Properties

Label 1100.6.a.i
Level 11001100
Weight 66
Character orbit 1100.a
Self dual yes
Analytic conductor 176.422176.422
Analytic rank 11
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(1,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 1100=225211 1100 = 2^{2} \cdot 5^{2} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 1100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 176.422201794176.422201794
Analytic rank: 11
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x71155x6+1122x5+365994x4476334x328296355x2+54177943x+132029745 x^{8} - x^{7} - 1155x^{6} + 1122x^{5} + 365994x^{4} - 476334x^{3} - 28296355x^{2} + 54177943x + 132029745 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 27352 2^{7}\cdot 3\cdot 5^{2}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q3+(β52β122)q7+(β5+β4+2β1+47)q9121q11+(β5β2+6β1+134)q13+(β7+β6+2β5+2)q17++(121β5121β4+5687)q99+O(q100) q + ( - \beta_1 - 1) q^{3} + (\beta_{5} - 2 \beta_1 - 22) q^{7} + ( - \beta_{5} + \beta_{4} + 2 \beta_1 + 47) q^{9} - 121 q^{11} + ( - \beta_{5} - \beta_{2} + 6 \beta_1 + 134) q^{13} + (\beta_{7} + \beta_{6} + 2 \beta_{5} + \cdots - 2) q^{17}+ \cdots + (121 \beta_{5} - 121 \beta_{4} + \cdots - 5687) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q9q3175q7+377q9968q11+1072q1337q171356q19+5462q211327q232670q2711785q29+3532q31+1089q33+8176q3716831q39+45617q99+O(q100) 8 q - 9 q^{3} - 175 q^{7} + 377 q^{9} - 968 q^{11} + 1072 q^{13} - 37 q^{17} - 1356 q^{19} + 5462 q^{21} - 1327 q^{23} - 2670 q^{27} - 11785 q^{29} + 3532 q^{31} + 1089 q^{33} + 8176 q^{37} - 16831 q^{39}+ \cdots - 45617 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8x71155x6+1122x5+365994x4476334x328296355x2+54177943x+132029745 x^{8} - x^{7} - 1155x^{6} + 1122x^{5} + 365994x^{4} - 476334x^{3} - 28296355x^{2} + 54177943x + 132029745 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (29993519ν7+972671008ν6+55968546197ν51193739185525ν4+21 ⁣ ⁣05)/25734183149700 ( - 29993519 \nu^{7} + 972671008 \nu^{6} + 55968546197 \nu^{5} - 1193739185525 \nu^{4} + \cdots - 21\!\cdots\!05 ) / 25734183149700 Copy content Toggle raw display
β3\beta_{3}== (37037373ν7921476764ν6+45229096399ν5+773761442225ν4+40 ⁣ ⁣35)/25734183149700 ( - 37037373 \nu^{7} - 921476764 \nu^{6} + 45229096399 \nu^{5} + 773761442225 \nu^{4} + \cdots - 40\!\cdots\!35 ) / 25734183149700 Copy content Toggle raw display
β4\beta_{4}== (21022391ν7265098288ν6+23951024733ν5+274101152025ν4+17 ⁣ ⁣95)/12867091574850 ( - 21022391 \nu^{7} - 265098288 \nu^{6} + 23951024733 \nu^{5} + 274101152025 \nu^{4} + \cdots - 17\!\cdots\!95 ) / 12867091574850 Copy content Toggle raw display
β5\beta_{5}== (21022391ν7265098288ν6+23951024733ν5+274101152025ν4++20 ⁣ ⁣55)/12867091574850 ( - 21022391 \nu^{7} - 265098288 \nu^{6} + 23951024733 \nu^{5} + 274101152025 \nu^{4} + \cdots + 20\!\cdots\!55 ) / 12867091574850 Copy content Toggle raw display
β6\beta_{6}== (27803583ν7+99527944ν633424966629ν5121794895375ν4+482867449744815)/4289030524950 ( 27803583 \nu^{7} + 99527944 \nu^{6} - 33424966629 \nu^{5} - 121794895375 \nu^{4} + \cdots - 482867449744815 ) / 4289030524950 Copy content Toggle raw display
β7\beta_{7}== (75377227ν727532536ν6+83784812576ν5+28968909500ν4+12 ⁣ ⁣15)/2144515262475 ( - 75377227 \nu^{7} - 27532536 \nu^{6} + 83784812576 \nu^{5} + 28968909500 \nu^{4} + \cdots - 12\!\cdots\!15 ) / 2144515262475 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5+β4+289 -\beta_{5} + \beta_{4} + 289 Copy content Toggle raw display
ν3\nu^{3}== 3β611β53β4+4β32β2+516β147 -3\beta_{6} - 11\beta_{5} - 3\beta_{4} + 4\beta_{3} - 2\beta_{2} + 516\beta _1 - 47 Copy content Toggle raw display
ν4\nu^{4}== 8β773β6719β5+680β460β336β2+329β1+150562 -8\beta_{7} - 73\beta_{6} - 719\beta_{5} + 680\beta_{4} - 60\beta_{3} - 36\beta_{2} + 329\beta _1 + 150562 Copy content Toggle raw display
ν5\nu^{5}== 187β73587β69365β53106β4+3588β31260β2++58422 - 187 \beta_{7} - 3587 \beta_{6} - 9365 \beta_{5} - 3106 \beta_{4} + 3588 \beta_{3} - 1260 \beta_{2} + \cdots + 58422 Copy content Toggle raw display
ν6\nu^{6}== 6368β774971β6521509β5+443087β465339β3++89500577 - 6368 \beta_{7} - 74971 \beta_{6} - 521509 \beta_{5} + 443087 \beta_{4} - 65339 \beta_{3} + \cdots + 89500577 Copy content Toggle raw display
ν7\nu^{7}== 237057β73019971β66969672β52362314β4+2698620β3++95589645 - 237057 \beta_{7} - 3019971 \beta_{6} - 6969672 \beta_{5} - 2362314 \beta_{4} + 2698620 \beta_{3} + \cdots + 95589645 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
26.2245
18.9133
9.67677
3.57844
−1.42686
−10.7235
−19.5686
−25.6740
0 −27.2245 0 0 0 −247.835 0 498.172 0
1.2 0 −19.9133 0 0 0 63.9161 0 153.541 0
1.3 0 −10.6768 0 0 0 −123.211 0 −129.007 0
1.4 0 −4.57844 0 0 0 209.239 0 −222.038 0
1.5 0 0.426864 0 0 0 59.7938 0 −242.818 0
1.6 0 9.72346 0 0 0 −220.259 0 −148.454 0
1.7 0 18.5686 0 0 0 50.8505 0 101.795 0
1.8 0 24.6740 0 0 0 32.5053 0 365.809 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.6.a.i 8
5.b even 2 1 1100.6.a.j yes 8
5.c odd 4 2 1100.6.b.h 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1100.6.a.i 8 1.a even 1 1 trivial
1100.6.a.j yes 8 5.b even 2 1
1100.6.b.h 16 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T38+9T371120T367975T35+343164T34+1906081T33++50395500 T_{3}^{8} + 9 T_{3}^{7} - 1120 T_{3}^{6} - 7975 T_{3}^{5} + 343164 T_{3}^{4} + 1906081 T_{3}^{3} + \cdots + 50395500 acting on S6new(Γ0(1100))S_{6}^{\mathrm{new}}(\Gamma_0(1100)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8+9T7++50395500 T^{8} + 9 T^{7} + \cdots + 50395500 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+88 ⁣ ⁣76 T^{8} + \cdots - 88\!\cdots\!76 Copy content Toggle raw display
1111 (T+121)8 (T + 121)^{8} Copy content Toggle raw display
1313 T8++48 ⁣ ⁣89 T^{8} + \cdots + 48\!\cdots\!89 Copy content Toggle raw display
1717 T8++28 ⁣ ⁣00 T^{8} + \cdots + 28\!\cdots\!00 Copy content Toggle raw display
1919 T8+71 ⁣ ⁣03 T^{8} + \cdots - 71\!\cdots\!03 Copy content Toggle raw display
2323 T8+45 ⁣ ⁣53 T^{8} + \cdots - 45\!\cdots\!53 Copy content Toggle raw display
2929 T8++37 ⁣ ⁣75 T^{8} + \cdots + 37\!\cdots\!75 Copy content Toggle raw display
3131 T8++19 ⁣ ⁣25 T^{8} + \cdots + 19\!\cdots\!25 Copy content Toggle raw display
3737 T8++36 ⁣ ⁣72 T^{8} + \cdots + 36\!\cdots\!72 Copy content Toggle raw display
4141 T8++16 ⁣ ⁣00 T^{8} + \cdots + 16\!\cdots\!00 Copy content Toggle raw display
4343 T8++11 ⁣ ⁣00 T^{8} + \cdots + 11\!\cdots\!00 Copy content Toggle raw display
4747 T8++10 ⁣ ⁣00 T^{8} + \cdots + 10\!\cdots\!00 Copy content Toggle raw display
5353 T8++61 ⁣ ⁣48 T^{8} + \cdots + 61\!\cdots\!48 Copy content Toggle raw display
5959 T8++19 ⁣ ⁣00 T^{8} + \cdots + 19\!\cdots\!00 Copy content Toggle raw display
6161 T8++45 ⁣ ⁣72 T^{8} + \cdots + 45\!\cdots\!72 Copy content Toggle raw display
6767 T8+74 ⁣ ⁣00 T^{8} + \cdots - 74\!\cdots\!00 Copy content Toggle raw display
7171 T8++18 ⁣ ⁣00 T^{8} + \cdots + 18\!\cdots\!00 Copy content Toggle raw display
7373 T8++54 ⁣ ⁣00 T^{8} + \cdots + 54\!\cdots\!00 Copy content Toggle raw display
7979 T8++16 ⁣ ⁣68 T^{8} + \cdots + 16\!\cdots\!68 Copy content Toggle raw display
8383 T8++72 ⁣ ⁣25 T^{8} + \cdots + 72\!\cdots\!25 Copy content Toggle raw display
8989 T8++11 ⁣ ⁣73 T^{8} + \cdots + 11\!\cdots\!73 Copy content Toggle raw display
9797 T8+22 ⁣ ⁣93 T^{8} + \cdots - 22\!\cdots\!93 Copy content Toggle raw display
show more
show less