L(s) = 1 | + (0.321 + 0.989i)3-s + (0.699 − 2.15i)7-s + (1.55 − 1.12i)9-s + (−2.50 − 2.16i)11-s + (−0.217 + 0.157i)13-s + (−4.79 − 3.48i)17-s + (−1.77 − 5.46i)19-s + 2.35·21-s − 2.92·23-s + (4.13 + 3.00i)27-s + (2.00 − 6.16i)29-s + (−0.202 + 0.146i)31-s + (1.34 − 3.17i)33-s + (−3.18 + 9.79i)37-s + (−0.225 − 0.164i)39-s + ⋯ |
L(s) = 1 | + (0.185 + 0.571i)3-s + (0.264 − 0.813i)7-s + (0.517 − 0.375i)9-s + (−0.756 − 0.654i)11-s + (−0.0601 + 0.0437i)13-s + (−1.16 − 0.844i)17-s + (−0.407 − 1.25i)19-s + 0.513·21-s − 0.610·23-s + (0.796 + 0.578i)27-s + (0.371 − 1.14i)29-s + (−0.0363 + 0.0263i)31-s + (0.233 − 0.553i)33-s + (−0.523 + 1.61i)37-s + (−0.0361 − 0.0262i)39-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)(0.204+0.978i)Λ(2−s)
Λ(s)=(=(1100s/2ΓC(s+1/2)L(s)(0.204+0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
1100
= 22⋅52⋅11
|
Sign: |
0.204+0.978i
|
Analytic conductor: |
8.78354 |
Root analytic conductor: |
2.96370 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1100(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1100, ( :1/2), 0.204+0.978i)
|
Particular Values
L(1) |
≈ |
1.349020303 |
L(21) |
≈ |
1.349020303 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1+(2.50+2.16i)T |
good | 3 | 1+(−0.321−0.989i)T+(−2.42+1.76i)T2 |
| 7 | 1+(−0.699+2.15i)T+(−5.66−4.11i)T2 |
| 13 | 1+(0.217−0.157i)T+(4.01−12.3i)T2 |
| 17 | 1+(4.79+3.48i)T+(5.25+16.1i)T2 |
| 19 | 1+(1.77+5.46i)T+(−15.3+11.1i)T2 |
| 23 | 1+2.92T+23T2 |
| 29 | 1+(−2.00+6.16i)T+(−23.4−17.0i)T2 |
| 31 | 1+(0.202−0.146i)T+(9.57−29.4i)T2 |
| 37 | 1+(3.18−9.79i)T+(−29.9−21.7i)T2 |
| 41 | 1+(0.730+2.24i)T+(−33.1+24.0i)T2 |
| 43 | 1+7.56T+43T2 |
| 47 | 1+(0.349+1.07i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−8.25+5.99i)T+(16.3−50.4i)T2 |
| 59 | 1+(−3.52+10.8i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−3.73−2.71i)T+(18.8+58.0i)T2 |
| 67 | 1−6.11T+67T2 |
| 71 | 1+(4.11+2.99i)T+(21.9+67.5i)T2 |
| 73 | 1+(2.52−7.75i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−6.71+4.88i)T+(24.4−75.1i)T2 |
| 83 | 1+(−13.2−9.65i)T+(25.6+78.9i)T2 |
| 89 | 1+5.73T+89T2 |
| 97 | 1+(−3.65+2.65i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.828381758482993571199217041343, −8.850116477921805230217408626441, −8.166978346734256910933914153489, −7.07609766006653730819255393288, −6.50640285503763083519348132425, −5.07337401372084203913481600088, −4.47223481188656011912914839372, −3.51201877451047481420628366329, −2.34854775999596368887724224267, −0.56235989430303020513116724707,
1.77722994618713293408940274423, 2.35614257417165989008524587201, 3.89943946449292961670933999378, 4.90566058467562133030035121648, 5.82110556296640175344503208846, 6.77679008099699964515567885934, 7.61576379018627170302788119060, 8.342342903252350967602849441752, 9.001831118150046083668826570749, 10.28451455486558671019876222447