 0
\(71\) 0.0442449 + 0.0321458i 0.00525091 + 0.00381501i 0.590408 0.807105i \(-0.298967\pi\)
−0.585157 + 0.810920i \(0.698967\pi\)
\(72\) 0 0
\(73\) −2.20562 + 6.78819i −0.258148 + 0.794497i 0.735045 + 0.678018i \(0.237161\pi\)
−0.993193 + 0.116479i \(0.962839\pi\)
\(74\) 0 0
\(75\) −0.128998 + 0.0937225i −0.0148954 + 0.0108221i
\(76\) 0 0
\(77\) −1.34450 6.61569i −0.153220 0.753927i
\(78\) 0 0
\(79\) 2.37100 1.72263i 0.266759 0.193811i −0.446363 0.894852i \(-0.647281\pi\)
0.713121 + 0.701041i \(0.247281\pi\)
\(80\) 0 0
\(81\) 2.71064 8.34250i 0.301183 0.926945i
\(82\) 0 0
\(83\) −9.98988 7.25807i −1.09653 0.796677i −0.116041 0.993244i \(-0.537020\pi\)
−0.980490 + 0.196568i \(0.937020\pi\)
\(84\) 0 0
\(85\) −1.32784 4.08666i −0.144024 0.443261i
\(86\) 0 0
\(87\) −1.36004 −0.145811
\(88\) 0 0
\(89\) 0.00487932 0.000517207 0.000258603 1.00000i \(-0.499918\pi\)
0.000258603 1.00000i \(0.499918\pi\)
\(90\) 0 0
\(91\) −0.411059 1.26511i −0.0430907 0.132620i
\(92\) 0 0
\(93\) −0.693182 0.503626i −0.0718797 0.0522236i
\(94\) 0 0
\(95\) 0.919194 2.82899i 0.0943074 0.290248i
\(96\) 0 0
\(97\) 14.7696 10.7307i 1.49962 1.08954i 0.529090 0.848566i \(-0.322533\pi\)
0.970532 0.240973i \(-0.0774665\pi\)
\(98\) 0 0
\(99\) −4.09311 + 8.97639i −0.411373 + 0.902161i
\(100\) 0 0
\(101\) −2.14782 + 1.56048i −0.213716 + 0.155274i −0.689493 0.724292i \(-0.742167\pi\)
0.475777 + 0.879566i \(0.342167\pi\)
\(102\) 0 0
\(103\) −5.08650 + 15.6546i −0.501188 + 1.54250i 0.305898 + 0.952064i \(0.401043\pi\)
−0.807086 + 0.590433i \(0.798957\pi\)
\(104\) 0 0
\(105\) 0.262573 + 0.190770i 0.0256245 + 0.0186173i
\(106\) 0 0
\(107\) −3.80116 11.6988i −0.367472 1.13096i −0.948419 0.317021i \(-0.897317\pi\)
0.580946 0.813942i \(-0.302683\pi\)
\(108\) 0 0
\(109\) −8.73635 −0.836790 −0.418395 0.908265i \(-0.637407\pi\)
−0.418395 + 0.908265i \(0.637407\pi\)
\(110\) 0 0
\(111\) 0.550915 0.0522905
\(112\) 0 0
\(113\) −0.510445 1.57099i −0.0480186 0.147786i 0.924172 0.381976i \(-0.124756\pi\)
−0.972191 + 0.234190i \(0.924756\pi\)
\(114\) 0 0
\(115\) −4.94479 3.59260i −0.461104 0.335012i
\(116\) 0 0
\(117\) −0.600707 + 1.84878i −0.0555353 + 0.170920i
\(118\) 0 0
\(119\) −7.07599 + 5.14101i −0.648655 + 0.471275i
\(120\) 0 0
\(121\) 5.66947 9.42641i 0.515406 0.856946i
\(122\) 0 0
\(123\) −0.615205 + 0.446973i −0.0554712 + 0.0403022i
\(124\) 0 0
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) −2.22754 1.61841i −0.197663 0.143610i 0.484552 0.874763i \(-0.338983\pi\)
−0.682214 + 0.731152i \(0.738983\pi\)
\(128\) 0 0
\(129\) 0.499160 + 1.53626i 0.0439486 + 0.135260i
\(130\) 0 0
\(131\) 2.85760 0.249670 0.124835 0.992178i \(-0.460160\pi\)
0.124835 + 0.992178i \(0.460160\pi\)
\(132\) 0 0
\(133\) −6.05469 −0.525008
\(134\) 0 0
\(135\) −0.294384 0.906022i −0.0253366 0.0779779i
\(136\) 0 0
\(137\) −8.14080 5.91464i −0.695516 0.505322i 0.182953 0.983122i \(-0.441434\pi\)
−0.878469 + 0.477800i \(0.841434\pi\)
\(138\) 0 0
\(139\) −0.118702 + 0.365326i −0.0100682 + 0.0309866i −0.955964 0.293483i \(-0.905186\pi\)
0.945896 + 0.324469i \(0.105186\pi\)
\(140\) 0 0
\(141\) 0.942313 0.684631i 0.0793571 0.0576563i
\(142\) 0 0
\(143\) 0.899255 1.97211i 0.0751995 0.164916i
\(144\) 0 0
\(145\) 6.90055 5.01354i 0.573059 0.416352i
\(146\) 0 0
\(147\) −0.140764 + 0.433226i −0.0116100 + 0.0357319i
\(148\) 0 0
\(149\) 6.72161 + 4.88353i 0.550656 + 0.400075i 0.828027 0.560688i \(-0.189463\pi\)
−0.277372 + 0.960763i \(0.589463\pi\)
\(150\) 0 0
\(151\) −1.65310 5.08772i −0.134527 0.414033i 0.860989 0.508624i \(-0.169846\pi\)
−0.995516 + 0.0945910i \(0.969846\pi\)
\(152\) 0 0
\(153\) 12.7817 1.03334
\(154\) 0 0
\(155\) 5.37359 0.431617
\(156\) 0 0
\(157\) −2.32242 7.14768i −0.185349 0.570447i 0.814605 0.580016i \(-0.196954\pi\)
−0.999954 + 0.00956968i \(0.996954\pi\)
\(158\) 0 0
\(159\) −1.43446 1.04219i −0.113760 0.0826513i
\(160\) 0 0
\(161\) −3.84450 + 11.8321i −0.302989 + 0.932504i
\(162\) 0 0
\(163\) −2.45994 + 1.78725i −0.192678 + 0.139988i −0.679942 0.733266i \(-0.737995\pi\)
0.487264 + 0.873255i \(0.337995\pi\)
\(164\) 0 0
\(165\) 0.105322 + 0.518243i 0.00819929 + 0.0403451i
\(166\) 0 0
\(167\) 11.1539 8.10379i 0.863115 0.627090i −0.0656157 0.997845i \(-0.520901\pi\)
0.928731 + 0.370755i \(0.120901\pi\)
\(168\) 0 0
\(169\) −3.88525 + 11.9576i −0.298865 + 0.919812i
\(170\) 0 0
\(171\) 7.15826 + 5.20078i 0.547406 + 0.397714i
\(172\) 0 0
\(173\) −4.26425 13.1240i −0.324205 0.997801i −0.971798 0.235814i \(-0.924224\pi\)
0.647593 0.761986i \(-0.275776\pi\)
\(174\) 0 0
\(175\) −2.03548 −0.153868
\(176\) 0 0
\(177\) −0.880084 −0.0661512
\(178\) 0 0
\(179\) −1.54508 4.75528i −0.115485 0.355427i 0.876563 0.481287i \(-0.159831\pi\)
−0.992048 + 0.125861i \(0.959831\pi\)
\(180\) 0 0
\(181\) −18.1760 13.2056i −1.35101 0.981567i −0.998960 0.0455868i \(-0.985484\pi\)
−0.352051 0.935981i \(-0.614516\pi\)
\(182\) 0 0
\(183\) −0.473323 + 1.45674i −0.0349890 + 0.107685i
\(184\) 0 0
\(185\) −2.79522 + 2.03085i −0.205509 + 0.149311i
\(186\) 0 0
\(187\) −14.1595 1.61635i −1.03544 0.118199i
\(188\) 0 0
\(189\) −1.56876 + 1.13977i −0.114111 + 0.0829062i
\(190\) 0 0
\(191\) 2.22754 6.85567i 0.161179 0.496059i −0.837555 0.546353i \(-0.816016\pi\)
0.998734 + 0.0502937i \(0.0160157\pi\)
\(192\) 0 0
\(193\) 17.1155 + 12.4352i 1.23200 + 0.895102i 0.997039 0.0769019i \(-0.0245028\pi\)
0.234964 + 0.972004i \(0.424503\pi\)
\(194\) 0 0
\(195\) 0.0322005 + 0.0991029i 0.00230593 + 0.00709691i
\(196\) 0 0
\(197\) −20.5970 −1.46748 −0.733738 0.679432i \(-0.762226\pi\)
−0.733738 + 0.679432i \(0.762226\pi\)
\(198\) 0 0
\(199\) 11.3763 0.806445 0.403223 0.915102i \(-0.367890\pi\)
0.403223 + 0.915102i \(0.367890\pi\)
\(200\) 0 0
\(201\) 0.276404 + 0.850683i 0.0194960 + 0.0600026i
\(202\) 0 0
\(203\) −14.0459 10.2050i −0.985831 0.716248i
\(204\) 0 0
\(205\) 1.47374 4.53569i 0.102930 0.316786i
\(206\) 0 0
\(207\) 14.7087 10.6865i 1.02232 0.742761i
\(208\) 0 0
\(209\) −7.27222 6.66663i −0.503030 0.461141i
\(210\) 0 0
\(211\) 22.7568 16.5338i 1.56665 1.13823i 0.636364 0.771389i \(-0.280437\pi\)
0.930282 0.366846i \(-0.119563\pi\)
\(212\) 0 0
\(213\) −0.00269472 + 0.00829349i −0.000184639 + 0.000568261i
\(214\) 0 0
\(215\) −8.19577 5.95458i −0.558947 0.406099i
\(216\) 0 0
\(217\) −3.37998 10.4025i −0.229448 0.706168i
\(218\) 0 0
\(219\) −1.13808 −0.0769043
\(220\) 0 0
\(221\) −2.80813 −0.188895
\(222\) 0 0
\(223\) −6.06173 18.6561i −0.405923 1.24930i −0.920122 0.391633i \(-0.871910\pi\)
0.514198 0.857671i \(-0.328090\pi\)
\(224\) 0 0
\(225\) 2.40648 + 1.74841i 0.160432 + 0.116561i
\(226\) 0 0
\(227\) 4.98120 15.3306i 0.330614 1.01753i −0.638228 0.769847i \(-0.720332\pi\)
0.968842 0.247678i \(-0.0796676\pi\)
\(228\) 0 0
\(229\) −3.13012 + 2.27416i −0.206844 + 0.150281i −0.686385 0.727239i \(-0.740803\pi\)
0.479541 + 0.877520i \(0.340803\pi\)
\(230\) 0 0
\(231\) 0.936997 0.529862i 0.0616498 0.0348623i
\(232\) 0 0
\(233\) 23.0050 16.7141i 1.50711 1.09498i 0.539664 0.841881i \(-0.318551\pi\)
0.967441 0.253095i \(-0.0814486\pi\)
\(234\) 0 0
\(235\) −2.25733 + 6.94734i −0.147252 + 0.453195i
\(236\) 0 0
\(237\) 0.378057 + 0.274674i 0.0245574 + 0.0178420i
\(238\) 0 0
\(239\) 0.517313 + 1.59212i 0.0334622 + 0.102986i 0.966393 0.257071i \(-0.0827573\pi\)
−0.932930 + 0.360057i \(0.882757\pi\)
\(240\) 0 0
\(241\) −21.4676 −1.38285 −0.691425 0.722448i \(-0.743017\pi\)
−0.691425 + 0.722448i \(0.743017\pi\)
\(242\) 0 0
\(243\) 4.25661 0.273062
\(244\) 0 0
\(245\) −0.882806 2.71700i −0.0564004 0.173583i
\(246\) 0 0
\(247\) −1.57267 1.14261i −0.100067 0.0727026i
\(248\) 0 0
\(249\) 0.608429 1.87255i 0.0385576 0.118668i
\(250\) 0 0
\(251\) −14.4964 + 10.5322i −0.915003 + 0.664789i −0.942275 0.334839i \(-0.891318\pi\)
0.0272722 + 0.999628i \(0.491318\pi\)
\(252\) 0 0
\(253\) −17.6456 + 9.97839i −1.10937 + 0.627336i
\(254\) 0 0
\(255\) 0.554301 0.402723i 0.0347117 0.0252195i
\(256\) 0 0
\(257\) −0.948139 + 2.91807i −0.0591433 + 0.182024i −0.976263 0.216587i \(-0.930508\pi\)
0.917120 + 0.398611i \(0.130508\pi\)
\(258\) 0 0
\(259\) 5.68962 + 4.13375i 0.353536 + 0.256859i
\(260\) 0 0
\(261\) 7.84031 + 24.1300i 0.485303 + 1.49361i
\(262\) 0 0
\(263\) −20.4278 −1.25963 −0.629816 0.776744i \(-0.716870\pi\)
−0.629816 + 0.776744i \(0.716870\pi\)
\(264\) 0 0
\(265\) 11.1200 0.683096
\(266\) 0 0
\(267\) 0.000240418 0 0.000739930i 1.47133e−5 0 4.52830e-5i
\(268\) 0 0
\(269\) −6.56147 4.76718i −0.400060 0.290660i 0.369506 0.929228i \(-0.379527\pi\)
−0.769565 + 0.638568i \(0.779527\pi\)
\(270\) 0 0
\(271\) −3.17624 + 9.77547i −0.192943 + 0.593818i 0.807051 + 0.590481i \(0.201062\pi\)
−0.999994 + 0.00333647i \(0.998938\pi\)
\(272\) 0 0
\(273\) 0.171595 0.124671i 0.0103854 0.00754544i
\(274\) 0 0
\(275\) −2.44479 2.24120i −0.147426 0.135150i
\(276\) 0 0
\(277\) 13.5052 9.81209i 0.811447 0.589551i −0.102802 0.994702i \(-0.532781\pi\)
0.914250 + 0.405151i \(0.132781\pi\)
\(278\) 0 0
\(279\) −4.93937 + 15.2018i −0.295713 + 0.910110i
\(280\) 0 0
\(281\) −16.6701 12.1115i −0.994455 0.722514i −0.0335629 0.999437i \(-0.510685\pi\)
−0.960892 + 0.276923i \(0.910685\pi\)
\(282\) 0 0
\(283\) 9.09747 + 27.9991i 0.540788 + 1.66437i 0.730799 + 0.682593i \(0.239148\pi\)
−0.190011 + 0.981782i \(0.560852\pi\)
\(284\) 0 0
\(285\) 0.474297 0.0280949
\(286\) 0 0
\(287\) −9.70743 −0.573011
\(288\) 0 0
\(289\) 0.452393 + 1.39232i 0.0266113 + 0.0819012i
\(290\) 0 0
\(291\) 2.35501 + 1.71102i 0.138053 + 0.100301i
\(292\) 0 0
\(293\) 2.25407 6.93732i 0.131684 0.405283i −0.863375 0.504562i \(-0.831654\pi\)
0.995060 + 0.0992797i \(0.0316539\pi\)
\(294\) 0 0
\(295\) 4.46536 3.24427i 0.259983 0.188889i
\(296\) 0 0
\(297\) −3.13919 0.358348i −0.182154 0.0207935i
\(298\) 0 0
\(299\) −3.23149 + 2.34782i −0.186882 + 0.135778i
\(300\) 0 0
\(301\) −6.37208 + 19.6113i −0.367281 + 1.13037i
\(302\) 0 0
\(303\) −0.342470 0.248819i −0.0196744 0.0142943i
\(304\) 0 0
\(305\) −2.96847 9.13600i −0.169974 0.523126i
\(306\) 0 0
\(307\) −2.71978 −0.155226 −0.0776130 0.996984i \(-0.524730\pi\)
−0.0776130 + 0.996984i \(0.524730\pi\)
\(308\) 0 0
\(309\) −2.62459 −0.149308
\(310\) 0 0
\(311\) 4.70857 + 14.4915i 0.266999 + 0.821738i 0.991226 + 0.132177i \(0.0421966\pi\)
−0.724227 + 0.689561i \(0.757803\pi\)
\(312\) 0 0
\(313\) 23.4305 + 17.0233i 1.32437 + 0.962213i 0.999867 + 0.0163292i \(0.00519799\pi\)
0.324506 + 0.945884i \(0.394802\pi\)
\(314\) 0 0
\(315\) 1.87100 5.75835i 0.105419 0.324446i
\(316\) 0 0
\(317\) 4.92286 3.57667i 0.276496 0.200886i −0.440892 0.897560i \(-0.645338\pi\)
0.717387 + 0.696674i \(0.245338\pi\)
\(318\) 0 0
\(319\) −5.63403 27.7226i −0.315445 1.55217i
\(320\) 0 0
\(321\) 1.58678 1.15286i 0.0885654 0.0643465i
\(322\) 0 0
\(323\) −3.94975 + 12.1561i −0.219770 + 0.676383i
\(324\) 0 0
\(325\) −0.528704 0.384126i −0.0293272 0.0213075i
\(326\) 0 0
\(327\) −0.430465 1.32483i −0.0238047 0.0732635i
\(328\) 0 0
\(329\) 14.8689 0.819750
\(330\) 0 0
\(331\) −18.0542 −0.992349 −0.496175 0.868223i \(-0.665262\pi\)
−0.496175 + 0.868223i \(0.665262\pi\)
\(332\) 0 0
\(333\) −3.17590 9.77441i −0.174038 0.535634i
\(334\) 0 0
\(335\) −4.53831 3.29727i −0.247954 0.180149i
\(336\) 0 0
\(337\) 3.23467 9.95528i 0.176204 0.542299i −0.823483 0.567341i \(-0.807972\pi\)
0.999686 + 0.0250425i \(0.00797210\pi\)
\(338\) 0 0
\(339\) 0.213083 0.154814i 0.0115731 0.00840834i
\(340\) 0 0
\(341\) 7.39422 16.2159i 0.400420 0.878141i
\(342\) 0 0
\(343\) −16.2316 + 11.7929i −0.876424 + 0.636759i
\(344\) 0 0
\(345\) 0.301160 0.926876i 0.0162139 0.0499014i
\(346\) 0 0
\(347\) 23.6624 + 17.1918i 1.27027 + 0.922902i 0.999213 0.0396629i \(-0.0126284\pi\)
0.271052 + 0.962565i \(0.412628\pi\)
\(348\) 0 0
\(349\) 8.23527 + 25.3455i 0.440824 + 1.35672i 0.886999 + 0.461770i \(0.152786\pi\)
−0.446176 + 0.894945i \(0.647214\pi\)
\(350\) 0 0
\(351\) −0.622569 −0.0332303
\(352\) 0 0
\(353\) 0.908792 0.0483701 0.0241851 0.999707i \(-0.492301\pi\)
0.0241851 + 0.999707i \(0.492301\pi\)
\(354\) 0 0
\(355\) −0.0169001 0.0520130i −0.000896962 0.00276057i
\(356\) 0 0
\(357\) −1.12827 0.819735i −0.0597143 0.0433850i
\(358\) 0 0
\(359\) −10.3305 + 31.7939i −0.545221 + 1.67802i 0.175243 + 0.984525i \(0.443929\pi\)
−0.720464 + 0.693493i \(0.756071\pi\)
\(360\) 0 0
\(361\) 8.21306 5.96714i 0.432266 0.314060i
\(362\) 0 0
\(363\) 1.70883 + 0.395287i 0.0896903 + 0.0207472i
\(364\) 0 0
\(365\) 5.77438 4.19533i 0.302245 0.219594i
\(366\) 0 0
\(367\) 2.87918 8.86120i 0.150292 0.462551i −0.847362 0.531016i \(-0.821810\pi\)
0.997653 + 0.0684653i \(0.0218103\pi\)
\(368\) 0 0
\(369\) 11.4768 + 8.33837i 0.597457 + 0.434078i
\(370\) 0 0
\(371\) −6.99445 21.5267i −0.363134 1.11761i
\(372\) 0 0
\(373\) −0.730613 −0.0378297 −0.0189148 0.999821i \(-0.506021\pi\)
−0.0189148 + 0.999821i \(0.506021\pi\)
\(374\) 0 0
\(375\) 0.159450 0.00823398
\(376\) 0 0
\(377\) −1.72252 5.30136i −0.0887141 0.273034i
\(378\) 0 0
\(379\) 24.5280 + 17.8206i 1.25992 + 0.915385i 0.998754 0.0499093i \(-0.0158932\pi\)
0.261165 + 0.965294i \(0.415893\pi\)
\(380\) 0 0
\(381\) 0.135668 0.417542i 0.00695046 0.0213913i
\(382\) 0 0
\(383\) 20.9497 15.2208i 1.07048 0.777749i 0.0944808 0.995527i \(-0.469881\pi\)
0.975998 + 0.217778i \(0.0698809\pi\)
\(384\) 0 0
\(385\) −2.80088 + 6.14248i −0.142746 + 0.313050i
\(386\) 0 0
\(387\) 24.3789 17.7123i 1.23925 0.900369i
\(388\) 0 0
\(389\) 1.72430 5.30686i 0.0874256 0.269068i −0.897780 0.440444i \(-0.854821\pi\)
0.985206 + 0.171375i \(0.0548211\pi\)
\(390\) 0 0
\(391\) 21.2476 + 15.4373i 1.07454 + 0.780698i
\(392\) 0 0
\(393\) 0.140802 + 0.433344i 0.00710252 + 0.0218593i
\(394\) 0 0
\(395\) −2.93072 −0.147461
\(396\) 0 0
\(397\) 31.4006 1.57595 0.787974 0.615708i \(-0.211130\pi\)
0.787974 + 0.615708i \(0.211130\pi\)
\(398\) 0 0
\(399\) −0.298332 0.918171i −0.0149353 0.0459660i
\(400\) 0 0
\(401\) −15.0194 10.9122i −0.750034 0.544932i 0.145803 0.989314i \(-0.453423\pi\)
−0.895837 + 0.444382i \(0.853423\pi\)
\(402\) 0 0
\(403\) 1.08518 3.33984i 0.0540567 0.166369i
\(404\) 0 0
\(405\) −7.09656 + 5.15595i −0.352631 + 0.256201i
\(406\) 0 0
\(407\) 2.28219 + 11.2297i 0.113124 + 0.556634i
\(408\) 0 0
\(409\) −5.05892 + 3.67552i −0.250147 + 0.181743i −0.705792 0.708419i \(-0.749409\pi\)
0.455645 + 0.890162i \(0.349409\pi\)
\(410\) 0 0
\(411\) 0.495812 1.52595i 0.0244566 0.0752697i
\(412\) 0 0
\(413\) −9.08915 6.60366i −0.447248 0.324945i
\(414\) 0 0
\(415\) 3.81579 + 11.7438i 0.187310 + 0.576481i
\(416\) 0 0
\(417\) −0.0612491 −0.00299938
\(418\) 0 0
\(419\) −25.4340 −1.24253 −0.621266 0.783599i \(-0.713382\pi\)
−0.621266 + 0.783599i \(0.713382\pi\)
\(420\) 0 0
\(421\) 6.09077 + 18.7455i 0.296846 + 0.913598i 0.982595 + 0.185760i \(0.0594747\pi\)
−0.685749 + 0.727838i \(0.740525\pi\)
\(422\) 0 0
\(423\) −17.5790 12.7719i −0.854722 0.620992i
\(424\) 0 0
\(425\) −1.32784 + 4.08666i −0.0644096 + 0.198232i
\(426\) 0 0
\(427\) −15.8188 + 11.4931i −0.765527 + 0.556188i
\(428\) 0 0
\(429\) 0.343372 + 0.0391970i 0.0165782 + 0.00189245i
\(430\) 0 0
\(431\) 13.1828 9.57788i 0.634994 0.461350i −0.223133 0.974788i \(-0.571628\pi\)
0.858127 + 0.513438i \(0.171628\pi\)
\(432\) 0 0
\(433\) −7.33287 + 22.5682i −0.352395 + 1.08456i 0.605110 + 0.796142i \(0.293129\pi\)
−0.957505 + 0.288418i \(0.906871\pi\)
\(434\) 0 0
\(435\) 1.10029 + 0.799410i 0.0527551 + 0.0383288i
\(436\) 0 0
\(437\) 5.61821 + 17.2911i 0.268755 + 0.827144i
\(438\) 0 0
\(439\) 14.3276 0.683818 0.341909 0.939733i \(-0.388927\pi\)
0.341909 + 0.939733i \(0.388927\pi\)
\(440\) 0 0
\(441\) 8.49783 0.404658
\(442\) 0 0
\(443\) 2.32348 + 7.15093i 0.110392 + 0.339751i 0.990958 0.134172i \(-0.0428375\pi\)
−0.880566 + 0.473923i \(0.842838\pi\)
\(444\) 0 0
\(445\) −0.00394745 0.00286799i −0.000187127 0.000135956i
\(446\) 0 0
\(447\) −0.409377 + 1.25993i −0.0193629 + 0.0595927i
\(448\) 0 0
\(449\) −21.8022 + 15.8402i −1.02891 + 0.747546i −0.968090 0.250603i \(-0.919371\pi\)
−0.0608183 + 0.998149i \(0.519371\pi\)
\(450\) 0 0
\(451\) −11.6595 10.6885i −0.549023 0.503304i
\(452\) 0 0
\(453\) 0.690081 0.501373i 0.0324228 0.0235566i
\(454\) 0 0
\(455\) −0.411059 + 1.26511i −0.0192707 + 0.0593093i
\(456\) 0 0
\(457\) −9.58406 6.96323i −0.448323 0.325726i 0.340610 0.940205i \(-0.389366\pi\)
−0.788933 + 0.614479i \(0.789366\pi\)
\(458\) 0 0
\(459\) 1.26496 + 3.89315i 0.0590433 + 0.181717i
\(460\) 0 0
\(461\) 40.9558 1.90750 0.953751 0.300599i \(-0.0971866\pi\)
0.953751 + 0.300599i \(0.0971866\pi\)
\(462\) 0 0
\(463\) 37.2115 1.72937 0.864684 0.502317i \(-0.167519\pi\)
0.864684 + 0.502317i \(0.167519\pi\)
\(464\) 0 0
\(465\) 0.264772 + 0.814885i 0.0122785 + 0.0377894i
\(466\) 0 0
\(467\) −9.49602 6.89926i −0.439424 0.319260i 0.345982 0.938241i \(-0.387546\pi\)
−0.785406 + 0.618981i \(0.787546\pi\)
\(468\) 0 0
\(469\) −3.52846 + 10.8595i −0.162929 + 0.501445i
\(470\) 0 0
\(471\) 0.969486 0.704373i 0.0446715 0.0324558i
\(472\) 0 0
\(473\) −29.2468 + 16.5387i −1.34477 + 0.760452i
\(474\) 0 0
\(475\) −2.40648 + 1.74841i −0.110417 + 0.0802226i
\(476\) 0 0
\(477\) −10.2214 + 31.4583i −0.468007 + 1.44038i
\(478\) 0 0
\(479\) 20.7572 + 15.0810i 0.948421 + 0.689068i 0.950433 0.310930i \(-0.100641\pi\)
−0.00201220 + 0.999998i \(0.500641\pi\)
\(480\) 0 0
\(481\) 0.697744 + 2.14744i 0.0318144 + 0.0979147i
\(482\) 0 0
\(483\) −1.98373 −0.0902628
\(484\) 0 0
\(485\) −18.2562 −0.828970
\(486\) 0 0
\(487\) 2.56893 + 7.90636i 0.116409 + 0.358272i 0.992238 0.124350i \(-0.0396846\pi\)
−0.875829 + 0.482622i \(0.839685\pi\)
\(488\) 0 0
\(489\) −0.392239 0.284978i −0.0177376 0.0128871i
\(490\) 0 0
\(491\) −7.45825 + 22.9541i −0.336586 + 1.03591i 0.629349 + 0.777123i \(0.283322\pi\)
−0.965935 + 0.258783i \(0.916678\pi\)
\(492\) 0 0
\(493\) −29.6515 + 21.5430i −1.33543 + 0.970250i
\(494\) 0 0
\(495\) 8.58758 4.85619i 0.385983 0.218269i
\(496\) 0 0
\(497\) −0.0900597 + 0.0654322i −0.00403973 + 0.00293504i
\(498\) 0 0
\(499\) 9.92681 30.5516i 0.444385 1.36768i −0.438772 0.898599i \(-0.644586\pi\)
0.883157 0.469078i \(-0.155414\pi\)
\(500\) 0 0
\(501\) 1.77849 + 1.29215i 0.0794572 + 0.0577290i
\(502\) 0 0
\(503\) 11.7697 + 36.2233i 0.524783 + 1.61512i 0.764745 + 0.644333i \(0.222865\pi\)
−0.239962 + 0.970782i \(0.577135\pi\)
\(504\) 0 0
\(505\) 2.65485 0.118139
\(506\) 0 0
\(507\) −2.00476 −0.0890343
\(508\) 0 0
\(509\) −12.9730 39.9268i −0.575019 1.76973i −0.636115 0.771594i \(-0.719460\pi\)
0.0610967 0.998132i \(-0.480540\pi\)
\(510\) 0 0
\(511\) −11.7536 8.53951i −0.519950 0.377766i
\(512\) 0 0
\(513\) −0.875668 + 2.69503i −0.0386617 + 0.118988i
\(514\) 0 0
\(515\) 13.3166 9.67510i 0.586801 0.426336i
\(516\) 0 0
\(517\) 17.8589 + 16.3717i 0.785432 + 0.720027i
\(518\) 0 0
\(519\) 1.78010 1.29332i 0.0781376 0.0567703i
\(520\) 0 0
\(521\) −8.98355 + 27.6485i −0.393577 + 1.21130i 0.536488 + 0.843908i \(0.319751\pi\)
−0.930065 + 0.367396i \(0.880249\pi\)
\(522\) 0 0
\(523\) 10.1709 + 7.38957i 0.444741 + 0.323123i 0.787516 0.616294i \(-0.211367\pi\)
−0.342775 + 0.939418i \(0.611367\pi\)
\(524\) 0 0
\(525\) −0.100294 0.308673i −0.00437718 0.0134716i
\(526\) 0 0
\(527\) −23.0902 −1.00582
\(528\) 0 0
\(529\) 14.3577 0.624250
\(530\) 0 0
\(531\) 5.07348 + 15.6146i 0.220170 + 0.677615i
\(532\) 0 0
\(533\) −2.52145 1.83194i −0.109216 0.0793501i
\(534\) 0 0
\(535\) −3.80116 + 11.6988i −0.164338 + 0.505782i
\(536\) 0 0
\(537\) 0.644990 0.468613i 0.0278334 0.0202221i
\(538\) 0 0
\(539\) −9.41386 1.07462i −0.405484 0.0462873i
\(540\) 0 0
\(541\) 16.1438 11.7292i 0.694076 0.504276i −0.183921 0.982941i \(-0.558879\pi\)
0.877998 + 0.478665i \(0.158879\pi\)
\(542\) 0 0
\(543\) 1.10700 3.40700i 0.0475060 0.146208i
\(544\) 0 0
\(545\) 7.06785 + 5.13510i 0.302754 + 0.219963i
\(546\) 0 0
\(547\) −8.01221 24.6590i −0.342577 1.05434i −0.962868 0.269972i \(-0.912985\pi\)
0.620291 0.784372i \(-0.287015\pi\)
\(548\) 0 0
\(549\) 28.5743 1.21952
\(550\) 0 0
\(551\) −25.3718 −1.08087
\(552\) 0 0
\(553\) 1.84342 + 5.67345i 0.0783901 + 0.241260i
\(554\) 0 0
\(555\) −0.445699 0.323819i −0.0189189 0.0137454i
\(556\) 0 0
\(557\) 2.39837 7.38143i 0.101622 0.312761i −0.887301 0.461192i \(-0.847422\pi\)
0.988923 + 0.148430i \(0.0474221\pi\)
\(558\) 0 0
\(559\) −5.35605 + 3.89140i −0.226537 + 0.164589i
\(560\) 0 0
\(561\) −0.452565 2.22687i −0.0191073 0.0940187i
\(562\) 0 0
\(563\) 7.68369 5.58253i 0.323829 0.235275i −0.413979 0.910287i \(-0.635861\pi\)
0.737808 + 0.675011i \(0.235861\pi\)
\(564\) 0 0
\(565\) −0.510445 + 1.57099i −0.0214746 + 0.0660919i
\(566\) 0 0
\(567\) 14.4449 + 10.4948i 0.606629 + 0.440742i
\(568\) 0 0
\(569\) 3.69665 + 11.3771i 0.154972 + 0.476954i 0.998158 0.0606674i \(-0.0193229\pi\)
−0.843186 + 0.537622i \(0.819323\pi\)
\(570\) 0 0
\(571\) 18.0419 0.755028 0.377514 0.926004i \(-0.376779\pi\)
0.377514 + 0.926004i \(0.376779\pi\)
\(572\) 0 0
\(573\) 1.14939 0.0480166
\(574\) 0 0
\(575\) 1.88874 + 5.81295i 0.0787660 + 0.242417i
\(576\) 0 0
\(577\) −32.5505 23.6493i −1.35509 0.984533i −0.998740 0.0501822i \(-0.984020\pi\)
−0.356354 0.934351i \(-0.615980\pi\)
\(578\) 0 0
\(579\) −1.04241 + 3.20822i −0.0433212 + 0.133329i
\(580\) 0 0
\(581\) 20.3342 14.7737i 0.843605 0.612915i
\(582\) 0 0
\(583\) 15.3014 33.5569i 0.633721 1.38978i
\(584\) 0 0
\(585\) 1.57267 1.14261i 0.0650219 0.0472412i
\(586\) 0 0
\(587\) −9.73384 + 29.9577i −0.401759 + 1.23649i 0.521813 + 0.853060i \(0.325256\pi\)
−0.923572 + 0.383426i \(0.874744\pi\)
\(588\) 0 0
\(589\) −12.9314 9.39525i −0.532831 0.387124i
\(590\) 0 0
\(591\) −1.01487 3.12346i −0.0417463 0.128482i
\(592\) 0 0
\(593\) 15.9481 0.654909 0.327454 0.944867i \(-0.393809\pi\)
0.327454 + 0.944867i \(0.393809\pi\)
\(594\) 0 0
\(595\) 8.74640 0.358568
\(596\) 0 0
\(597\) 0.560543 + 1.72517i 0.0229415 + 0.0706067i
\(598\) 0 0
\(599\) −35.3013 25.6479i −1.44237 1.04794i −0.987540 0.157367i \(-0.949699\pi\)
−0.454832 0.890577i \(-0.650301\pi\)
\(600\) 0 0
\(601\) 0.147257 0.453211i 0.00600675 0.0184869i −0.948008 0.318246i \(-0.896906\pi\)
0.954015 + 0.299759i \(0.0969063\pi\)
\(602\) 0 0
\(603\) 13.4995 9.80799i 0.549744 0.399412i
\(604\) 0 0
\(605\) −10.1274 + 4.29369i −0.411737 + 0.174563i
\(606\) 0 0
\(607\) −26.4257 + 19.1994i −1.07259 + 0.779280i −0.976375 0.216081i \(-0.930673\pi\)
−0.0962116 + 0.995361i \(0.530673\pi\)
\(608\) 0 0
\(609\) 0.855461 2.63284i 0.0346650 0.106688i
\(610\) 0 0
\(611\) 3.86211 + 2.80599i 0.156244 + 0.113518i
\(612\) 0 0
\(613\) −15.0751 46.3965i −0.608879 1.87394i −0.467534 0.883975i \(-0.654858\pi\)
−0.141344 0.989960i \(-0.545142\pi\)
\(614\) 0 0
\(615\) 0.760436 0.0306637
\(616\) 0 0
\(617\) −7.77343 −0.312947 −0.156473 0.987682i \(-0.550013\pi\)
−0.156473 + 0.987682i \(0.550013\pi\)
\(618\) 0 0
\(619\) −12.6221 38.8470i −0.507327 1.56139i −0.796823 0.604212i \(-0.793488\pi\)
0.289497 0.957179i \(-0.406512\pi\)
\(620\) 0 0
\(621\) 4.71064 + 3.42248i 0.189032 + 0.137340i
\(622\) 0 0
\(623\) −0.00306908 + 0.00944566i −0.000122960 + 0.000378432i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 0.652647 1.43129i 0.0260642 0.0571601i
\(628\) 0 0
\(629\) 12.0110 8.72650i 0.478910 0.347949i
\(630\) 0 0
\(631\) −2.54159 + 7.82221i −0.101179 + 0.311397i −0.988815 0.149149i \(-0.952346\pi\)
0.887636 + 0.460546i \(0.152346\pi\)
\(632\) 0 0
\(633\) 3.62859 + 2.63632i 0.144223 + 0.104784i
\(634\) 0 0
\(635\) 0.850846 + 2.61863i 0.0337648 + 0.103917i
\(636\) 0 0
\(637\) −1.86697 −0.0739721
\(638\) 0 0
\(639\) 0.162679 0.00643547
\(640\) 0 0
\(641\) −10.3204 31.7630i −0.407632 1.25456i −0.918678 0.395008i \(-0.870742\pi\)
0.511046 0.859553i \(-0.329258\pi\)
\(642\) 0 0
\(643\) 1.47304 + 1.07023i 0.0580912 + 0.0422057i 0.616452 0.787393i \(-0.288569\pi\)
−0.558361 + 0.829598i \(0.688569\pi\)
\(644\) 0 0
\(645\) 0.499160 1.53626i 0.0196544 0.0604900i
\(646\) 0 0
\(647\) 10.7974 7.84479i 0.424491 0.308410i −0.354952 0.934885i \(-0.615503\pi\)
0.779442 + 0.626474i \(0.215503\pi\)
\(648\) 0 0
\(649\) −3.64579 17.9394i −0.143110 0.704181i
\(650\) 0 0
\(651\) 1.41096 1.02512i 0.0552998 0.0401777i
\(652\) 0 0
\(653\) 6.98228 21.4893i 0.273238 0.840940i −0.716442 0.697646i \(-0.754231\pi\)
0.989680 0.143293i \(-0.0457693\pi\)
\(654\) 0 0
\(655\) −2.31185 1.67965i −0.0903313 0.0656295i
\(656\) 0 0
\(657\) 6.56077 + 20.1920i 0.255960 + 0.787764i
\(658\) 0 0
\(659\) 16.9078 0.658636 0.329318 0.944219i \(-0.393181\pi\)
0.329318 + 0.944219i \(0.393181\pi\)
\(660\) 0 0
\(661\) 49.7772 1.93611 0.968055 0.250740i \(-0.0806738\pi\)
0.968055 + 0.250740i \(0.0806738\pi\)
\(662\) 0 0
\(663\) −0.138365 0.425843i −0.00537364 0.0165384i
\(664\) 0 0
\(665\) 4.89835 + 3.55886i 0.189950 + 0.138007i
\(666\) 0 0
\(667\) −16.1101 + 49.5818i −0.623786 + 1.91982i
\(668\) 0 0
\(669\) 2.53045 1.83848i 0.0978327 0.0710796i
\(670\) 0 0
\(671\) −31.6545 3.61346i −1.22201 0.139496i
\(672\) 0 0
\(673\) 20.9313 15.2075i 0.806843 0.586206i −0.106071 0.994359i \(-0.533827\pi\)
0.912914 + 0.408153i \(0.133827\pi\)
\(674\) 0 0
\(675\) −0.294384 + 0.906022i −0.0113309 + 0.0348728i
\(676\) 0 0
\(677\) 23.4068 + 17.0060i 0.899597 + 0.653595i 0.938362 0.345653i \(-0.112343\pi\)
−0.0387658 + 0.999248i \(0.512343\pi\)
\(678\) 0 0
\(679\) 11.4831 + 35.3413i 0.440681 + 1.35628i
\(680\) 0 0
\(681\) 2.57026 0.0984926
\(682\) 0 0
\(683\) −11.9698 −0.458011 −0.229005 0.973425i \(-0.573547\pi\)
−0.229005 + 0.973425i \(0.573547\pi\)
\(684\) 0 0
\(685\) 3.10951 + 9.57009i 0.118808 + 0.365654i
\(686\) 0 0
\(687\) −0.499098 0.362616i −0.0190418 0.0138347i
\(688\) 0 0
\(689\) 2.24565 6.91140i 0.0855524 0.263303i
\(690\) 0 0
\(691\) −23.7872 + 17.2824i −0.904909 + 0.657455i −0.939722 0.341939i \(-0.888916\pi\)
0.0348130 + 0.999394i \(0.488916\pi\)
\(692\) 0 0
\(693\) −14.8025 13.5698i −0.562299 0.515474i
\(694\) 0 0
\(695\) 0.310765 0.225784i 0.0117880 0.00856448i
\(696\) 0 0
\(697\) −6.33260 + 19.4897i −0.239864 + 0.738227i
\(698\) 0 0
\(699\) 3.66815 + 2.66506i 0.138742 + 0.100802i
\(700\) 0 0
\(701\) 8.42772 + 25.9379i 0.318311 + 0.979659i 0.974370 + 0.224950i \(0.0722219\pi\)
−0.656060 + 0.754709i \(0.727778\pi\)
\(702\) 0 0
\(703\) 10.2774 0.387620
\(704\) 0 0
\(705\) −1.16476 −0.0438675
\(706\) 0 0
\(707\) −1.66990 5.13941i −0.0628029 0.193287i
\(708\) 0 0
\(709\) 6.16553 + 4.47952i 0.231552 + 0.168232i 0.697511 0.716574i \(-0.254291\pi\)
−0.465960 + 0.884806i \(0.654291\pi\)
\(710\) 0 0
\(711\) 2.69390 8.29098i 0.101029 0.310936i
\(712\) 0 0
\(713\) −26.5713 + 19.3052i −0.995102 + 0.722984i
\(714\) 0 0
\(715\) −1.88669 + 1.06690i −0.0705583 + 0.0398999i
\(716\) 0 0
\(717\) −0.215950 + 0.156897i −0.00806481 + 0.00585943i
\(718\) 0 0
\(719\) 6.58192 20.2571i 0.245464 0.755461i −0.750096 0.661329i \(-0.769993\pi\)
0.995560 0.0941314i \(-0.0300074\pi\)
\(720\) 0 0
\(721\) −27.1057 19.6935i −1.00947 0.733423i
\(722\) 0 0
\(723\) −1.05777 3.25548i −0.0393389 0.121073i
\(724\) 0 0
\(725\) −8.52954 −0.316779
\(726\) 0 0
\(727\) −6.19488 −0.229755 −0.114878 0.993380i \(-0.536648\pi\)
−0.114878 + 0.993380i \(0.536648\pi\)
\(728\) 0 0
\(729\) −7.92220 24.3820i −0.293415 0.903037i
\(730\) 0 0
\(731\) 35.2170 + 25.5866i 1.30255 + 0.946356i
\(732\) 0 0
\(733\) −3.15230 + 9.70179i −0.116433 + 0.358344i −0.992243 0.124312i \(-0.960328\pi\)
0.875810 + 0.482656i \(0.160328\pi\)
\(734\) 0 0
\(735\) 0.368524 0.267748i 0.0135932 0.00987605i
\(736\) 0 0
\(737\) −16.1950 + 9.15813i −0.596552 + 0.337344i
\(738\) 0 0
\(739\) −3.50898 + 2.54942i −0.129080 + 0.0937819i −0.650452 0.759548i \(-0.725420\pi\)
0.521372 + 0.853329i \(0.325420\pi\)
\(740\) 0 0
\(741\) 0.0957828 0.294789i 0.00351867 0.0108294i
\(742\) 0 0
\(743\) −6.08102 4.41812i −0.223091 0.162085i 0.470626 0.882333i \(-0.344028\pi\)
−0.693717 + 0.720248i \(0.744028\pi\)
\(744\) 0 0
\(745\) −2.56743 7.90172i −0.0940632 0.289497i
\(746\) 0 0
\(747\) −36.7306 −1.34390
\(748\) 0 0
\(749\) 25.0381 0.914871
\(750\) 0 0
\(751\) −12.5726 38.6946i −0.458782 1.41199i −0.866637 0.498939i \(-0.833723\pi\)
0.407855 0.913047i \(-0.366277\pi\)
\(752\) 0 0
\(753\) −2.31145 1.67937i −0.0842339 0.0611995i
\(754\) 0 0
\(755\) −1.65310 + 5.08772i −0.0601625 + 0.185161i
\(756\) 0 0
\(757\) 21.1944 15.3986i 0.770323 0.559672i −0.131736 0.991285i \(-0.542055\pi\)
0.902059 + 0.431613i \(0.142055\pi\)
\(758\) 0 0
\(759\) −2.38263 2.18422i −0.0864841 0.0792823i
\(760\) 0 0
\(761\) −28.4182 + 20.6470i −1.03016 + 0.748453i −0.968340 0.249634i \(-0.919690\pi\)
−0.0618172 + 0.998087i \(0.519690\pi\)
\(762\) 0 0
\(763\) 5.49514 16.9123i 0.198938 0.612267i
\(764\) 0 0
\(765\) −10.3406 7.51288i −0.373865 0.271629i
\(766\) 0 0
\(767\) −1.11464 3.43052i −0.0402475 0.123869i
\(768\) 0 0
\(769\) −29.6963 −1.07088 −0.535439 0.844574i \(-0.679854\pi\)
−0.535439 + 0.844574i \(0.679854\pi\)
\(770\) 0 0
\(771\) −0.489232 −0.0176193
\(772\) 0 0
\(773\) −4.78158 14.7162i −0.171981 0.529305i 0.827501 0.561464i \(-0.189762\pi\)
−0.999483 + 0.0321592i \(0.989762\pi\)
\(774\) 0 0
\(775\) −4.34733 3.15852i −0.156161 0.113457i
\(776\) 0 0
\(777\) −0.346524 + 1.06649i −0.0124315 + 0.0382602i
\(778\) 0 0
\(779\) −11.4768 + 8.33837i −0.411198 + 0.298753i
\(780\) 0 0
\(781\) −0.180215 0.0205721i −0.00644860 0.000736128i
\(782\) 0 0
\(783\) −6.57379 + 4.77614i −0.234928 + 0.170685i
\(784\) 0 0
\(785\) −2.32242 + 7.14768i −0.0828907 + 0.255111i
\(786\) 0 0
\(787\) 18.8179 + 13.6720i 0.670784 + 0.487353i 0.870288 0.492544i \(-0.163933\pi\)
−0.199503 + 0.979897i \(0.563933\pi\)
\(788\) 0 0
\(789\) −1.00654 3.09780i −0.0358336 0.110285i
\(790\) 0 0
\(791\) 3.36228 0.119549
\(792\) 0 0
\(793\) −6.27776 −0.222930
\(794\) 0 0
\(795\) 0.547914 + 1.68630i 0.0194325 + 0.0598071i
\(796\) 0 0
\(797\) 1.49693 + 1.08758i 0.0530240 + 0.0385242i 0.613982 0.789320i \(-0.289567\pi\)
−0.560958 + 0.827845i \(0.689567\pi\)
\(798\) 0 0
\(799\) 9.69968 29.8525i 0.343150 1.05611i
\(800\) 0 0
\(801\) 0.0117420 0.00853106i 0.000414883 0.000301430i
\(802\) 0 0
\(803\) −4.71455 23.1983i −0.166373 0.818649i
\(804\) 0 0
\(805\) 10.0650 7.31267i 0.354745 0.257738i
\(806\) 0 0
\(807\) 0.399623 1.22991i 0.0140674 0.0432950i
\(808\) 0 0
\(809\) −27.4388 19.9354i −0.964696 0.700893i −0.0104597 0.999945i \(-0.503329\pi\)
−0.954237 + 0.299052i \(0.903329\pi\)
\(810\) 0 0
\(811\) −17.3581 53.4228i −0.609526 1.87593i −0.462024 0.886868i \(-0.652876\pi\)
−0.147503 0.989062i \(-0.547124\pi\)
\(812\) 0 0
\(813\) −1.63892 −0.0574793
\(814\) 0 0
\(815\) 3.04066 0.106510
\(816\) 0 0
\(817\) 9.31193 + 28.6592i 0.325783 + 1.00266i
\(818\) 0 0
\(819\) −3.20114 2.32576i −0.111857 0.0812688i
\(820\) 0 0
\(821\) 3.61846 11.1365i 0.126285 0.388666i −0.867848 0.496830i \(-0.834497\pi\)
0.994133 + 0.108164i \(0.0344972\pi\)
\(822\) 0 0
\(823\) 11.7102 8.50793i 0.408191 0.296568i −0.364678 0.931134i \(-0.618821\pi\)
0.772869 + 0.634566i \(0.218821\pi\)
\(824\) 0 0
\(825\) 0.219408 0.481174i 0.00763882 0.0167523i
\(826\) 0 0
\(827\) 37.6707 27.3693i 1.30994 0.951725i 0.309938 0.950757i \(-0.399692\pi\)
1.00000 0.000968458i \(-0.000308270\pi\)
\(828\) 0 0
\(829\) 2.05309 6.31876i 0.0713068 0.219460i −0.909052 0.416683i \(-0.863192\pi\)
0.980359 + 0.197223i \(0.0631925\pi\)
\(830\) 0 0
\(831\) 2.15340 + 1.56454i 0.0747008 + 0.0542733i
\(832\) 0 0
\(833\) 3.79339 + 11.6749i 0.131433 + 0.404510i
\(834\) 0 0
\(835\) −13.7870 −0.477118
\(836\) 0 0
\(837\) −5.11914 −0.176943
\(838\) 0 0
\(839\) −0.276899 0.852208i −0.00955962 0.0294215i 0.946163 0.323691i \(-0.104924\pi\)
−0.955723 + 0.294269i \(0.904924\pi\)
\(840\) 0 0
\(841\) −35.3970 25.7174i −1.22059 0.886808i
\(842\) 0 0
\(843\) 1.01529 3.12473i 0.0349683 0.107621i
\(844\) 0 0
\(845\) 10.1717 7.39018i 0.349917 0.254230i
\(846\) 0 0
\(847\) 14.6821 + 16.9045i 0.504483 + 0.580844i
\(848\) 0 0
\(849\) −3.79770 + 2.75919i −0.130337 + 0.0946952i
\(850\) 0 0
\(851\) 6.52577 20.0843i 0.223700 0.688479i
\(852\) 0 0
\(853\) 25.2255 + 18.3274i 0.863706 + 0.627519i 0.928891 0.370354i \(-0.120764\pi\)
−0.0651850 + 0.997873i \(0.520764\pi\)
\(854\) 0 0
\(855\) −2.73421 8.41504i −0.0935081 0.287788i
\(856\) 0 0
\(857\) −45.0004 −1.53718 −0.768592 0.639740i \(-0.779042\pi\)
−0.768592 + 0.639740i \(0.779042\pi\)
\(858\) 0 0
\(859\) 31.3959 1.07122 0.535608 0.844467i \(-0.320083\pi\)
0.535608 + 0.844467i \(0.320083\pi\)
\(860\) 0 0
\(861\) −0.478312 1.47209i −0.0163008 0.0501688i
\(862\) 0 0
\(863\) −35.3252 25.6652i −1.20248 0.873654i −0.207956 0.978138i \(-0.566681\pi\)
−0.994527 + 0.104484i \(0.966681\pi\)
\(864\) 0 0
\(865\) −4.26425 + 13.1240i −0.144989 + 0.446230i
\(866\) 0 0
\(867\) −0.188850 + 0.137207i −0.00641367 + 0.00465980i
\(868\) 0 0
\(869\) −4.03276 + 8.84405i −0.136802 + 0.300014i
\(870\) 0 0
\(871\) −2.96585 + 2.15482i −0.100494 + 0.0730131i
\(872\) 0 0
\(873\) 16.7810 51.6465i 0.567950 1.74797i
\(874\) 0 0
\(875\) 1.64674 + 1.19643i 0.0556699 + 0.0404466i
\(876\) 0 0
\(877\) −8.05620 24.7944i −0.272038 0.837248i −0.989988 0.141153i \(-0.954919\pi\)
0.717949 0.696095i \(-0.245081\pi\)
\(878\) 0 0
\(879\) 1.16308 0.0392298
\(880\) 0 0
\(881\) −25.3513 −0.854106 −0.427053 0.904227i \(-0.640448\pi\)
−0.427053 + 0.904227i \(0.640448\pi\)
\(882\) 0 0
\(883\) 1.08110 + 3.32728i 0.0363819 + 0.111972i 0.967598 0.252495i \(-0.0812512\pi\)
−0.931216 + 0.364467i \(0.881251\pi\)
\(884\) 0 0
\(885\) 0.712003 + 0.517300i 0.0239337 + 0.0173889i
\(886\) 0 0
\(887\) 11.4323 35.1849i 0.383858 1.18139i −0.553447 0.832885i \(-0.686688\pi\)
0.937305 0.348510i \(-0.113312\pi\)
\(888\) 0 0
\(889\) 4.53412 3.29423i 0.152070 0.110485i
\(890\) 0 0
\(891\) 5.79406 + 28.5101i 0.194108 + 0.955123i
\(892\) 0 0
\(893\) 17.5790 12.7719i 0.588260 0.427396i
\(894\) 0 0
\(895\) −1.54508 + 4.75528i −0.0516465 + 0.158952i
\(896\) 0 0
\(897\) −0.515262 0.374360i −0.0172041 0.0124995i
\(898\) 0 0
\(899\) −14.1636 43.5910i −0.472382 1.45384i
\(900\) 0 0
\(901\) −47.7823 −1.59186
\(902\) 0 0
\(903\) −3.28794 −0.109416
\(904\) 0 0
\(905\) 6.94262 + 21.3672i 0.230780 + 0.710269i
\(906\) 0 0
\(907\) −2.69877 1.96077i −0.0896111 0.0651063i 0.542078 0.840328i \(-0.317638\pi\)
−0.631689 + 0.775222i \(0.717638\pi\)
\(908\) 0 0
\(909\) −2.44032 + 7.51054i −0.0809404 + 0.249109i
\(910\) 0 0
\(911\) 22.5772 16.4033i 0.748017 0.543466i −0.147194 0.989108i \(-0.547024\pi\)
0.895212 + 0.445641i \(0.147024\pi\)
\(912\) 0 0
\(913\) 40.6900 + 4.64489i 1.34664 + 0.153723i
\(914\) 0 0
\(915\) 1.23918 0.900314i 0.0409659 0.0297635i
\(916\) 0 0
\(917\) −1.79742 + 5.53190i −0.0593562 + 0.182679i
\(918\) 0 0
\(919\) −39.9573 29.0307i −1.31807 0.957635i −0.999954 0.00958329i \(-0.996949\pi\)
−0.318117 0.948051i \(-0.603051\pi\)
\(920\) 0 0
\(921\) −0.134011 0.412444i −0.00441582 0.0135905i
\(922\) 0 0
\(923\) −0.0357405 −0.00117641
\(924\) 0 0
\(925\) 3.45509 0.113603
\(926\) 0 0
\(927\) 15.1302 + 46.5659i 0.496940 + 1.52943i
\(928\) 0 0
\(929\) −16.9604 12.3224i −0.556451 0.404286i 0.273707 0.961813i \(-0.411750\pi\)
−0.830159 + 0.557527i \(0.811750\pi\)
\(930\) 0 0
\(931\) −2.62597 + 8.08191i −0.0860628 + 0.264874i
\(932\) 0 0
\(933\) −1.96558 + 1.42807i −0.0643501 + 0.0467531i
\(934\) 0 0
\(935\) 10.5052 + 9.63039i 0.343557 + 0.314948i
\(936\) 0 0
\(937\) −4.56205 + 3.31452i −0.149036 + 0.108281i −0.659804 0.751437i \(-0.729361\pi\)
0.510769 + 0.859718i \(0.329361\pi\)
\(938\) 0 0
\(939\) −1.42703 + 4.39194i −0.0465693 + 0.143325i
\(940\) 0 0
\(941\) 8.84980 + 6.42976i 0.288495 + 0.209604i 0.722614 0.691251i \(-0.242940\pi\)
−0.434119 + 0.900856i \(0.642940\pi\)
\(942\) 0 0
\(943\) 9.00762 + 27.7226i 0.293328 + 0.902772i
\(944\) 0 0
\(945\) 1.93910 0.0630788
\(946\) 0 0
\(947\) 20.5884 0.669032 0.334516 0.942390i \(-0.391427\pi\)
0.334516 + 0.942390i \(0.391427\pi\)
\(948\) 0 0
\(949\) −1.44140 4.43618i −0.0467899 0.144004i
\(950\) 0 0
\(951\) 0.784952 + 0.570301i 0.0254538 + 0.0184933i
\(952\) 0 0
\(953\) −0.454983 + 1.40029i −0.0147384 + 0.0453600i −0.958155 0.286249i \(-0.907592\pi\)
0.943417 + 0.331609i \(0.107592\pi\)
\(954\) 0 0
\(955\) −5.83178 + 4.23704i −0.188712 + 0.137107i
\(956\) 0 0
\(957\) 3.92642 2.22035i 0.126923 0.0717737i
\(958\) 0 0
\(959\) 16.5704 12.0391i 0.535087 0.388764i
\(960\) 0 0
\(961\) −0.656515 + 2.02055i −0.0211779 + 0.0651789i
\(962\) 0 0
\(963\) −29.6017 21.5069i −0.953901 0.693050i
\(964\) 0 0
\(965\) −6.53755 20.1205i −0.210451 0.647702i
\(966\) 0 0
\(967\) −5.72960 −0.184252 −0.0921258 0.995747i \(-0.529366\pi\)
−0.0921258 + 0.995747i \(0.529366\pi\)
\(968\) 0 0
\(969\) −2.03804 −0.0654713
\(970\) 0 0
\(971\) −4.37523 13.4656i −0.140408 0.432131i 0.855984 0.517002i \(-0.172952\pi\)
−0.996392 + 0.0848714i \(0.972952\pi\)
\(972\) 0 0
\(973\) −0.632556 0.459579i −0.0202788 0.0147334i
\(974\) 0 0
\(975\) 0.0322005 0.0991029i 0.00103124 0.00317383i
\(976\) 0 0
\(977\) −0.372572 + 0.270689i −0.0119196 + 0.00866012i −0.593729 0.804665i \(-0.702345\pi\)
0.581809 + 0.813325i \(0.302345\pi\)
\(978\) 0 0
\(979\) −0.0140866 + 0.00796580i −0.000450208 + 0.000254588i
\(980\) 0 0
\(981\) −21.0239 + 15.2747i −0.671240 + 0.487685i
\(982\) 0 0
\(983\) −4.06585 + 12.5134i −0.129680 + 0.399115i −0.994725 0.102580i \(-0.967290\pi\)
0.865044 + 0.501696i \(0.167290\pi\)
\(984\) 0 0
\(985\) 16.6633 + 12.1066i 0.530938 + 0.385749i
\(986\) 0 0
\(987\) 0.732634 + 2.25481i 0.0233200 + 0.0717715i
\(988\) 0 0
\(989\) 61.9188 1.96890
\(990\) 0 0
\(991\) 37.4029 1.18814 0.594072 0.804412i \(-0.297520\pi\)
0.594072 + 0.804412i \(0.297520\pi\)
\(992\) 0 0
\(993\) −0.889582 2.73785i −0.0282300 0.0868831i
\(994\) 0 0
\(995\) −9.20363 6.68683i −0.291775 0.211987i
\(996\) 0 0
\(997\) −2.51288 + 7.73384i −0.0795836 + 0.244933i −0.982930 0.183978i \(-0.941103\pi\)
0.903347 + 0.428911i \(0.141103\pi\)
\(998\) 0 0
\(999\) 2.66286 1.93468i 0.0842493 0.0612107i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bo.c.641.2 8
4.3 odd 2 220.2.m.b.201.1 yes 8
11.2 odd 10 9680.2.a.co.1.3 4
11.4 even 5 inner 880.2.bo.c.81.2 8
11.9 even 5 9680.2.a.cp.1.3 4
12.11 even 2 1980.2.z.d.1081.2 8
20.3 even 4 1100.2.cb.b.949.3 16
20.7 even 4 1100.2.cb.b.949.2 16
20.19 odd 2 1100.2.n.b.201.2 8
44.15 odd 10 220.2.m.b.81.1 8
44.31 odd 10 2420.2.a.k.1.2 4
44.35 even 10 2420.2.a.l.1.2 4
132.59 even 10 1980.2.z.d.1621.2 8
220.59 odd 10 1100.2.n.b.301.2 8
220.103 even 20 1100.2.cb.b.1049.2 16
220.147 even 20 1100.2.cb.b.1049.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.m.b.81.1 8 44.15 odd 10
220.2.m.b.201.1 yes 8 4.3 odd 2
880.2.bo.c.81.2 8 11.4 even 5 inner
880.2.bo.c.641.2 8 1.1 even 1 trivial
1100.2.n.b.201.2 8 20.19 odd 2
1100.2.n.b.301.2 8 220.59 odd 10
1100.2.cb.b.949.2 16 20.7 even 4
1100.2.cb.b.949.3 16 20.3 even 4
1100.2.cb.b.1049.2 16 220.103 even 20
1100.2.cb.b.1049.3 16 220.147 even 20
1980.2.z.d.1081.2 8 12.11 even 2
1980.2.z.d.1621.2 8 132.59 even 10
2420.2.a.k.1.2 4 44.31 odd 10
2420.2.a.l.1.2 4 44.35 even 10
9680.2.a.co.1.3 4 11.2 odd 10
9680.2.a.cp.1.3 4 11.9 even 5