[N,k,chi] = [1100,6,Mod(1,1100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1100.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
− 1 -1 − 1
11 11 1 1
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 8 − 27 T 3 7 − 796 T 3 6 + 20845 T 3 5 + 164040 T 3 4 − 4174435 T 3 3 + ⋯ − 806019876 T_{3}^{8} - 27 T_{3}^{7} - 796 T_{3}^{6} + 20845 T_{3}^{5} + 164040 T_{3}^{4} - 4174435 T_{3}^{3} + \cdots - 806019876 T 3 8 − 2 7 T 3 7 − 7 9 6 T 3 6 + 2 0 8 4 5 T 3 5 + 1 6 4 0 4 0 T 3 4 − 4 1 7 4 4 3 5 T 3 3 + ⋯ − 8 0 6 0 1 9 8 7 6
T3^8 - 27*T3^7 - 796*T3^6 + 20845*T3^5 + 164040*T3^4 - 4174435*T3^3 - 1467489*T3^2 + 240983568*T3 - 806019876
acting on S 6 n e w ( Γ 0 ( 1100 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(1100)) S 6 n e w ( Γ 0 ( 1 1 0 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 − 27 T 7 + ⋯ − 806019876 T^{8} - 27 T^{7} + \cdots - 806019876 T 8 − 2 7 T 7 + ⋯ − 8 0 6 0 1 9 8 7 6
T^8 - 27*T^7 - 796*T^6 + 20845*T^5 + 164040*T^4 - 4174435*T^3 - 1467489*T^2 + 240983568*T - 806019876
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 + ⋯ + 26 ⋯ 00 T^{8} + \cdots + 26\!\cdots\!00 T 8 + ⋯ + 2 6 ⋯ 0 0
T^8 - 95*T^7 - 76386*T^6 + 6185905*T^5 + 1756812982*T^4 - 88065177555*T^3 - 14968227075303*T^2 + 164273224522500*T + 26176650194520000
11 11 1 1
( T − 121 ) 8 (T - 121)^{8} ( T − 1 2 1 ) 8
(T - 121)^8
13 13 1 3
T 8 + ⋯ − 89 ⋯ 25 T^{8} + \cdots - 89\!\cdots\!25 T 8 + ⋯ − 8 9 ⋯ 2 5
T^8 - 294*T^7 - 1323358*T^6 + 464918866*T^5 + 388997143812*T^4 - 143029591687954*T^3 - 28474750265694354*T^2 + 12216568003289117670*T - 891554725245366703125
17 17 1 7
T 8 + ⋯ + 75 ⋯ 08 T^{8} + \cdots + 75\!\cdots\!08 T 8 + ⋯ + 7 5 ⋯ 0 8
T^8 - 515*T^7 - 3288182*T^6 + 1740210085*T^5 + 2367813772018*T^4 - 934748063229935*T^3 - 693280164129571995*T^2 + 138300137474625705900*T + 75451166504765876992608
19 19 1 9
T 8 + ⋯ − 11 ⋯ 89 T^{8} + \cdots - 11\!\cdots\!89 T 8 + ⋯ − 1 1 ⋯ 8 9
T^8 + 354*T^7 - 11308006*T^6 - 6119322094*T^5 + 27781233806340*T^4 + 2929891334233846*T^3 - 22671404637401809946*T^2 + 10065684003726792063894*T - 1100875006767821221712389
23 23 2 3
T 8 + ⋯ − 35 ⋯ 77 T^{8} + \cdots - 35\!\cdots\!77 T 8 + ⋯ − 3 5 ⋯ 7 7
T^8 - 3073*T^7 - 18726231*T^6 + 67845868092*T^5 + 48623435090280*T^4 - 304591910994998676*T^3 + 139226681891868162867*T^2 + 128384575613479113623217*T - 35166835227574862174662677
29 29 2 9
T 8 + ⋯ − 14 ⋯ 19 T^{8} + \cdots - 14\!\cdots\!19 T 8 + ⋯ − 1 4 ⋯ 1 9
T^8 - 2743*T^7 - 57702581*T^6 + 234480376864*T^5 + 627468091772648*T^4 - 4285929644426353184*T^3 + 5650159866888782520999*T^2 + 6020400749308731419943*T - 1498738735866810302369226819
31 31 3 1
T 8 + ⋯ + 62 ⋯ 25 T^{8} + \cdots + 62\!\cdots\!25 T 8 + ⋯ + 6 2 ⋯ 2 5
T^8 - 3768*T^7 - 104259904*T^6 + 245310001048*T^5 + 3172583179546026*T^4 - 1910619633030715528*T^3 - 26578345674921150247704*T^2 + 5356344429180936709930920*T + 62398456862040213736476862125
37 37 3 7
T 8 + ⋯ − 30 ⋯ 52 T^{8} + \cdots - 30\!\cdots\!52 T 8 + ⋯ − 3 0 ⋯ 5 2
T^8 - 9252*T^7 - 165387211*T^6 + 1565997842368*T^5 + 1136005040472915*T^4 - 29971549192906331764*T^3 + 35918052416419725093447*T^2 + 63728979648507703472676888*T - 30202095502531122305764166352
41 41 4 1
T 8 + ⋯ − 31 ⋯ 00 T^{8} + \cdots - 31\!\cdots\!00 T 8 + ⋯ − 3 1 ⋯ 0 0
T^8 - 8756*T^7 - 355718271*T^6 + 1881514716244*T^5 + 45427691845325851*T^4 - 35414197539837661836*T^3 - 2197578108950692765072701*T^2 - 7137093357563808706937791380*T - 3176394822850950034213626511200
43 43 4 3
T 8 + ⋯ + 11 ⋯ 68 T^{8} + \cdots + 11\!\cdots\!68 T 8 + ⋯ + 1 1 ⋯ 6 8
T^8 - 15290*T^7 - 496314867*T^6 + 8754041635140*T^5 + 11932358096683548*T^4 - 528077909036024210880*T^3 + 800513345300721423669680*T^2 + 4017575531063129340806323520*T + 1139991554103799167368045890368
47 47 4 7
T 8 + ⋯ + 96 ⋯ 00 T^{8} + \cdots + 96\!\cdots\!00 T 8 + ⋯ + 9 6 ⋯ 0 0
T^8 - 8516*T^7 - 1480854843*T^6 + 10969550334944*T^5 + 719068338328011827*T^4 - 3850620394267990129716*T^3 - 141716504349169046944921209*T^2 + 395333682452521696871444061720*T + 9655933159282724077380041334931200
53 53 5 3
T 8 + ⋯ + 17 ⋯ 00 T^{8} + \cdots + 17\!\cdots\!00 T 8 + ⋯ + 1 7 ⋯ 0 0
T^8 - 30475*T^7 - 787500974*T^6 + 20187800707225*T^5 + 248702825642547950*T^4 - 4241020576100112018875*T^3 - 35605560445151727502854375*T^2 + 274265346193025807043328275000*T + 1748574286895006237858952868312500
59 59 5 9
T 8 + ⋯ + 75 ⋯ 36 T^{8} + \cdots + 75\!\cdots\!36 T 8 + ⋯ + 7 5 ⋯ 3 6
T^8 - 20400*T^7 - 3045878467*T^6 + 42042272145388*T^5 + 2794917475159660131*T^4 - 24698950229484726777832*T^3 - 877890243251729424281956737*T^2 + 4714882853825962765748824452780*T + 75742589574397792813009044256775136
61 61 6 1
T 8 + ⋯ + 30 ⋯ 04 T^{8} + \cdots + 30\!\cdots\!04 T 8 + ⋯ + 3 0 ⋯ 0 4
T^8 - 10511*T^7 - 2325908022*T^6 + 20662392339609*T^5 + 857491594857092358*T^4 - 553477079673106513395*T^3 - 73362305997996069462079927*T^2 - 233550183469848442136119827892*T + 308388166900774117261899860564604
67 67 6 7
T 8 + ⋯ − 39 ⋯ 76 T^{8} + \cdots - 39\!\cdots\!76 T 8 + ⋯ − 3 9 ⋯ 7 6
T^8 + 616*T^7 - 3808847268*T^6 + 54997308380288*T^5 + 3110641118561850560*T^4 - 68814814833977141187072*T^3 - 151220482566647757232873472*T^2 + 9666507879284396970936956256256*T - 39111031037103055689397681003954176
71 71 7 1
T 8 + ⋯ + 36 ⋯ 12 T^{8} + \cdots + 36\!\cdots\!12 T 8 + ⋯ + 3 6 ⋯ 1 2
T^8 - 31862*T^7 - 9670688481*T^6 + 194430744120902*T^5 + 31307686538856805472*T^4 - 312266714764719636827016*T^3 - 33282125696041971719016552192*T^2 + 146420027406260792467432116955488*T + 3695111656175761302693393261408117312
73 73 7 3
T 8 + ⋯ + 41 ⋯ 88 T^{8} + \cdots + 41\!\cdots\!88 T 8 + ⋯ + 4 1 ⋯ 8 8
T^8 + 37377*T^7 - 6892854346*T^6 - 292301268765223*T^5 + 4182185306431635990*T^4 + 357329298231323318661229*T^3 + 5743381766466651785998568617*T^2 + 29478704272636680077884744404732*T + 4192075932330508556990811172861088
79 79 7 9
T 8 + ⋯ − 89 ⋯ 08 T^{8} + \cdots - 89\!\cdots\!08 T 8 + ⋯ − 8 9 ⋯ 0 8
T^8 + 71679*T^7 - 13023850944*T^6 - 1200494095111701*T^5 + 25673362585007064552*T^4 + 4410400647742499452536147*T^3 + 41677761291387432295080271367*T^2 - 4435923119017605774606329733741444*T - 89445275450693214466451475315715831008
83 83 8 3
T 8 + ⋯ + 80 ⋯ 47 T^{8} + \cdots + 80\!\cdots\!47 T 8 + ⋯ + 8 0 ⋯ 4 7
T^8 + 61543*T^7 - 10157680649*T^6 - 660787699980726*T^5 + 22750415213698424970*T^4 + 1499170697720190053645418*T^3 - 19562728707774407047753824183*T^2 - 959928203321723183366864439395613*T + 8021004783845317830976307954376717747
89 89 8 9
T 8 + ⋯ − 34 ⋯ 19 T^{8} + \cdots - 34\!\cdots\!19 T 8 + ⋯ − 3 4 ⋯ 1 9
T^8 + 14961*T^7 - 20046089679*T^6 + 455787474947838*T^5 + 95473976846995236618*T^4 - 5801515231120842185690202*T^3 + 110070591243811703178840302661*T^2 - 464126498744364926221067808401079*T - 3414853333833232004113270952982089619
97 97 9 7
T 8 + ⋯ − 23 ⋯ 41 T^{8} + \cdots - 23\!\cdots\!41 T 8 + ⋯ − 2 3 ⋯ 4 1
T^8 - 186419*T^7 - 55909887869*T^6 + 11483859970434310*T^5 + 819489158162299283710*T^4 - 214822449215943262000114610*T^3 - 327575869326608602787706954531*T^2 + 1124284916263302772062130425567128289*T - 23885276539636349215920923056418415828141
show more
show less