Properties

Label 2-1100-1.1-c5-0-37
Degree $2$
Conductor $1100$
Sign $-1$
Analytic cond. $176.422$
Root an. cond. $13.2824$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.6·3-s − 123.·7-s − 129.·9-s − 121·11-s − 917.·13-s − 223.·17-s + 1.56e3·19-s + 1.31e3·21-s + 1.92e3·23-s + 3.97e3·27-s + 3.73e3·29-s + 8.09e3·31-s + 1.29e3·33-s + 1.75e3·37-s + 9.80e3·39-s − 4.03e3·41-s + 6.22e3·43-s − 3.50e3·47-s − 1.62e3·49-s + 2.38e3·51-s + 4.87e3·53-s − 1.66e4·57-s + 2.18e3·59-s − 1.05e4·61-s + 1.58e4·63-s − 2.15e4·67-s − 2.05e4·69-s + ⋯
L(s)  = 1  − 0.684·3-s − 0.950·7-s − 0.530·9-s − 0.301·11-s − 1.50·13-s − 0.187·17-s + 0.993·19-s + 0.650·21-s + 0.758·23-s + 1.04·27-s + 0.823·29-s + 1.51·31-s + 0.206·33-s + 0.211·37-s + 1.03·39-s − 0.374·41-s + 0.513·43-s − 0.231·47-s − 0.0967·49-s + 0.128·51-s + 0.238·53-s − 0.680·57-s + 0.0815·59-s − 0.363·61-s + 0.504·63-s − 0.585·67-s − 0.519·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(176.422\)
Root analytic conductor: \(13.2824\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1100,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + 121T \)
good3 \( 1 + 10.6T + 243T^{2} \)
7 \( 1 + 123.T + 1.68e4T^{2} \)
13 \( 1 + 917.T + 3.71e5T^{2} \)
17 \( 1 + 223.T + 1.41e6T^{2} \)
19 \( 1 - 1.56e3T + 2.47e6T^{2} \)
23 \( 1 - 1.92e3T + 6.43e6T^{2} \)
29 \( 1 - 3.73e3T + 2.05e7T^{2} \)
31 \( 1 - 8.09e3T + 2.86e7T^{2} \)
37 \( 1 - 1.75e3T + 6.93e7T^{2} \)
41 \( 1 + 4.03e3T + 1.15e8T^{2} \)
43 \( 1 - 6.22e3T + 1.47e8T^{2} \)
47 \( 1 + 3.50e3T + 2.29e8T^{2} \)
53 \( 1 - 4.87e3T + 4.18e8T^{2} \)
59 \( 1 - 2.18e3T + 7.14e8T^{2} \)
61 \( 1 + 1.05e4T + 8.44e8T^{2} \)
67 \( 1 + 2.15e4T + 1.35e9T^{2} \)
71 \( 1 - 3.64e4T + 1.80e9T^{2} \)
73 \( 1 + 1.67e4T + 2.07e9T^{2} \)
79 \( 1 + 4.45e3T + 3.07e9T^{2} \)
83 \( 1 + 3.35e4T + 3.93e9T^{2} \)
89 \( 1 - 1.06e5T + 5.58e9T^{2} \)
97 \( 1 - 2.92e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.812633765976544954885098670577, −7.77979793022761275258522686715, −6.90647216259293069350844450107, −6.21597557358647333645832838897, −5.26560035815040153949942892364, −4.63022075865145605392796774799, −3.14960062135578826456254669380, −2.56371674810102984064330254716, −0.870613339406615733549860978518, 0, 0.870613339406615733549860978518, 2.56371674810102984064330254716, 3.14960062135578826456254669380, 4.63022075865145605392796774799, 5.26560035815040153949942892364, 6.21597557358647333645832838897, 6.90647216259293069350844450107, 7.77979793022761275258522686715, 8.812633765976544954885098670577

Graph of the $Z$-function along the critical line