L(s) = 1 | − 14.8·3-s + 166.·7-s − 21.7·9-s + 121·11-s + 491.·13-s − 1.58e3·17-s + 172.·19-s − 2.47e3·21-s − 2.34e3·23-s + 3.93e3·27-s + 3.71e3·29-s + 7.94e3·31-s − 1.79e3·33-s + 3.46e3·37-s − 7.31e3·39-s + 1.25e4·41-s + 1.92e4·43-s − 2.76e4·47-s + 1.09e4·49-s + 2.35e4·51-s + 3.32e4·53-s − 2.56e3·57-s − 3.80e4·59-s − 6.56e3·61-s − 3.62e3·63-s − 6.00e4·67-s + 3.49e4·69-s + ⋯ |
L(s) = 1 | − 0.954·3-s + 1.28·7-s − 0.0895·9-s + 0.301·11-s + 0.807·13-s − 1.32·17-s + 0.109·19-s − 1.22·21-s − 0.926·23-s + 1.03·27-s + 0.819·29-s + 1.48·31-s − 0.287·33-s + 0.416·37-s − 0.770·39-s + 1.16·41-s + 1.58·43-s − 1.82·47-s + 0.649·49-s + 1.26·51-s + 1.62·53-s − 0.104·57-s − 1.42·59-s − 0.225·61-s − 0.115·63-s − 1.63·67-s + 0.883·69-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(1100s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.750521012 |
L(21) |
≈ |
1.750521012 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1−121T |
good | 3 | 1+14.8T+243T2 |
| 7 | 1−166.T+1.68e4T2 |
| 13 | 1−491.T+3.71e5T2 |
| 17 | 1+1.58e3T+1.41e6T2 |
| 19 | 1−172.T+2.47e6T2 |
| 23 | 1+2.34e3T+6.43e6T2 |
| 29 | 1−3.71e3T+2.05e7T2 |
| 31 | 1−7.94e3T+2.86e7T2 |
| 37 | 1−3.46e3T+6.93e7T2 |
| 41 | 1−1.25e4T+1.15e8T2 |
| 43 | 1−1.92e4T+1.47e8T2 |
| 47 | 1+2.76e4T+2.29e8T2 |
| 53 | 1−3.32e4T+4.18e8T2 |
| 59 | 1+3.80e4T+7.14e8T2 |
| 61 | 1+6.56e3T+8.44e8T2 |
| 67 | 1+6.00e4T+1.35e9T2 |
| 71 | 1+5.26e4T+1.80e9T2 |
| 73 | 1+1.45e4T+2.07e9T2 |
| 79 | 1+5.92e4T+3.07e9T2 |
| 83 | 1−3.98e4T+3.93e9T2 |
| 89 | 1+1.29e5T+5.58e9T2 |
| 97 | 1−1.64e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.929704669057669938034998743683, −8.385321088091424797728130935036, −7.47864692820783619115644707375, −6.30461113518017143938901629316, −5.91978356561965489492213650809, −4.70412306344966319129672104691, −4.31211441432061659396914629450, −2.73854356549439115407926822824, −1.56549028518069819016539282236, −0.62673361611550052738025976653,
0.62673361611550052738025976653, 1.56549028518069819016539282236, 2.73854356549439115407926822824, 4.31211441432061659396914629450, 4.70412306344966319129672104691, 5.91978356561965489492213650809, 6.30461113518017143938901629316, 7.47864692820783619115644707375, 8.385321088091424797728130935036, 8.929704669057669938034998743683