[N,k,chi] = [1100,6,Mod(1,1100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1100.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
− 1 -1 − 1
11 11 1 1
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 8 + 9 T 3 7 − 1120 T 3 6 − 7975 T 3 5 + 343164 T 3 4 + 1906081 T 3 3 + ⋯ + 50395500 T_{3}^{8} + 9 T_{3}^{7} - 1120 T_{3}^{6} - 7975 T_{3}^{5} + 343164 T_{3}^{4} + 1906081 T_{3}^{3} + \cdots + 50395500 T 3 8 + 9 T 3 7 − 1 1 2 0 T 3 6 − 7 9 7 5 T 3 5 + 3 4 3 1 6 4 T 3 4 + 1 9 0 6 0 8 1 T 3 3 + ⋯ + 5 0 3 9 5 5 0 0
T3^8 + 9*T3^7 - 1120*T3^6 - 7975*T3^5 + 343164*T3^4 + 1906081*T3^3 - 24699885*T3^2 - 107890200*T3 + 50395500
acting on S 6 n e w ( Γ 0 ( 1100 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(1100)) S 6 n e w ( Γ 0 ( 1 1 0 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 + 9 T 7 + ⋯ + 50395500 T^{8} + 9 T^{7} + \cdots + 50395500 T 8 + 9 T 7 + ⋯ + 5 0 3 9 5 5 0 0
T^8 + 9*T^7 - 1120*T^6 - 7975*T^5 + 343164*T^4 + 1906081*T^3 - 24699885*T^2 - 107890200*T + 50395500
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 + ⋯ − 88 ⋯ 76 T^{8} + \cdots - 88\!\cdots\!76 T 8 + ⋯ − 8 8 ⋯ 7 6
T^8 + 175*T^7 - 74788*T^6 - 8881965*T^5 + 1689437020*T^4 + 35169602195*T^3 - 13520762434117*T^2 + 630193924457460*T - 8890073993038176
11 11 1 1
( T + 121 ) 8 (T + 121)^{8} ( T + 1 2 1 ) 8
(T + 121)^8
13 13 1 3
T 8 + ⋯ + 48 ⋯ 89 T^{8} + \cdots + 48\!\cdots\!89 T 8 + ⋯ + 4 8 ⋯ 8 9
T^8 - 1072*T^7 - 1362672*T^6 + 1458773696*T^5 + 424642563130*T^4 - 480208187435376*T^3 + 7090995311508952*T^2 + 6330938229952470752*T + 48922991318391482589
17 17 1 7
T 8 + ⋯ + 28 ⋯ 00 T^{8} + \cdots + 28\!\cdots\!00 T 8 + ⋯ + 2 8 ⋯ 0 0
T^8 + 37*T^7 - 8845468*T^6 + 1460929025*T^5 + 24051498971964*T^4 - 9053754734229087*T^3 - 20484699331147188237*T^2 + 8954220006926119521540*T + 2866338637698767835528000
19 19 1 9
T 8 + ⋯ − 71 ⋯ 03 T^{8} + \cdots - 71\!\cdots\!03 T 8 + ⋯ − 7 1 ⋯ 0 3
T^8 + 1356*T^7 - 4614088*T^6 - 6449206132*T^5 + 5732304126450*T^4 + 8935028663064964*T^3 - 782014334785853456*T^2 - 3058655131329208288092*T - 718642767954955197631003
23 23 2 3
T 8 + ⋯ − 45 ⋯ 53 T^{8} + \cdots - 45\!\cdots\!53 T 8 + ⋯ − 4 5 ⋯ 5 3
T^8 + 1327*T^7 - 31096719*T^6 - 46948364772*T^5 + 226455759938232*T^4 + 423099414389490588*T^3 - 341085972891092646861*T^2 - 990574109146129457152143*T - 452630853291348751647964653
29 29 2 9
T 8 + ⋯ + 37 ⋯ 75 T^{8} + \cdots + 37\!\cdots\!75 T 8 + ⋯ + 3 7 ⋯ 7 5
T^8 + 11785*T^7 - 29658815*T^6 - 598331466540*T^5 + 124216785632280*T^4 + 9338368873636799676*T^3 - 1697767848173153599245*T^2 - 44625434030629068136044825*T + 37480821183458190533362300875
31 31 3 1
T 8 + ⋯ + 19 ⋯ 25 T^{8} + \cdots + 19\!\cdots\!25 T 8 + ⋯ + 1 9 ⋯ 2 5
T^8 - 3532*T^7 - 106856588*T^6 + 139911496276*T^5 + 3445506246565166*T^4 + 2460100232890805308*T^3 - 18272798243264818114620*T^2 - 14056749004633434210658500*T + 19252092671073957768352457625
37 37 3 7
T 8 + ⋯ + 36 ⋯ 72 T^{8} + \cdots + 36\!\cdots\!72 T 8 + ⋯ + 3 6 ⋯ 7 2
T^8 - 8176*T^7 - 269763951*T^6 + 1585764973304*T^5 + 20322275061258907*T^4 - 72286031435906281344*T^3 - 349864357086302782861469*T^2 + 510046084333300992689862776*T + 365772749276106097477632407472
41 41 4 1
T 8 + ⋯ + 16 ⋯ 00 T^{8} + \cdots + 16\!\cdots\!00 T 8 + ⋯ + 1 6 ⋯ 0 0
T^8 - 15846*T^7 - 356652169*T^6 + 4547154786720*T^5 + 46414331171046591*T^4 - 328008817421339597262*T^3 - 2220572376939811189914135*T^2 + 1907163218957696662339250100*T + 16055000177435961871538618568000
43 43 4 3
T 8 + ⋯ + 11 ⋯ 00 T^{8} + \cdots + 11\!\cdots\!00 T 8 + ⋯ + 1 1 ⋯ 0 0
T^8 - 530*T^7 - 455360659*T^6 - 212660070720*T^5 + 49707857273131300*T^4 - 12191248343861044000*T^3 - 1423869206208505463770000*T^2 + 1408396010440666941069600000*T + 1103439543682187104465095000000
47 47 4 7
T 8 + ⋯ + 10 ⋯ 00 T^{8} + \cdots + 10\!\cdots\!00 T 8 + ⋯ + 1 0 ⋯ 0 0
T^8 - 9252*T^7 - 876279555*T^6 + 3411337375600*T^5 + 196364225667984579*T^4 - 8540967930963770868*T^3 - 9958235339812528392789825*T^2 + 4100817248883104619003618600*T + 109918349499213581590210487040000
53 53 5 3
T 8 + ⋯ + 61 ⋯ 48 T^{8} + \cdots + 61\!\cdots\!48 T 8 + ⋯ + 6 1 ⋯ 4 8
T^8 - 24991*T^7 - 315029238*T^6 + 11916780220701*T^5 - 58408014290272794*T^4 - 518107881471869242719*T^3 + 5015662002974958764539833*T^2 - 11090637041890548075592377816*T + 613592527480872034489452053748
59 59 5 9
T 8 + ⋯ + 19 ⋯ 00 T^{8} + \cdots + 19\!\cdots\!00 T 8 + ⋯ + 1 9 ⋯ 0 0
T^8 - 1440*T^7 - 2926375435*T^6 - 2468009673420*T^5 + 2347108570329165555*T^4 + 6696887557264804492632*T^3 - 312145101519180136013010825*T^2 - 270950176736929550441820465900*T + 1952481439427368534097809816260000
61 61 6 1
T 8 + ⋯ + 45 ⋯ 72 T^{8} + \cdots + 45\!\cdots\!72 T 8 + ⋯ + 4 5 ⋯ 7 2
T^8 + 54447*T^7 - 2076114512*T^6 - 171457959914621*T^5 - 1937806203884580740*T^4 + 62630727998905485436843*T^3 + 1741776086135603517392777211*T^2 + 15267104179136323707383559967924*T + 45844369764979697829108606412879572
67 67 6 7
T 8 + ⋯ − 74 ⋯ 00 T^{8} + \cdots - 74\!\cdots\!00 T 8 + ⋯ − 7 4 ⋯ 0 0
T^8 + 109232*T^7 + 1063675404*T^6 - 194741707148704*T^5 - 5445759188097065216*T^4 - 32851382918297398522368*T^3 + 54593008387851472107099136*T^2 + 70451465776593767511070883840*T - 74251913633879352972744110899200
71 71 7 1
T 8 + ⋯ + 18 ⋯ 00 T^{8} + \cdots + 18\!\cdots\!00 T 8 + ⋯ + 1 8 ⋯ 0 0
T^8 + 45026*T^7 - 2522511305*T^6 - 85984963356066*T^5 + 1572250106761984008*T^4 + 43872664900194135194616*T^3 - 224913468578926790099674080*T^2 - 3668396828310467710700242471200*T + 18688978435171282448047653078360000
73 73 7 3
T 8 + ⋯ + 54 ⋯ 00 T^{8} + \cdots + 54\!\cdots\!00 T 8 + ⋯ + 5 4 ⋯ 0 0
T^8 - 2221*T^7 - 12396836592*T^6 + 84415396867847*T^5 + 39630246943498350976*T^4 - 531409234012954028829801*T^3 - 15312866957148127673873607185*T^2 + 58648042147110300279533129884100*T + 54492165215845550181122923355508000
79 79 7 9
T 8 + ⋯ + 16 ⋯ 68 T^{8} + \cdots + 16\!\cdots\!68 T 8 + ⋯ + 1 6 ⋯ 6 8
T^8 - 74369*T^7 - 6926646986*T^6 + 337737157552727*T^5 + 14350166680516402478*T^4 - 225531969584822780084509*T^3 - 656576740326724594505606567*T^2 + 6447295414422985417298606661820*T + 16789818013234462688840092225454368
83 83 8 3
T 8 + ⋯ + 72 ⋯ 25 T^{8} + \cdots + 72\!\cdots\!25 T 8 + ⋯ + 7 2 ⋯ 2 5
T^8 + 5443*T^7 - 12804217811*T^6 + 134274188964354*T^5 + 35603952789482978394*T^4 - 196925862635040975549462*T^3 - 34741492880344490991826834659*T^2 - 57990353055776288914536530583885*T + 7236215354364513742169030561822357625
89 89 8 9
T 8 + ⋯ + 11 ⋯ 73 T^{8} + \cdots + 11\!\cdots\!73 T 8 + ⋯ + 1 1 ⋯ 7 3
T^8 - 106151*T^7 - 2952592643*T^6 + 298963590598542*T^5 + 4378178422729847370*T^4 - 282016066746358478904786*T^3 - 3598618718803408423123574619*T^2 + 88702467646545309556109929655313*T + 1181128083513111936424988654516014473
97 97 9 7
T 8 + ⋯ − 22 ⋯ 93 T^{8} + \cdots - 22\!\cdots\!93 T 8 + ⋯ − 2 2 ⋯ 9 3
T^8 + 75273*T^7 - 24889028409*T^6 - 791564609651818*T^5 + 153248698163953192902*T^4 + 345655079223438898544022*T^3 - 260918343480952852561156000451*T^2 + 5304692361076388811502323721597773*T - 22143789959684112114935108545069568793
show more
show less