Properties

Label 220.2.m.b.81.1
Level $220$
Weight $2$
Character 220.81
Analytic conductor $1.757$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(81,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.1
Root \(-0.628998 - 0.456994i\) of defining polynomial
Character \(\chi\) \(=\) 220.81
Dual form 220.2.m.b.201.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0492728 + 0.151646i) q^{3} +(-0.809017 + 0.587785i) q^{5} +(0.628998 + 1.93586i) q^{7} +(2.40648 + 1.74841i) q^{9} +(2.88699 + 1.63256i) q^{11} +(-0.528704 - 0.384126i) q^{13} +(-0.0492728 - 0.151646i) q^{15} +(3.47632 - 2.52570i) q^{17} +(-0.919194 + 2.82899i) q^{19} -0.324558 q^{21} -6.11210 q^{23} +(0.309017 - 0.951057i) q^{25} +(-0.770708 + 0.559952i) q^{27} +(-2.63577 - 8.11208i) q^{29} +(4.34733 + 3.15852i) q^{31} +(-0.389823 + 0.357361i) q^{33} +(-1.64674 - 1.19643i) q^{35} +(1.06768 + 3.28598i) q^{37} +(0.0843020 - 0.0612490i) q^{39} +(1.47374 - 4.53569i) q^{41} -10.1305 q^{43} -2.97458 q^{45} +(2.25733 - 6.94734i) q^{47} +(2.31122 - 1.67920i) q^{49} +(0.211724 + 0.651620i) q^{51} +(-8.99626 - 6.53617i) q^{53} +(-3.29522 + 0.376160i) q^{55} +(-0.383714 - 0.278785i) q^{57} +(1.70562 + 5.24935i) q^{59} +(7.77155 - 5.64636i) q^{61} +(-1.87100 + 5.75835i) q^{63} +0.653514 q^{65} -5.60966 q^{67} +(0.301160 - 0.926876i) q^{69} +(-0.0442449 + 0.0321458i) q^{71} +(-2.20562 - 6.78819i) q^{73} +(0.128998 + 0.0937225i) q^{75} +(-1.34450 + 6.61569i) q^{77} +(-2.37100 - 1.72263i) q^{79} +(2.71064 + 8.34250i) q^{81} +(9.98988 - 7.25807i) q^{83} +(-1.32784 + 4.08666i) q^{85} +1.36004 q^{87} +0.00487932 q^{89} +(0.411059 - 1.26511i) q^{91} +(-0.693182 + 0.503626i) q^{93} +(-0.919194 - 2.82899i) q^{95} +(14.7696 + 10.7307i) q^{97} +(4.09311 + 8.97639i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{3} - 2 q^{5} - q^{7} + 3 q^{9} + 5 q^{11} + 4 q^{13} + 5 q^{15} + 9 q^{17} - 7 q^{19} - 28 q^{21} - 10 q^{23} - 2 q^{25} - 10 q^{27} - q^{29} + 22 q^{31} + q^{33} + 4 q^{35} + 4 q^{37} + 27 q^{39}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0492728 + 0.151646i −0.0284477 + 0.0875530i −0.964272 0.264913i \(-0.914657\pi\)
0.935825 + 0.352466i \(0.114657\pi\)
\(4\) 0 0
\(5\) −0.809017 + 0.587785i −0.361803 + 0.262866i
\(6\) 0 0
\(7\) 0.628998 + 1.93586i 0.237739 + 0.731685i 0.996746 + 0.0806031i \(0.0256846\pi\)
−0.759007 + 0.651082i \(0.774315\pi\)
\(8\) 0 0
\(9\) 2.40648 + 1.74841i 0.802161 + 0.582804i
\(10\) 0 0
\(11\) 2.88699 + 1.63256i 0.870461 + 0.492237i
\(12\) 0 0
\(13\) −0.528704 0.384126i −0.146636 0.106537i 0.512048 0.858957i \(-0.328887\pi\)
−0.658685 + 0.752419i \(0.728887\pi\)
\(14\) 0 0
\(15\) −0.0492728 0.151646i −0.0127222 0.0391549i
\(16\) 0 0
\(17\) 3.47632 2.52570i 0.843132 0.612572i −0.0801115 0.996786i \(-0.525528\pi\)
0.923244 + 0.384214i \(0.125528\pi\)
\(18\) 0 0
\(19\) −0.919194 + 2.82899i −0.210878 + 0.649015i 0.788543 + 0.614980i \(0.210836\pi\)
−0.999421 + 0.0340351i \(0.989164\pi\)
\(20\) 0 0
\(21\) −0.324558 −0.0708243
\(22\) 0 0
\(23\) −6.11210 −1.27446 −0.637230 0.770673i \(-0.719920\pi\)
−0.637230 + 0.770673i \(0.719920\pi\)
\(24\) 0 0
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0 0
\(27\) −0.770708 + 0.559952i −0.148323 + 0.107763i
\(28\) 0 0
\(29\) −2.63577 8.11208i −0.489451 1.50638i −0.825429 0.564505i \(-0.809067\pi\)
0.335978 0.941870i \(-0.390933\pi\)
\(30\) 0 0
\(31\) 4.34733 + 3.15852i 0.780803 + 0.567286i 0.905220 0.424944i \(-0.139706\pi\)
−0.124417 + 0.992230i \(0.539706\pi\)
\(32\) 0 0
\(33\) −0.389823 + 0.357361i −0.0678594 + 0.0622085i
\(34\) 0 0
\(35\) −1.64674 1.19643i −0.278350 0.202233i
\(36\) 0 0
\(37\) 1.06768 + 3.28598i 0.175526 + 0.540212i 0.999657 0.0261862i \(-0.00833629\pi\)
−0.824131 + 0.566399i \(0.808336\pi\)
\(38\) 0 0
\(39\) 0.0843020 0.0612490i 0.0134991 0.00980769i
\(40\) 0 0
\(41\) 1.47374 4.53569i 0.230159 0.708356i −0.767568 0.640968i \(-0.778533\pi\)
0.997727 0.0673885i \(-0.0214667\pi\)
\(42\) 0 0
\(43\) −10.1305 −1.54489 −0.772446 0.635081i \(-0.780967\pi\)
−0.772446 + 0.635081i \(0.780967\pi\)
\(44\) 0 0
\(45\) −2.97458 −0.443424
\(46\) 0 0
\(47\) 2.25733 6.94734i 0.329265 1.01337i −0.640213 0.768197i \(-0.721154\pi\)
0.969478 0.245177i \(-0.0788460\pi\)
\(48\) 0 0
\(49\) 2.31122 1.67920i 0.330174 0.239885i
\(50\) 0 0
\(51\) 0.211724 + 0.651620i 0.0296473 + 0.0912450i
\(52\) 0 0
\(53\) −8.99626 6.53617i −1.23573 0.897812i −0.238425 0.971161i \(-0.576631\pi\)
−0.997306 + 0.0733491i \(0.976631\pi\)
\(54\) 0 0
\(55\) −3.29522 + 0.376160i −0.444328 + 0.0507214i
\(56\) 0 0
\(57\) −0.383714 0.278785i −0.0508242 0.0369259i
\(58\) 0 0
\(59\) 1.70562 + 5.24935i 0.222052 + 0.683407i 0.998577 + 0.0533204i \(0.0169805\pi\)
−0.776525 + 0.630086i \(0.783020\pi\)
\(60\) 0 0
\(61\) 7.77155 5.64636i 0.995045 0.722942i 0.0340247 0.999421i \(-0.489168\pi\)
0.961020 + 0.276479i \(0.0891675\pi\)
\(62\) 0 0
\(63\) −1.87100 + 5.75835i −0.235724 + 0.725484i
\(64\) 0 0
\(65\) 0.653514 0.0810585
\(66\) 0 0
\(67\) −5.60966 −0.685329 −0.342664 0.939458i \(-0.611329\pi\)
−0.342664 + 0.939458i \(0.611329\pi\)
\(68\) 0 0
\(69\) 0.301160 0.926876i 0.0362555 0.111583i
\(70\) 0 0
\(71\) −0.0442449 + 0.0321458i −0.00525091 + 0.00381501i −0.590408 0.807105i \(-0.701033\pi\)
0.585157 + 0.810920i \(0.301033\pi\)
\(72\) 0 0
\(73\) −2.20562 6.78819i −0.258148 0.794497i −0.993193 0.116479i \(-0.962839\pi\)
0.735045 0.678018i \(-0.237161\pi\)
\(74\) 0 0
\(75\) 0.128998 + 0.0937225i 0.0148954 + 0.0108221i
\(76\) 0 0
\(77\) −1.34450 + 6.61569i −0.153220 + 0.753927i
\(78\) 0 0
\(79\) −2.37100 1.72263i −0.266759 0.193811i 0.446363 0.894852i \(-0.352719\pi\)
−0.713121 + 0.701041i \(0.752719\pi\)
\(80\) 0 0
\(81\) 2.71064 + 8.34250i 0.301183 + 0.926945i
\(82\) 0 0
\(83\) 9.98988 7.25807i 1.09653 0.796677i 0.116041 0.993244i \(-0.462980\pi\)
0.980490 + 0.196568i \(0.0629796\pi\)
\(84\) 0 0
\(85\) −1.32784 + 4.08666i −0.144024 + 0.443261i
\(86\) 0 0
\(87\) 1.36004 0.145811
\(88\) 0 0
\(89\) 0.00487932 0.000517207 0.000258603 1.00000i \(-0.499918\pi\)
0.000258603 1.00000i \(0.499918\pi\)
\(90\) 0 0
\(91\) 0.411059 1.26511i 0.0430907 0.132620i
\(92\) 0 0
\(93\) −0.693182 + 0.503626i −0.0718797 + 0.0522236i
\(94\) 0 0
\(95\) −0.919194 2.82899i −0.0943074 0.290248i
\(96\) 0 0
\(97\) 14.7696 + 10.7307i 1.49962 + 1.08954i 0.970532 + 0.240973i \(0.0774665\pi\)
0.529090 + 0.848566i \(0.322533\pi\)
\(98\) 0 0
\(99\) 4.09311 + 8.97639i 0.411373 + 0.902161i
\(100\) 0 0
\(101\) −2.14782 1.56048i −0.213716 0.155274i 0.475777 0.879566i \(-0.342167\pi\)
−0.689493 + 0.724292i \(0.742167\pi\)
\(102\) 0 0
\(103\) 5.08650 + 15.6546i 0.501188 + 1.54250i 0.807086 + 0.590433i \(0.201043\pi\)
−0.305898 + 0.952064i \(0.598957\pi\)
\(104\) 0 0
\(105\) 0.262573 0.190770i 0.0256245 0.0186173i
\(106\) 0 0
\(107\) 3.80116 11.6988i 0.367472 1.13096i −0.580946 0.813942i \(-0.697317\pi\)
0.948419 0.317021i \(-0.102683\pi\)
\(108\) 0 0
\(109\) −8.73635 −0.836790 −0.418395 0.908265i \(-0.637407\pi\)
−0.418395 + 0.908265i \(0.637407\pi\)
\(110\) 0 0
\(111\) −0.550915 −0.0522905
\(112\) 0 0
\(113\) −0.510445 + 1.57099i −0.0480186 + 0.147786i −0.972191 0.234190i \(-0.924756\pi\)
0.924172 + 0.381976i \(0.124756\pi\)
\(114\) 0 0
\(115\) 4.94479 3.59260i 0.461104 0.335012i
\(116\) 0 0
\(117\) −0.600707 1.84878i −0.0555353 0.170920i
\(118\) 0 0
\(119\) 7.07599 + 5.14101i 0.648655 + 0.471275i
\(120\) 0 0
\(121\) 5.66947 + 9.42641i 0.515406 + 0.856946i
\(122\) 0 0
\(123\) 0.615205 + 0.446973i 0.0554712 + 0.0403022i
\(124\) 0 0
\(125\) 0.309017 + 0.951057i 0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) 2.22754 1.61841i 0.197663 0.143610i −0.484552 0.874763i \(-0.661017\pi\)
0.682214 + 0.731152i \(0.261017\pi\)
\(128\) 0 0
\(129\) 0.499160 1.53626i 0.0439486 0.135260i
\(130\) 0 0
\(131\) −2.85760 −0.249670 −0.124835 0.992178i \(-0.539840\pi\)
−0.124835 + 0.992178i \(0.539840\pi\)
\(132\) 0 0
\(133\) −6.05469 −0.525008
\(134\) 0 0
\(135\) 0.294384 0.906022i 0.0253366 0.0779779i
\(136\) 0 0
\(137\) −8.14080 + 5.91464i −0.695516 + 0.505322i −0.878469 0.477800i \(-0.841434\pi\)
0.182953 + 0.983122i \(0.441434\pi\)
\(138\) 0 0
\(139\) 0.118702 + 0.365326i 0.0100682 + 0.0309866i 0.955964 0.293483i \(-0.0948143\pi\)
−0.945896 + 0.324469i \(0.894814\pi\)
\(140\) 0 0
\(141\) 0.942313 + 0.684631i 0.0793571 + 0.0576563i
\(142\) 0 0
\(143\) −0.899255 1.97211i −0.0751995 0.164916i
\(144\) 0 0
\(145\) 6.90055 + 5.01354i 0.573059 + 0.416352i
\(146\) 0 0
\(147\) 0.140764 + 0.433226i 0.0116100 + 0.0357319i
\(148\) 0 0
\(149\) 6.72161 4.88353i 0.550656 0.400075i −0.277372 0.960763i \(-0.589463\pi\)
0.828027 + 0.560688i \(0.189463\pi\)
\(150\) 0 0
\(151\) 1.65310 5.08772i 0.134527 0.414033i −0.860989 0.508624i \(-0.830154\pi\)
0.995516 + 0.0945910i \(0.0301543\pi\)
\(152\) 0 0
\(153\) 12.7817 1.03334
\(154\) 0 0
\(155\) −5.37359 −0.431617
\(156\) 0 0
\(157\) −2.32242 + 7.14768i −0.185349 + 0.570447i −0.999954 0.00956968i \(-0.996954\pi\)
0.814605 + 0.580016i \(0.196954\pi\)
\(158\) 0 0
\(159\) 1.43446 1.04219i 0.113760 0.0826513i
\(160\) 0 0
\(161\) −3.84450 11.8321i −0.302989 0.932504i
\(162\) 0 0
\(163\) 2.45994 + 1.78725i 0.192678 + 0.139988i 0.679942 0.733266i \(-0.262005\pi\)
−0.487264 + 0.873255i \(0.662005\pi\)
\(164\) 0 0
\(165\) 0.105322 0.518243i 0.00819929 0.0403451i
\(166\) 0 0
\(167\) −11.1539 8.10379i −0.863115 0.627090i 0.0656157 0.997845i \(-0.479099\pi\)
−0.928731 + 0.370755i \(0.879099\pi\)
\(168\) 0 0
\(169\) −3.88525 11.9576i −0.298865 0.919812i
\(170\) 0 0
\(171\) −7.15826 + 5.20078i −0.547406 + 0.397714i
\(172\) 0 0
\(173\) −4.26425 + 13.1240i −0.324205 + 0.997801i 0.647593 + 0.761986i \(0.275776\pi\)
−0.971798 + 0.235814i \(0.924224\pi\)
\(174\) 0 0
\(175\) 2.03548 0.153868
\(176\) 0 0
\(177\) −0.880084 −0.0661512
\(178\) 0 0
\(179\) 1.54508 4.75528i 0.115485 0.355427i −0.876563 0.481287i \(-0.840169\pi\)
0.992048 + 0.125861i \(0.0401693\pi\)
\(180\) 0 0
\(181\) −18.1760 + 13.2056i −1.35101 + 0.981567i −0.352051 + 0.935981i \(0.614516\pi\)
−0.998960 + 0.0455868i \(0.985484\pi\)
\(182\) 0 0
\(183\) 0.473323 + 1.45674i 0.0349890 + 0.107685i
\(184\) 0 0
\(185\) −2.79522 2.03085i −0.205509 0.149311i
\(186\) 0 0
\(187\) 14.1595 1.61635i 1.03544 0.118199i
\(188\) 0 0
\(189\) −1.56876 1.13977i −0.114111 0.0829062i
\(190\) 0 0
\(191\) −2.22754 6.85567i −0.161179 0.496059i 0.837555 0.546353i \(-0.183984\pi\)
−0.998734 + 0.0502937i \(0.983984\pi\)
\(192\) 0 0
\(193\) 17.1155 12.4352i 1.23200 0.895102i 0.234964 0.972004i \(-0.424503\pi\)
0.997039 + 0.0769019i \(0.0245028\pi\)
\(194\) 0 0
\(195\) −0.0322005 + 0.0991029i −0.00230593 + 0.00709691i
\(196\) 0 0
\(197\) −20.5970 −1.46748 −0.733738 0.679432i \(-0.762226\pi\)
−0.733738 + 0.679432i \(0.762226\pi\)
\(198\) 0 0
\(199\) −11.3763 −0.806445 −0.403223 0.915102i \(-0.632110\pi\)
−0.403223 + 0.915102i \(0.632110\pi\)
\(200\) 0 0
\(201\) 0.276404 0.850683i 0.0194960 0.0600026i
\(202\) 0 0
\(203\) 14.0459 10.2050i 0.985831 0.716248i
\(204\) 0 0
\(205\) 1.47374 + 4.53569i 0.102930 + 0.316786i
\(206\) 0 0
\(207\) −14.7087 10.6865i −1.02232 0.742761i
\(208\) 0 0
\(209\) −7.27222 + 6.66663i −0.503030 + 0.461141i
\(210\) 0 0
\(211\) −22.7568 16.5338i −1.56665 1.13823i −0.930282 0.366846i \(-0.880437\pi\)
−0.636364 0.771389i \(-0.719563\pi\)
\(212\) 0 0
\(213\) −0.00269472 0.00829349i −0.000184639 0.000568261i
\(214\) 0 0
\(215\) 8.19577 5.95458i 0.558947 0.406099i
\(216\) 0 0
\(217\) −3.37998 + 10.4025i −0.229448 + 0.706168i
\(218\) 0 0
\(219\) 1.13808 0.0769043
\(220\) 0 0
\(221\) −2.80813 −0.188895
\(222\) 0 0
\(223\) 6.06173 18.6561i 0.405923 1.24930i −0.514198 0.857671i \(-0.671910\pi\)
0.920122 0.391633i \(-0.128090\pi\)
\(224\) 0 0
\(225\) 2.40648 1.74841i 0.160432 0.116561i
\(226\) 0 0
\(227\) −4.98120 15.3306i −0.330614 1.01753i −0.968842 0.247678i \(-0.920332\pi\)
0.638228 0.769847i \(-0.279668\pi\)
\(228\) 0 0
\(229\) −3.13012 2.27416i −0.206844 0.150281i 0.479541 0.877520i \(-0.340803\pi\)
−0.686385 + 0.727239i \(0.740803\pi\)
\(230\) 0 0
\(231\) −0.936997 0.529862i −0.0616498 0.0348623i
\(232\) 0 0
\(233\) 23.0050 + 16.7141i 1.50711 + 1.09498i 0.967441 + 0.253095i \(0.0814486\pi\)
0.539664 + 0.841881i \(0.318551\pi\)
\(234\) 0 0
\(235\) 2.25733 + 6.94734i 0.147252 + 0.453195i
\(236\) 0 0
\(237\) 0.378057 0.274674i 0.0245574 0.0178420i
\(238\) 0 0
\(239\) −0.517313 + 1.59212i −0.0334622 + 0.102986i −0.966393 0.257071i \(-0.917243\pi\)
0.932930 + 0.360057i \(0.117243\pi\)
\(240\) 0 0
\(241\) −21.4676 −1.38285 −0.691425 0.722448i \(-0.743017\pi\)
−0.691425 + 0.722448i \(0.743017\pi\)
\(242\) 0 0
\(243\) −4.25661 −0.273062
\(244\) 0 0
\(245\) −0.882806 + 2.71700i −0.0564004 + 0.173583i
\(246\) 0 0
\(247\) 1.57267 1.14261i 0.100067 0.0727026i
\(248\) 0 0
\(249\) 0.608429 + 1.87255i 0.0385576 + 0.118668i
\(250\) 0 0
\(251\) 14.4964 + 10.5322i 0.915003 + 0.664789i 0.942275 0.334839i \(-0.108682\pi\)
−0.0272722 + 0.999628i \(0.508682\pi\)
\(252\) 0 0
\(253\) −17.6456 9.97839i −1.10937 0.627336i
\(254\) 0 0
\(255\) −0.554301 0.402723i −0.0347117 0.0252195i
\(256\) 0 0
\(257\) −0.948139 2.91807i −0.0591433 0.182024i 0.917120 0.398611i \(-0.130508\pi\)
−0.976263 + 0.216587i \(0.930508\pi\)
\(258\) 0 0
\(259\) −5.68962 + 4.13375i −0.353536 + 0.256859i
\(260\) 0 0
\(261\) 7.84031 24.1300i 0.485303 1.49361i
\(262\) 0 0
\(263\) 20.4278 1.25963 0.629816 0.776744i \(-0.283130\pi\)
0.629816 + 0.776744i \(0.283130\pi\)
\(264\) 0 0
\(265\) 11.1200 0.683096
\(266\) 0 0
\(267\) −0.000240418 0 0.000739930i −1.47133e−5 0 4.52830e-5i
\(268\) 0 0
\(269\) −6.56147 + 4.76718i −0.400060 + 0.290660i −0.769565 0.638568i \(-0.779527\pi\)
0.369506 + 0.929228i \(0.379527\pi\)
\(270\) 0 0
\(271\) 3.17624 + 9.77547i 0.192943 + 0.593818i 0.999994 + 0.00333647i \(0.00106203\pi\)
−0.807051 + 0.590481i \(0.798938\pi\)
\(272\) 0 0
\(273\) 0.171595 + 0.124671i 0.0103854 + 0.00754544i
\(274\) 0 0
\(275\) 2.44479 2.24120i 0.147426 0.135150i
\(276\) 0 0
\(277\) 13.5052 + 9.81209i 0.811447 + 0.589551i 0.914250 0.405151i \(-0.132781\pi\)
−0.102802 + 0.994702i \(0.532781\pi\)
\(278\) 0 0
\(279\) 4.93937 + 15.2018i 0.295713 + 0.910110i
\(280\) 0 0
\(281\) −16.6701 + 12.1115i −0.994455 + 0.722514i −0.960892 0.276923i \(-0.910685\pi\)
−0.0335629 + 0.999437i \(0.510685\pi\)
\(282\) 0 0
\(283\) −9.09747 + 27.9991i −0.540788 + 1.66437i 0.190011 + 0.981782i \(0.439148\pi\)
−0.730799 + 0.682593i \(0.760852\pi\)
\(284\) 0 0
\(285\) 0.474297 0.0280949
\(286\) 0 0
\(287\) 9.70743 0.573011
\(288\) 0 0
\(289\) 0.452393 1.39232i 0.0266113 0.0819012i
\(290\) 0 0
\(291\) −2.35501 + 1.71102i −0.138053 + 0.100301i
\(292\) 0 0
\(293\) 2.25407 + 6.93732i 0.131684 + 0.405283i 0.995060 0.0992797i \(-0.0316539\pi\)
−0.863375 + 0.504562i \(0.831654\pi\)
\(294\) 0 0
\(295\) −4.46536 3.24427i −0.259983 0.188889i
\(296\) 0 0
\(297\) −3.13919 + 0.358348i −0.182154 + 0.0207935i
\(298\) 0 0
\(299\) 3.23149 + 2.34782i 0.186882 + 0.135778i
\(300\) 0 0
\(301\) −6.37208 19.6113i −0.367281 1.13037i
\(302\) 0 0
\(303\) 0.342470 0.248819i 0.0196744 0.0142943i
\(304\) 0 0
\(305\) −2.96847 + 9.13600i −0.169974 + 0.523126i
\(306\) 0 0
\(307\) 2.71978 0.155226 0.0776130 0.996984i \(-0.475270\pi\)
0.0776130 + 0.996984i \(0.475270\pi\)
\(308\) 0 0
\(309\) −2.62459 −0.149308
\(310\) 0 0
\(311\) −4.70857 + 14.4915i −0.266999 + 0.821738i 0.724227 + 0.689561i \(0.242197\pi\)
−0.991226 + 0.132177i \(0.957803\pi\)
\(312\) 0 0
\(313\) 23.4305 17.0233i 1.32437 0.962213i 0.324506 0.945884i \(-0.394802\pi\)
0.999867 0.0163292i \(-0.00519799\pi\)
\(314\) 0 0
\(315\) −1.87100 5.75835i −0.105419 0.324446i
\(316\) 0 0
\(317\) 4.92286 + 3.57667i 0.276496 + 0.200886i 0.717387 0.696674i \(-0.245338\pi\)
−0.440892 + 0.897560i \(0.645338\pi\)
\(318\) 0 0
\(319\) 5.63403 27.7226i 0.315445 1.55217i
\(320\) 0 0
\(321\) 1.58678 + 1.15286i 0.0885654 + 0.0643465i
\(322\) 0 0
\(323\) 3.94975 + 12.1561i 0.219770 + 0.676383i
\(324\) 0 0
\(325\) −0.528704 + 0.384126i −0.0293272 + 0.0213075i
\(326\) 0 0
\(327\) 0.430465 1.32483i 0.0238047 0.0732635i
\(328\) 0 0
\(329\) 14.8689 0.819750
\(330\) 0 0
\(331\) 18.0542 0.992349 0.496175 0.868223i \(-0.334738\pi\)
0.496175 + 0.868223i \(0.334738\pi\)
\(332\) 0 0
\(333\) −3.17590 + 9.77441i −0.174038 + 0.535634i
\(334\) 0 0
\(335\) 4.53831 3.29727i 0.247954 0.180149i
\(336\) 0 0
\(337\) 3.23467 + 9.95528i 0.176204 + 0.542299i 0.999686 0.0250425i \(-0.00797210\pi\)
−0.823483 + 0.567341i \(0.807972\pi\)
\(338\) 0 0
\(339\) −0.213083 0.154814i −0.0115731 0.00840834i
\(340\) 0 0
\(341\) 7.39422 + 16.2159i 0.400420 + 0.878141i
\(342\) 0 0
\(343\) 16.2316 + 11.7929i 0.876424 + 0.636759i
\(344\) 0 0
\(345\) 0.301160 + 0.926876i 0.0162139 + 0.0499014i
\(346\) 0 0
\(347\) −23.6624 + 17.1918i −1.27027 + 0.922902i −0.999213 0.0396629i \(-0.987372\pi\)
−0.271052 + 0.962565i \(0.587372\pi\)
\(348\) 0 0
\(349\) 8.23527 25.3455i 0.440824 1.35672i −0.446176 0.894945i \(-0.647214\pi\)
0.886999 0.461770i \(-0.152786\pi\)
\(350\) 0 0
\(351\) 0.622569 0.0332303
\(352\) 0 0
\(353\) 0.908792 0.0483701 0.0241851 0.999707i \(-0.492301\pi\)
0.0241851 + 0.999707i \(0.492301\pi\)
\(354\) 0 0
\(355\) 0.0169001 0.0520130i 0.000896962 0.00276057i
\(356\) 0 0
\(357\) −1.12827 + 0.819735i −0.0597143 + 0.0433850i
\(358\) 0 0
\(359\) 10.3305 + 31.7939i 0.545221 + 1.67802i 0.720464 + 0.693493i \(0.243929\pi\)
−0.175243 + 0.984525i \(0.556071\pi\)
\(360\) 0 0
\(361\) 8.21306 + 5.96714i 0.432266 + 0.314060i
\(362\) 0 0
\(363\) −1.70883 + 0.395287i −0.0896903 + 0.0207472i
\(364\) 0 0
\(365\) 5.77438 + 4.19533i 0.302245 + 0.219594i
\(366\) 0 0
\(367\) −2.87918 8.86120i −0.150292 0.462551i 0.847362 0.531016i \(-0.178190\pi\)
−0.997653 + 0.0684653i \(0.978190\pi\)
\(368\) 0 0
\(369\) 11.4768 8.33837i 0.597457 0.434078i
\(370\) 0 0
\(371\) 6.99445 21.5267i 0.363134 1.11761i
\(372\) 0 0
\(373\) −0.730613 −0.0378297 −0.0189148 0.999821i \(-0.506021\pi\)
−0.0189148 + 0.999821i \(0.506021\pi\)
\(374\) 0 0
\(375\) −0.159450 −0.00823398
\(376\) 0 0
\(377\) −1.72252 + 5.30136i −0.0887141 + 0.273034i
\(378\) 0 0
\(379\) −24.5280 + 17.8206i −1.25992 + 0.915385i −0.998754 0.0499093i \(-0.984107\pi\)
−0.261165 + 0.965294i \(0.584107\pi\)
\(380\) 0 0
\(381\) 0.135668 + 0.417542i 0.00695046 + 0.0213913i
\(382\) 0 0
\(383\) −20.9497 15.2208i −1.07048 0.777749i −0.0944808 0.995527i \(-0.530119\pi\)
−0.975998 + 0.217778i \(0.930119\pi\)
\(384\) 0 0
\(385\) −2.80088 6.14248i −0.142746 0.313050i
\(386\) 0 0
\(387\) −24.3789 17.7123i −1.23925 0.900369i
\(388\) 0 0
\(389\) 1.72430 + 5.30686i 0.0874256 + 0.269068i 0.985206 0.171375i \(-0.0548211\pi\)
−0.897780 + 0.440444i \(0.854821\pi\)
\(390\) 0 0
\(391\) −21.2476 + 15.4373i −1.07454 + 0.780698i
\(392\) 0 0
\(393\) 0.140802 0.433344i 0.00710252 0.0218593i
\(394\) 0 0
\(395\) 2.93072 0.147461
\(396\) 0 0
\(397\) 31.4006 1.57595 0.787974 0.615708i \(-0.211130\pi\)
0.787974 + 0.615708i \(0.211130\pi\)
\(398\) 0 0
\(399\) 0.298332 0.918171i 0.0149353 0.0459660i
\(400\) 0 0
\(401\) −15.0194 + 10.9122i −0.750034 + 0.544932i −0.895837 0.444382i \(-0.853423\pi\)
0.145803 + 0.989314i \(0.453423\pi\)
\(402\) 0 0
\(403\) −1.08518 3.33984i −0.0540567 0.166369i
\(404\) 0 0
\(405\) −7.09656 5.15595i −0.352631 0.256201i
\(406\) 0 0
\(407\) −2.28219 + 11.2297i −0.113124 + 0.556634i
\(408\) 0 0
\(409\) −5.05892 3.67552i −0.250147 0.181743i 0.455645 0.890162i \(-0.349409\pi\)
−0.705792 + 0.708419i \(0.749409\pi\)
\(410\) 0 0
\(411\) −0.495812 1.52595i −0.0244566 0.0752697i
\(412\) 0 0
\(413\) −9.08915 + 6.60366i −0.447248 + 0.324945i
\(414\) 0 0
\(415\) −3.81579 + 11.7438i −0.187310 + 0.576481i
\(416\) 0 0
\(417\) −0.0612491 −0.00299938
\(418\) 0 0
\(419\) 25.4340 1.24253 0.621266 0.783599i \(-0.286618\pi\)
0.621266 + 0.783599i \(0.286618\pi\)
\(420\) 0 0
\(421\) 6.09077 18.7455i 0.296846 0.913598i −0.685749 0.727838i \(-0.740525\pi\)
0.982595 0.185760i \(-0.0594747\pi\)
\(422\) 0 0
\(423\) 17.5790 12.7719i 0.854722 0.620992i
\(424\) 0 0
\(425\) −1.32784 4.08666i −0.0644096 0.198232i
\(426\) 0 0
\(427\) 15.8188 + 11.4931i 0.765527 + 0.556188i
\(428\) 0 0
\(429\) 0.343372 0.0391970i 0.0165782 0.00189245i
\(430\) 0 0
\(431\) −13.1828 9.57788i −0.634994 0.461350i 0.223133 0.974788i \(-0.428372\pi\)
−0.858127 + 0.513438i \(0.828372\pi\)
\(432\) 0 0
\(433\) −7.33287 22.5682i −0.352395 1.08456i −0.957505 0.288418i \(-0.906871\pi\)
0.605110 0.796142i \(-0.293129\pi\)
\(434\) 0 0
\(435\) −1.10029 + 0.799410i −0.0527551 + 0.0383288i
\(436\) 0 0
\(437\) 5.61821 17.2911i 0.268755 0.827144i
\(438\) 0 0
\(439\) −14.3276 −0.683818 −0.341909 0.939733i \(-0.611073\pi\)
−0.341909 + 0.939733i \(0.611073\pi\)
\(440\) 0 0
\(441\) 8.49783 0.404658
\(442\) 0 0
\(443\) −2.32348 + 7.15093i −0.110392 + 0.339751i −0.990958 0.134172i \(-0.957162\pi\)
0.880566 + 0.473923i \(0.157162\pi\)
\(444\) 0 0
\(445\) −0.00394745 + 0.00286799i −0.000187127 + 0.000135956i
\(446\) 0 0
\(447\) 0.409377 + 1.25993i 0.0193629 + 0.0595927i
\(448\) 0 0
\(449\) −21.8022 15.8402i −1.02891 0.747546i −0.0608183 0.998149i \(-0.519371\pi\)
−0.968090 + 0.250603i \(0.919371\pi\)
\(450\) 0 0
\(451\) 11.6595 10.6885i 0.549023 0.503304i
\(452\) 0 0
\(453\) 0.690081 + 0.501373i 0.0324228 + 0.0235566i
\(454\) 0 0
\(455\) 0.411059 + 1.26511i 0.0192707 + 0.0593093i
\(456\) 0 0
\(457\) −9.58406 + 6.96323i −0.448323 + 0.325726i −0.788933 0.614479i \(-0.789366\pi\)
0.340610 + 0.940205i \(0.389366\pi\)
\(458\) 0 0
\(459\) −1.26496 + 3.89315i −0.0590433 + 0.181717i
\(460\) 0 0
\(461\) 40.9558 1.90750 0.953751 0.300599i \(-0.0971866\pi\)
0.953751 + 0.300599i \(0.0971866\pi\)
\(462\) 0 0
\(463\) −37.2115 −1.72937 −0.864684 0.502317i \(-0.832481\pi\)
−0.864684 + 0.502317i \(0.832481\pi\)
\(464\) 0 0
\(465\) 0.264772 0.814885i 0.0122785 0.0377894i
\(466\) 0 0
\(467\) 9.49602 6.89926i 0.439424 0.319260i −0.345982 0.938241i \(-0.612454\pi\)
0.785406 + 0.618981i \(0.212454\pi\)
\(468\) 0 0
\(469\) −3.52846 10.8595i −0.162929 0.501445i
\(470\) 0 0
\(471\) −0.969486 0.704373i −0.0446715 0.0324558i
\(472\) 0 0
\(473\) −29.2468 16.5387i −1.34477 0.760452i
\(474\) 0 0
\(475\) 2.40648 + 1.74841i 0.110417 + 0.0802226i
\(476\) 0 0
\(477\) −10.2214 31.4583i −0.468007 1.44038i
\(478\) 0 0
\(479\) −20.7572 + 15.0810i −0.948421 + 0.689068i −0.950433 0.310930i \(-0.899359\pi\)
0.00201220 + 0.999998i \(0.499359\pi\)
\(480\) 0 0
\(481\) 0.697744 2.14744i 0.0318144 0.0979147i
\(482\) 0 0
\(483\) 1.98373 0.0902628
\(484\) 0 0
\(485\) −18.2562 −0.828970
\(486\) 0 0
\(487\) −2.56893 + 7.90636i −0.116409 + 0.358272i −0.992238 0.124350i \(-0.960315\pi\)
0.875829 + 0.482622i \(0.160315\pi\)
\(488\) 0 0
\(489\) −0.392239 + 0.284978i −0.0177376 + 0.0128871i
\(490\) 0 0
\(491\) 7.45825 + 22.9541i 0.336586 + 1.03591i 0.965935 + 0.258783i \(0.0833215\pi\)
−0.629349 + 0.777123i \(0.716678\pi\)
\(492\) 0 0
\(493\) −29.6515 21.5430i −1.33543 0.970250i
\(494\) 0 0
\(495\) −8.58758 4.85619i −0.385983 0.218269i
\(496\) 0 0
\(497\) −0.0900597 0.0654322i −0.00403973 0.00293504i
\(498\) 0 0
\(499\) −9.92681 30.5516i −0.444385 1.36768i −0.883157 0.469078i \(-0.844586\pi\)
0.438772 0.898599i \(-0.355414\pi\)
\(500\) 0 0
\(501\) 1.77849 1.29215i 0.0794572 0.0577290i
\(502\) 0 0
\(503\) −11.7697 + 36.2233i −0.524783 + 1.61512i 0.239962 + 0.970782i \(0.422865\pi\)
−0.764745 + 0.644333i \(0.777135\pi\)
\(504\) 0 0
\(505\) 2.65485 0.118139
\(506\) 0 0
\(507\) 2.00476 0.0890343
\(508\) 0 0
\(509\) −12.9730 + 39.9268i −0.575019 + 1.76973i 0.0610967 + 0.998132i \(0.480540\pi\)
−0.636115 + 0.771594i \(0.719460\pi\)
\(510\) 0 0
\(511\) 11.7536 8.53951i 0.519950 0.377766i
\(512\) 0 0
\(513\) −0.875668 2.69503i −0.0386617 0.118988i
\(514\) 0 0
\(515\) −13.3166 9.67510i −0.586801 0.426336i
\(516\) 0 0
\(517\) 17.8589 16.3717i 0.785432 0.720027i
\(518\) 0 0
\(519\) −1.78010 1.29332i −0.0781376 0.0567703i
\(520\) 0 0
\(521\) −8.98355 27.6485i −0.393577 1.21130i −0.930065 0.367396i \(-0.880249\pi\)
0.536488 0.843908i \(-0.319751\pi\)
\(522\) 0 0
\(523\) −10.1709 + 7.38957i −0.444741 + 0.323123i −0.787516 0.616294i \(-0.788633\pi\)
0.342775 + 0.939418i \(0.388633\pi\)
\(524\) 0 0
\(525\) −0.100294 + 0.308673i −0.00437718 + 0.0134716i
\(526\) 0 0
\(527\) 23.0902 1.00582
\(528\) 0 0
\(529\) 14.3577 0.624250
\(530\) 0 0
\(531\) −5.07348 + 15.6146i −0.220170 + 0.677615i
\(532\) 0 0
\(533\) −2.52145 + 1.83194i −0.109216 + 0.0793501i
\(534\) 0 0
\(535\) 3.80116 + 11.6988i 0.164338 + 0.505782i
\(536\) 0 0
\(537\) 0.644990 + 0.468613i 0.0278334 + 0.0202221i
\(538\) 0 0
\(539\) 9.41386 1.07462i 0.405484 0.0462873i
\(540\) 0 0
\(541\) 16.1438 + 11.7292i 0.694076 + 0.504276i 0.877998 0.478665i \(-0.158879\pi\)
−0.183921 + 0.982941i \(0.558879\pi\)
\(542\) 0 0
\(543\) −1.10700 3.40700i −0.0475060 0.146208i
\(544\) 0 0
\(545\) 7.06785 5.13510i 0.302754 0.219963i
\(546\) 0 0
\(547\) 8.01221 24.6590i 0.342577 1.05434i −0.620291 0.784372i \(-0.712985\pi\)
0.962868 0.269972i \(-0.0870146\pi\)
\(548\) 0 0
\(549\) 28.5743 1.21952
\(550\) 0 0
\(551\) 25.3718 1.08087
\(552\) 0 0
\(553\) 1.84342 5.67345i 0.0783901 0.241260i
\(554\) 0 0
\(555\) 0.445699 0.323819i 0.0189189 0.0137454i
\(556\) 0 0
\(557\) 2.39837 + 7.38143i 0.101622 + 0.312761i 0.988923 0.148430i \(-0.0474221\pi\)
−0.887301 + 0.461192i \(0.847422\pi\)
\(558\) 0 0
\(559\) 5.35605 + 3.89140i 0.226537 + 0.164589i
\(560\) 0 0
\(561\) −0.452565 + 2.22687i −0.0191073 + 0.0940187i
\(562\) 0 0
\(563\) −7.68369 5.58253i −0.323829 0.235275i 0.413979 0.910287i \(-0.364139\pi\)
−0.737808 + 0.675011i \(0.764139\pi\)
\(564\) 0 0
\(565\) −0.510445 1.57099i −0.0214746 0.0660919i
\(566\) 0 0
\(567\) −14.4449 + 10.4948i −0.606629 + 0.440742i
\(568\) 0 0
\(569\) 3.69665 11.3771i 0.154972 0.476954i −0.843186 0.537622i \(-0.819323\pi\)
0.998158 + 0.0606674i \(0.0193229\pi\)
\(570\) 0 0
\(571\) −18.0419 −0.755028 −0.377514 0.926004i \(-0.623221\pi\)
−0.377514 + 0.926004i \(0.623221\pi\)
\(572\) 0 0
\(573\) 1.14939 0.0480166
\(574\) 0 0
\(575\) −1.88874 + 5.81295i −0.0787660 + 0.242417i
\(576\) 0 0
\(577\) −32.5505 + 23.6493i −1.35509 + 0.984533i −0.356354 + 0.934351i \(0.615980\pi\)
−0.998740 + 0.0501822i \(0.984020\pi\)
\(578\) 0 0
\(579\) 1.04241 + 3.20822i 0.0433212 + 0.133329i
\(580\) 0 0
\(581\) 20.3342 + 14.7737i 0.843605 + 0.612915i
\(582\) 0 0
\(583\) −15.3014 33.5569i −0.633721 1.38978i
\(584\) 0 0
\(585\) 1.57267 + 1.14261i 0.0650219 + 0.0472412i
\(586\) 0 0
\(587\) 9.73384 + 29.9577i 0.401759 + 1.23649i 0.923572 + 0.383426i \(0.125256\pi\)
−0.521813 + 0.853060i \(0.674744\pi\)
\(588\) 0 0
\(589\) −12.9314 + 9.39525i −0.532831 + 0.387124i
\(590\) 0 0
\(591\) 1.01487 3.12346i 0.0417463 0.128482i
\(592\) 0 0
\(593\) 15.9481 0.654909 0.327454 0.944867i \(-0.393809\pi\)
0.327454 + 0.944867i \(0.393809\pi\)
\(594\) 0 0
\(595\) −8.74640 −0.358568
\(596\) 0 0
\(597\) 0.560543 1.72517i 0.0229415 0.0706067i
\(598\) 0 0
\(599\) 35.3013 25.6479i 1.44237 1.04794i 0.454832 0.890577i \(-0.349699\pi\)
0.987540 0.157367i \(-0.0503007\pi\)
\(600\) 0 0
\(601\) 0.147257 + 0.453211i 0.00600675 + 0.0184869i 0.954015 0.299759i \(-0.0969063\pi\)
−0.948008 + 0.318246i \(0.896906\pi\)
\(602\) 0 0
\(603\) −13.4995 9.80799i −0.549744 0.399412i
\(604\) 0 0
\(605\) −10.1274 4.29369i −0.411737 0.174563i
\(606\) 0 0
\(607\) 26.4257 + 19.1994i 1.07259 + 0.779280i 0.976375 0.216081i \(-0.0693275\pi\)
0.0962116 + 0.995361i \(0.469327\pi\)
\(608\) 0 0
\(609\) 0.855461 + 2.63284i 0.0346650 + 0.106688i
\(610\) 0 0
\(611\) −3.86211 + 2.80599i −0.156244 + 0.113518i
\(612\) 0 0
\(613\) −15.0751 + 46.3965i −0.608879 + 1.87394i −0.141344 + 0.989960i \(0.545142\pi\)
−0.467534 + 0.883975i \(0.654858\pi\)
\(614\) 0 0
\(615\) −0.760436 −0.0306637
\(616\) 0 0
\(617\) −7.77343 −0.312947 −0.156473 0.987682i \(-0.550013\pi\)
−0.156473 + 0.987682i \(0.550013\pi\)
\(618\) 0 0
\(619\) 12.6221 38.8470i 0.507327 1.56139i −0.289497 0.957179i \(-0.593488\pi\)
0.796823 0.604212i \(-0.206512\pi\)
\(620\) 0 0
\(621\) 4.71064 3.42248i 0.189032 0.137340i
\(622\) 0 0
\(623\) 0.00306908 + 0.00944566i 0.000122960 + 0.000378432i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 0 0
\(627\) −0.652647 1.43129i −0.0260642 0.0571601i
\(628\) 0 0
\(629\) 12.0110 + 8.72650i 0.478910 + 0.347949i
\(630\) 0 0
\(631\) 2.54159 + 7.82221i 0.101179 + 0.311397i 0.988815 0.149149i \(-0.0476535\pi\)
−0.887636 + 0.460546i \(0.847654\pi\)
\(632\) 0 0
\(633\) 3.62859 2.63632i 0.144223 0.104784i
\(634\) 0 0
\(635\) −0.850846 + 2.61863i −0.0337648 + 0.103917i
\(636\) 0 0
\(637\) −1.86697 −0.0739721
\(638\) 0 0
\(639\) −0.162679 −0.00643547
\(640\) 0 0
\(641\) −10.3204 + 31.7630i −0.407632 + 1.25456i 0.511046 + 0.859553i \(0.329258\pi\)
−0.918678 + 0.395008i \(0.870742\pi\)
\(642\) 0 0
\(643\) −1.47304 + 1.07023i −0.0580912 + 0.0422057i −0.616452 0.787393i \(-0.711431\pi\)
0.558361 + 0.829598i \(0.311431\pi\)
\(644\) 0 0
\(645\) 0.499160 + 1.53626i 0.0196544 + 0.0604900i
\(646\) 0 0
\(647\) −10.7974 7.84479i −0.424491 0.308410i 0.354952 0.934885i \(-0.384497\pi\)
−0.779442 + 0.626474i \(0.784497\pi\)
\(648\) 0 0
\(649\) −3.64579 + 17.9394i −0.143110 + 0.704181i
\(650\) 0 0
\(651\) −1.41096 1.02512i −0.0552998 0.0401777i
\(652\) 0 0
\(653\) 6.98228 + 21.4893i 0.273238 + 0.840940i 0.989680 + 0.143293i \(0.0457693\pi\)
−0.716442 + 0.697646i \(0.754231\pi\)
\(654\) 0 0
\(655\) 2.31185 1.67965i 0.0903313 0.0656295i
\(656\) 0 0
\(657\) 6.56077 20.1920i 0.255960 0.787764i
\(658\) 0 0
\(659\) −16.9078 −0.658636 −0.329318 0.944219i \(-0.606819\pi\)
−0.329318 + 0.944219i \(0.606819\pi\)
\(660\) 0 0
\(661\) 49.7772 1.93611 0.968055 0.250740i \(-0.0806738\pi\)
0.968055 + 0.250740i \(0.0806738\pi\)
\(662\) 0 0
\(663\) 0.138365 0.425843i 0.00537364 0.0165384i
\(664\) 0 0
\(665\) 4.89835 3.55886i 0.189950 0.138007i
\(666\) 0 0
\(667\) 16.1101 + 49.5818i 0.623786 + 1.91982i
\(668\) 0 0
\(669\) 2.53045 + 1.83848i 0.0978327 + 0.0710796i
\(670\) 0 0
\(671\) 31.6545 3.61346i 1.22201 0.139496i
\(672\) 0 0
\(673\) 20.9313 + 15.2075i 0.806843 + 0.586206i 0.912914 0.408153i \(-0.133827\pi\)
−0.106071 + 0.994359i \(0.533827\pi\)
\(674\) 0 0
\(675\) 0.294384 + 0.906022i 0.0113309 + 0.0348728i
\(676\) 0 0
\(677\) 23.4068 17.0060i 0.899597 0.653595i −0.0387658 0.999248i \(-0.512343\pi\)
0.938362 + 0.345653i \(0.112343\pi\)
\(678\) 0 0
\(679\) −11.4831 + 35.3413i −0.440681 + 1.35628i
\(680\) 0 0
\(681\) 2.57026 0.0984926
\(682\) 0 0
\(683\) 11.9698 0.458011 0.229005 0.973425i \(-0.426453\pi\)
0.229005 + 0.973425i \(0.426453\pi\)
\(684\) 0 0
\(685\) 3.10951 9.57009i 0.118808 0.365654i
\(686\) 0 0
\(687\) 0.499098 0.362616i 0.0190418 0.0138347i
\(688\) 0 0
\(689\) 2.24565 + 6.91140i 0.0855524 + 0.263303i
\(690\) 0 0
\(691\) 23.7872 + 17.2824i 0.904909 + 0.657455i 0.939722 0.341939i \(-0.111084\pi\)
−0.0348130 + 0.999394i \(0.511084\pi\)
\(692\) 0 0
\(693\) −14.8025 + 13.5698i −0.562299 + 0.515474i
\(694\) 0 0
\(695\) −0.310765 0.225784i −0.0117880 0.00856448i
\(696\) 0 0
\(697\) −6.33260 19.4897i −0.239864 0.738227i
\(698\) 0 0
\(699\) −3.66815 + 2.66506i −0.138742 + 0.100802i
\(700\) 0 0
\(701\) 8.42772 25.9379i 0.318311 0.979659i −0.656060 0.754709i \(-0.727778\pi\)
0.974370 0.224950i \(-0.0722219\pi\)
\(702\) 0 0
\(703\) −10.2774 −0.387620
\(704\) 0 0
\(705\) −1.16476 −0.0438675
\(706\) 0 0
\(707\) 1.66990 5.13941i 0.0628029 0.193287i
\(708\) 0 0
\(709\) 6.16553 4.47952i 0.231552 0.168232i −0.465960 0.884806i \(-0.654291\pi\)
0.697511 + 0.716574i \(0.254291\pi\)
\(710\) 0 0
\(711\) −2.69390 8.29098i −0.101029 0.310936i
\(712\) 0 0
\(713\) −26.5713 19.3052i −0.995102 0.722984i
\(714\) 0 0
\(715\) 1.88669 + 1.06690i 0.0705583 + 0.0398999i
\(716\) 0 0
\(717\) −0.215950 0.156897i −0.00806481 0.00585943i
\(718\) 0 0
\(719\) −6.58192 20.2571i −0.245464 0.755461i −0.995560 0.0941314i \(-0.969993\pi\)
0.750096 0.661329i \(-0.230007\pi\)
\(720\) 0 0
\(721\) −27.1057 + 19.6935i −1.00947 + 0.733423i
\(722\) 0 0
\(723\) 1.05777 3.25548i 0.0393389 0.121073i
\(724\) 0 0
\(725\) −8.52954 −0.316779
\(726\) 0 0
\(727\) 6.19488 0.229755 0.114878 0.993380i \(-0.463352\pi\)
0.114878 + 0.993380i \(0.463352\pi\)
\(728\) 0 0
\(729\) −7.92220 + 24.3820i −0.293415 + 0.903037i
\(730\) 0 0
\(731\) −35.2170 + 25.5866i −1.30255 + 0.946356i
\(732\) 0 0
\(733\) −3.15230 9.70179i −0.116433 0.358344i 0.875810 0.482656i \(-0.160328\pi\)
−0.992243 + 0.124312i \(0.960328\pi\)
\(734\) 0 0
\(735\) −0.368524 0.267748i −0.0135932 0.00987605i
\(736\) 0 0
\(737\) −16.1950 9.15813i −0.596552 0.337344i
\(738\) 0 0
\(739\) 3.50898 + 2.54942i 0.129080 + 0.0937819i 0.650452 0.759548i \(-0.274580\pi\)
−0.521372 + 0.853329i \(0.674580\pi\)
\(740\) 0 0
\(741\) 0.0957828 + 0.294789i 0.00351867 + 0.0108294i
\(742\) 0 0
\(743\) 6.08102 4.41812i 0.223091 0.162085i −0.470626 0.882333i \(-0.655972\pi\)
0.693717 + 0.720248i \(0.255972\pi\)
\(744\) 0 0
\(745\) −2.56743 + 7.90172i −0.0940632 + 0.289497i
\(746\) 0 0
\(747\) 36.7306 1.34390
\(748\) 0 0
\(749\) 25.0381 0.914871
\(750\) 0 0
\(751\) 12.5726 38.6946i 0.458782 1.41199i −0.407855 0.913047i \(-0.633723\pi\)
0.866637 0.498939i \(-0.166277\pi\)
\(752\) 0 0
\(753\) −2.31145 + 1.67937i −0.0842339 + 0.0611995i
\(754\) 0 0
\(755\) 1.65310 + 5.08772i 0.0601625 + 0.185161i
\(756\) 0 0
\(757\) 21.1944 + 15.3986i 0.770323 + 0.559672i 0.902059 0.431613i \(-0.142055\pi\)
−0.131736 + 0.991285i \(0.542055\pi\)
\(758\) 0 0
\(759\) 2.38263 2.18422i 0.0864841 0.0792823i
\(760\) 0 0
\(761\) −28.4182 20.6470i −1.03016 0.748453i −0.0618172 0.998087i \(-0.519690\pi\)
−0.968340 + 0.249634i \(0.919690\pi\)
\(762\) 0 0
\(763\) −5.49514 16.9123i −0.198938 0.612267i
\(764\) 0 0
\(765\) −10.3406 + 7.51288i −0.373865 + 0.271629i
\(766\) 0 0
\(767\) 1.11464 3.43052i 0.0402475 0.123869i
\(768\) 0 0
\(769\) −29.6963 −1.07088 −0.535439 0.844574i \(-0.679854\pi\)
−0.535439 + 0.844574i \(0.679854\pi\)
\(770\) 0 0
\(771\) 0.489232 0.0176193
\(772\) 0 0
\(773\) −4.78158 + 14.7162i −0.171981 + 0.529305i −0.999483 0.0321592i \(-0.989762\pi\)
0.827501 + 0.561464i \(0.189762\pi\)
\(774\) 0 0
\(775\) 4.34733 3.15852i 0.156161 0.113457i
\(776\) 0 0
\(777\) −0.346524 1.06649i −0.0124315 0.0382602i
\(778\) 0 0
\(779\) 11.4768 + 8.33837i 0.411198 + 0.298753i
\(780\) 0 0
\(781\) −0.180215 + 0.0205721i −0.00644860 + 0.000736128i
\(782\) 0 0
\(783\) 6.57379 + 4.77614i 0.234928 + 0.170685i
\(784\) 0 0
\(785\) −2.32242 7.14768i −0.0828907 0.255111i
\(786\) 0 0
\(787\) −18.8179 + 13.6720i −0.670784 + 0.487353i −0.870288 0.492544i \(-0.836067\pi\)
0.199503 + 0.979897i \(0.436067\pi\)
\(788\) 0 0
\(789\) −1.00654 + 3.09780i −0.0358336 + 0.110285i
\(790\) 0 0
\(791\) −3.36228 −0.119549
\(792\) 0 0
\(793\) −6.27776 −0.222930
\(794\) 0 0
\(795\) −0.547914 + 1.68630i −0.0194325 + 0.0598071i
\(796\) 0 0
\(797\) 1.49693 1.08758i 0.0530240 0.0385242i −0.560958 0.827845i \(-0.689567\pi\)
0.613982 + 0.789320i \(0.289567\pi\)
\(798\) 0 0
\(799\) −9.69968 29.8525i −0.343150 1.05611i
\(800\) 0 0
\(801\) 0.0117420 + 0.00853106i 0.000414883 + 0.000301430i
\(802\) 0 0
\(803\) 4.71455 23.1983i 0.166373 0.818649i
\(804\) 0 0
\(805\) 10.0650 + 7.31267i 0.354745 + 0.257738i
\(806\) 0 0
\(807\) −0.399623 1.22991i −0.0140674 0.0432950i
\(808\) 0 0
\(809\) −27.4388 + 19.9354i −0.964696 + 0.700893i −0.954237 0.299052i \(-0.903329\pi\)
−0.0104597 + 0.999945i \(0.503329\pi\)
\(810\) 0 0
\(811\) 17.3581 53.4228i 0.609526 1.87593i 0.147503 0.989062i \(-0.452876\pi\)
0.462024 0.886868i \(-0.347124\pi\)
\(812\) 0 0
\(813\) −1.63892 −0.0574793
\(814\) 0 0
\(815\) −3.04066 −0.106510
\(816\) 0 0
\(817\) 9.31193 28.6592i 0.325783 1.00266i
\(818\) 0 0
\(819\) 3.20114 2.32576i 0.111857 0.0812688i
\(820\) 0 0
\(821\) 3.61846 + 11.1365i 0.126285 + 0.388666i 0.994133 0.108164i \(-0.0344972\pi\)
−0.867848 + 0.496830i \(0.834497\pi\)
\(822\) 0 0
\(823\) −11.7102 8.50793i −0.408191 0.296568i 0.364678 0.931134i \(-0.381179\pi\)
−0.772869 + 0.634566i \(0.781179\pi\)
\(824\) 0 0
\(825\) 0.219408 + 0.481174i 0.00763882 + 0.0167523i
\(826\) 0 0
\(827\) −37.6707 27.3693i −1.30994 0.951725i −1.00000 0.000968458i \(-0.999692\pi\)
−0.309938 0.950757i \(-0.600308\pi\)
\(828\) 0 0
\(829\) 2.05309 + 6.31876i 0.0713068 + 0.219460i 0.980359 0.197223i \(-0.0631925\pi\)
−0.909052 + 0.416683i \(0.863192\pi\)
\(830\) 0 0
\(831\) −2.15340 + 1.56454i −0.0747008 + 0.0542733i
\(832\) 0 0
\(833\) 3.79339 11.6749i 0.131433 0.404510i
\(834\) 0 0
\(835\) 13.7870 0.477118
\(836\) 0 0
\(837\) −5.11914 −0.176943
\(838\) 0 0
\(839\) 0.276899 0.852208i 0.00955962 0.0294215i −0.946163 0.323691i \(-0.895076\pi\)
0.955723 + 0.294269i \(0.0950763\pi\)
\(840\) 0 0
\(841\) −35.3970 + 25.7174i −1.22059 + 0.886808i
\(842\) 0 0
\(843\) −1.01529 3.12473i −0.0349683 0.107621i
\(844\) 0 0
\(845\) 10.1717 + 7.39018i 0.349917 + 0.254230i
\(846\) 0 0
\(847\) −14.6821 + 16.9045i −0.504483 + 0.580844i
\(848\) 0 0
\(849\) −3.79770 2.75919i −0.130337 0.0946952i
\(850\) 0 0
\(851\) −6.52577 20.0843i −0.223700 0.688479i
\(852\) 0 0
\(853\) 25.2255 18.3274i 0.863706 0.627519i −0.0651850 0.997873i \(-0.520764\pi\)
0.928891 + 0.370354i \(0.120764\pi\)
\(854\) 0 0
\(855\) 2.73421 8.41504i 0.0935081 0.287788i
\(856\) 0 0
\(857\) −45.0004 −1.53718 −0.768592 0.639740i \(-0.779042\pi\)
−0.768592 + 0.639740i \(0.779042\pi\)
\(858\) 0 0
\(859\) −31.3959 −1.07122 −0.535608 0.844467i \(-0.679917\pi\)
−0.535608 + 0.844467i \(0.679917\pi\)
\(860\) 0 0
\(861\) −0.478312 + 1.47209i −0.0163008 + 0.0501688i
\(862\) 0 0
\(863\) 35.3252 25.6652i 1.20248 0.873654i 0.207956 0.978138i \(-0.433319\pi\)
0.994527 + 0.104484i \(0.0333191\pi\)
\(864\) 0 0
\(865\) −4.26425 13.1240i −0.144989 0.446230i
\(866\) 0 0
\(867\) 0.188850 + 0.137207i 0.00641367 + 0.00465980i
\(868\) 0 0
\(869\) −4.03276 8.84405i −0.136802 0.300014i
\(870\) 0 0
\(871\) 2.96585 + 2.15482i 0.100494 + 0.0730131i
\(872\) 0 0
\(873\) 16.7810 + 51.6465i 0.567950 + 1.74797i
\(874\) 0 0
\(875\) −1.64674 + 1.19643i −0.0556699 + 0.0404466i
\(876\) 0 0
\(877\) −8.05620 + 24.7944i −0.272038 + 0.837248i 0.717949 + 0.696095i \(0.245081\pi\)
−0.989988 + 0.141153i \(0.954919\pi\)
\(878\) 0 0
\(879\) −1.16308 −0.0392298
\(880\) 0 0
\(881\) −25.3513 −0.854106 −0.427053 0.904227i \(-0.640448\pi\)
−0.427053 + 0.904227i \(0.640448\pi\)
\(882\) 0 0
\(883\) −1.08110 + 3.32728i −0.0363819 + 0.111972i −0.967598 0.252495i \(-0.918749\pi\)
0.931216 + 0.364467i \(0.118749\pi\)
\(884\) 0 0
\(885\) 0.712003 0.517300i 0.0239337 0.0173889i
\(886\) 0 0
\(887\) −11.4323 35.1849i −0.383858 1.18139i −0.937305 0.348510i \(-0.886688\pi\)
0.553447 0.832885i \(-0.313312\pi\)
\(888\) 0 0
\(889\) 4.53412 + 3.29423i 0.152070 + 0.110485i
\(890\) 0 0
\(891\) −5.79406 + 28.5101i −0.194108 + 0.955123i
\(892\) 0 0
\(893\) 17.5790 + 12.7719i 0.588260 + 0.427396i
\(894\) 0 0
\(895\) 1.54508 + 4.75528i 0.0516465 + 0.158952i
\(896\) 0 0
\(897\) −0.515262 + 0.374360i −0.0172041 + 0.0124995i
\(898\) 0 0
\(899\) 14.1636 43.5910i 0.472382 1.45384i
\(900\) 0 0
\(901\) −47.7823 −1.59186
\(902\) 0 0
\(903\) 3.28794 0.109416
\(904\) 0 0
\(905\) 6.94262 21.3672i 0.230780 0.710269i
\(906\) 0 0
\(907\) 2.69877 1.96077i 0.0896111 0.0651063i −0.542078 0.840328i \(-0.682362\pi\)
0.631689 + 0.775222i \(0.282362\pi\)
\(908\) 0 0
\(909\) −2.44032 7.51054i −0.0809404 0.249109i
\(910\) 0 0
\(911\) −22.5772 16.4033i −0.748017 0.543466i 0.147194 0.989108i \(-0.452976\pi\)
−0.895212 + 0.445641i \(0.852976\pi\)
\(912\) 0 0
\(913\) 40.6900 4.64489i 1.34664 0.153723i
\(914\) 0 0
\(915\) −1.23918 0.900314i −0.0409659 0.0297635i
\(916\) 0 0
\(917\) −1.79742 5.53190i −0.0593562 0.182679i
\(918\) 0 0
\(919\) 39.9573 29.0307i 1.31807 0.957635i 0.318117 0.948051i \(-0.396949\pi\)
0.999954 0.00958329i \(-0.00305050\pi\)
\(920\) 0 0
\(921\) −0.134011 + 0.412444i −0.00441582 + 0.0135905i
\(922\) 0 0
\(923\) 0.0357405 0.00117641
\(924\) 0 0
\(925\) 3.45509 0.113603
\(926\) 0 0
\(927\) −15.1302 + 46.5659i −0.496940 + 1.52943i
\(928\) 0 0
\(929\) −16.9604 + 12.3224i −0.556451 + 0.404286i −0.830159 0.557527i \(-0.811750\pi\)
0.273707 + 0.961813i \(0.411750\pi\)
\(930\) 0 0
\(931\) 2.62597 + 8.08191i 0.0860628 + 0.264874i
\(932\) 0 0
\(933\) −1.96558 1.42807i −0.0643501 0.0467531i
\(934\) 0 0
\(935\) −10.5052 + 9.63039i −0.343557 + 0.314948i
\(936\) 0 0
\(937\) −4.56205 3.31452i −0.149036 0.108281i 0.510769 0.859718i \(-0.329361\pi\)
−0.659804 + 0.751437i \(0.729361\pi\)
\(938\) 0 0
\(939\) 1.42703 + 4.39194i 0.0465693 + 0.143325i
\(940\) 0 0
\(941\) 8.84980 6.42976i 0.288495 0.209604i −0.434119 0.900856i \(-0.642940\pi\)
0.722614 + 0.691251i \(0.242940\pi\)
\(942\) 0 0
\(943\) −9.00762 + 27.7226i −0.293328 + 0.902772i
\(944\) 0 0
\(945\) 1.93910 0.0630788
\(946\) 0 0
\(947\) −20.5884 −0.669032 −0.334516 0.942390i \(-0.608573\pi\)
−0.334516 + 0.942390i \(0.608573\pi\)
\(948\) 0 0
\(949\) −1.44140 + 4.43618i −0.0467899 + 0.144004i
\(950\) 0 0
\(951\) −0.784952 + 0.570301i −0.0254538 + 0.0184933i
\(952\) 0 0
\(953\) −0.454983 1.40029i −0.0147384 0.0453600i 0.943417 0.331609i \(-0.107592\pi\)
−0.958155 + 0.286249i \(0.907592\pi\)
\(954\) 0 0
\(955\) 5.83178 + 4.23704i 0.188712 + 0.137107i
\(956\) 0 0
\(957\) 3.92642 + 2.22035i 0.126923 + 0.0717737i
\(958\) 0 0
\(959\) −16.5704 12.0391i −0.535087 0.388764i
\(960\) 0 0
\(961\) −0.656515 2.02055i −0.0211779 0.0651789i
\(962\) 0 0
\(963\) 29.6017 21.5069i 0.953901 0.693050i
\(964\) 0 0
\(965\) −6.53755 + 20.1205i −0.210451 + 0.647702i
\(966\) 0 0
\(967\) 5.72960 0.184252 0.0921258 0.995747i \(-0.470634\pi\)
0.0921258 + 0.995747i \(0.470634\pi\)
\(968\) 0 0
\(969\) −2.03804 −0.0654713
\(970\) 0 0
\(971\) 4.37523 13.4656i 0.140408 0.432131i −0.855984 0.517002i \(-0.827048\pi\)
0.996392 + 0.0848714i \(0.0270479\pi\)
\(972\) 0 0
\(973\) −0.632556 + 0.459579i −0.0202788 + 0.0147334i
\(974\) 0 0
\(975\) −0.0322005 0.0991029i −0.00103124 0.00317383i
\(976\) 0 0
\(977\) −0.372572 0.270689i −0.0119196 0.00866012i 0.581809 0.813325i \(-0.302345\pi\)
−0.593729 + 0.804665i \(0.702345\pi\)
\(978\) 0 0
\(979\) 0.0140866 + 0.00796580i 0.000450208 + 0.000254588i
\(980\) 0 0
\(981\) −21.0239 15.2747i −0.671240 0.487685i
\(982\) 0 0
\(983\) 4.06585 + 12.5134i 0.129680 + 0.399115i 0.994725 0.102580i \(-0.0327098\pi\)
−0.865044 + 0.501696i \(0.832710\pi\)
\(984\) 0 0
\(985\) 16.6633 12.1066i 0.530938 0.385749i
\(986\) 0 0
\(987\) −0.732634 + 2.25481i −0.0233200 + 0.0717715i
\(988\) 0 0
\(989\) 61.9188 1.96890
\(990\) 0 0
\(991\) −37.4029 −1.18814 −0.594072 0.804412i \(-0.702480\pi\)
−0.594072 + 0.804412i \(0.702480\pi\)
\(992\) 0 0
\(993\) −0.889582 + 2.73785i −0.0282300 + 0.0868831i
\(994\) 0 0
\(995\) 9.20363 6.68683i 0.291775 0.211987i
\(996\) 0 0
\(997\) −2.51288 7.73384i −0.0795836 0.244933i 0.903347 0.428911i \(-0.141103\pi\)
−0.982930 + 0.183978i \(0.941103\pi\)
\(998\) 0 0
\(999\) −2.66286 1.93468i −0.0842493 0.0612107i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.m.b.81.1 8
3.2 odd 2 1980.2.z.d.1621.2 8
4.3 odd 2 880.2.bo.c.81.2 8
5.2 odd 4 1100.2.cb.b.1049.3 16
5.3 odd 4 1100.2.cb.b.1049.2 16
5.4 even 2 1100.2.n.b.301.2 8
11.3 even 5 inner 220.2.m.b.201.1 yes 8
11.5 even 5 2420.2.a.k.1.2 4
11.6 odd 10 2420.2.a.l.1.2 4
33.14 odd 10 1980.2.z.d.1081.2 8
44.3 odd 10 880.2.bo.c.641.2 8
44.27 odd 10 9680.2.a.cp.1.3 4
44.39 even 10 9680.2.a.co.1.3 4
55.3 odd 20 1100.2.cb.b.949.3 16
55.14 even 10 1100.2.n.b.201.2 8
55.47 odd 20 1100.2.cb.b.949.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.m.b.81.1 8 1.1 even 1 trivial
220.2.m.b.201.1 yes 8 11.3 even 5 inner
880.2.bo.c.81.2 8 4.3 odd 2
880.2.bo.c.641.2 8 44.3 odd 10
1100.2.n.b.201.2 8 55.14 even 10
1100.2.n.b.301.2 8 5.4 even 2
1100.2.cb.b.949.2 16 55.47 odd 20
1100.2.cb.b.949.3 16 55.3 odd 20
1100.2.cb.b.1049.2 16 5.3 odd 4
1100.2.cb.b.1049.3 16 5.2 odd 4
1980.2.z.d.1081.2 8 33.14 odd 10
1980.2.z.d.1621.2 8 3.2 odd 2
2420.2.a.k.1.2 4 11.5 even 5
2420.2.a.l.1.2 4 11.6 odd 10
9680.2.a.co.1.3 4 44.39 even 10
9680.2.a.cp.1.3 4 44.27 odd 10