Properties

Label 1100.6.a.k
Level 11001100
Weight 66
Character orbit 1100.a
Self dual yes
Analytic conductor 176.422176.422
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(1,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 1100=225211 1100 = 2^{2} \cdot 5^{2} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 1100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 176.422201794176.422201794
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x83x71111x6+2926x5+349410x4822682x325635603x2+144346581x191266515 x^{8} - 3x^{7} - 1111x^{6} + 2926x^{5} + 349410x^{4} - 822682x^{3} - 25635603x^{2} + 144346581x - 191266515 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2752 2^{7}\cdot 5^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+3)q3+(β3+12)q7+(β2+6β1+45)q9+121q11+(β7+β3+β2++39)q13+(β7+β4β3++64)q17++(121β2+726β1+5445)q99+O(q100) q + (\beta_1 + 3) q^{3} + (\beta_{3} + 12) q^{7} + (\beta_{2} + 6 \beta_1 + 45) q^{9} + 121 q^{11} + (\beta_{7} + \beta_{3} + \beta_{2} + \cdots + 39) q^{13} + (\beta_{7} + \beta_{4} - \beta_{3} + \cdots + 64) q^{17}+ \cdots + (121 \beta_{2} + 726 \beta_1 + 5445) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+27q3+95q7+377q9+968q11+294q13+515q17354q19588q21+3073q23+8502q27+2743q29+3768q31+3267q33+9252q3710027q39++45617q99+O(q100) 8 q + 27 q^{3} + 95 q^{7} + 377 q^{9} + 968 q^{11} + 294 q^{13} + 515 q^{17} - 354 q^{19} - 588 q^{21} + 3073 q^{23} + 8502 q^{27} + 2743 q^{29} + 3768 q^{31} + 3267 q^{33} + 9252 q^{37} - 10027 q^{39}+ \cdots + 45617 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x83x71111x6+2926x5+349410x4822682x325635603x2+144346581x191266515 x^{8} - 3x^{7} - 1111x^{6} + 2926x^{5} + 349410x^{4} - 822682x^{3} - 25635603x^{2} + 144346581x - 191266515 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2279 \nu^{2} - 279 Copy content Toggle raw display
β3\beta_{3}== (825345ν7+783568ν6910438423ν51580309025ν4++31044799336977)/47468672334 ( 825345 \nu^{7} + 783568 \nu^{6} - 910438423 \nu^{5} - 1580309025 \nu^{4} + \cdots + 31044799336977 ) / 47468672334 Copy content Toggle raw display
β4\beta_{4}== (4095023ν7+12041912ν64641936961ν513781533885ν4++195753145100283)/94937344668 ( 4095023 \nu^{7} + 12041912 \nu^{6} - 4641936961 \nu^{5} - 13781533885 \nu^{4} + \cdots + 195753145100283 ) / 94937344668 Copy content Toggle raw display
β5\beta_{5}== (6134627ν7+9108780ν66618941513ν510741456993ν4++287736307934139)/94937344668 ( 6134627 \nu^{7} + 9108780 \nu^{6} - 6618941513 \nu^{5} - 10741456993 \nu^{4} + \cdots + 287736307934139 ) / 94937344668 Copy content Toggle raw display
β6\beta_{6}== (6828901ν76879444ν6+7638226531ν5+11107254299ν4+371975085413541)/94937344668 ( - 6828901 \nu^{7} - 6879444 \nu^{6} + 7638226531 \nu^{5} + 11107254299 \nu^{4} + \cdots - 371975085413541 ) / 94937344668 Copy content Toggle raw display
β7\beta_{7}== (7269631ν725702260ν6+7909869757ν5+28732488365ν4+212606712127179)/94937344668 ( - 7269631 \nu^{7} - 25702260 \nu^{6} + 7909869757 \nu^{5} + 28732488365 \nu^{4} + \cdots - 212606712127179 ) / 94937344668 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+279 \beta_{2} + 279 Copy content Toggle raw display
ν3\nu^{3}== β72β6β52β44β3+β2+481β126 -\beta_{7} - 2\beta_{6} - \beta_{5} - 2\beta_{4} - 4\beta_{3} + \beta_{2} + 481\beta _1 - 26 Copy content Toggle raw display
ν4\nu^{4}== 19β7+14β6+31β5+32β453β3+582β2+198β1+134507 19\beta_{7} + 14\beta_{6} + 31\beta_{5} + 32\beta_{4} - 53\beta_{3} + 582\beta_{2} + 198\beta _1 + 134507 Copy content Toggle raw display
ν5\nu^{5}== 860β71309β6587β51810β42531β3232β2++46988 - 860 \beta_{7} - 1309 \beta_{6} - 587 \beta_{5} - 1810 \beta_{4} - 2531 \beta_{3} - 232 \beta_{2} + \cdots + 46988 Copy content Toggle raw display
ν6\nu^{6}== 12050β7+12901β6+24968β5+29995β460763β3++71560444 12050 \beta_{7} + 12901 \beta_{6} + 24968 \beta_{5} + 29995 \beta_{4} - 60763 \beta_{3} + \cdots + 71560444 Copy content Toggle raw display
ν7\nu^{7}== 589710β7761367β6277851β51295784β41442160β3+14616537 - 589710 \beta_{7} - 761367 \beta_{6} - 277851 \beta_{5} - 1295784 \beta_{4} - 1442160 \beta_{3} + \cdots - 14616537 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−24.8760
−17.8741
−13.1518
2.15294
4.75672
6.06056
22.3000
23.6316
0 −21.8760 0 0 0 −48.9354 0 235.558 0
1.2 0 −14.8741 0 0 0 166.492 0 −21.7626 0
1.3 0 −10.1518 0 0 0 −122.703 0 −139.941 0
1.4 0 5.15294 0 0 0 47.7885 0 −216.447 0
1.5 0 7.75672 0 0 0 −86.6415 0 −182.833 0
1.6 0 9.06056 0 0 0 199.386 0 −160.906 0
1.7 0 25.3000 0 0 0 150.442 0 397.092 0
1.8 0 26.6316 0 0 0 −210.828 0 466.240 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.6.a.k yes 8
5.b even 2 1 1100.6.a.h 8
5.c odd 4 2 1100.6.b.i 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1100.6.a.h 8 5.b even 2 1
1100.6.a.k yes 8 1.a even 1 1 trivial
1100.6.b.i 16 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3827T37796T36+20845T35+164040T344174435T33+806019876 T_{3}^{8} - 27 T_{3}^{7} - 796 T_{3}^{6} + 20845 T_{3}^{5} + 164040 T_{3}^{4} - 4174435 T_{3}^{3} + \cdots - 806019876 acting on S6new(Γ0(1100))S_{6}^{\mathrm{new}}(\Gamma_0(1100)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T827T7+806019876 T^{8} - 27 T^{7} + \cdots - 806019876 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8++26 ⁣ ⁣00 T^{8} + \cdots + 26\!\cdots\!00 Copy content Toggle raw display
1111 (T121)8 (T - 121)^{8} Copy content Toggle raw display
1313 T8+89 ⁣ ⁣25 T^{8} + \cdots - 89\!\cdots\!25 Copy content Toggle raw display
1717 T8++75 ⁣ ⁣08 T^{8} + \cdots + 75\!\cdots\!08 Copy content Toggle raw display
1919 T8+11 ⁣ ⁣89 T^{8} + \cdots - 11\!\cdots\!89 Copy content Toggle raw display
2323 T8+35 ⁣ ⁣77 T^{8} + \cdots - 35\!\cdots\!77 Copy content Toggle raw display
2929 T8+14 ⁣ ⁣19 T^{8} + \cdots - 14\!\cdots\!19 Copy content Toggle raw display
3131 T8++62 ⁣ ⁣25 T^{8} + \cdots + 62\!\cdots\!25 Copy content Toggle raw display
3737 T8+30 ⁣ ⁣52 T^{8} + \cdots - 30\!\cdots\!52 Copy content Toggle raw display
4141 T8+31 ⁣ ⁣00 T^{8} + \cdots - 31\!\cdots\!00 Copy content Toggle raw display
4343 T8++11 ⁣ ⁣68 T^{8} + \cdots + 11\!\cdots\!68 Copy content Toggle raw display
4747 T8++96 ⁣ ⁣00 T^{8} + \cdots + 96\!\cdots\!00 Copy content Toggle raw display
5353 T8++17 ⁣ ⁣00 T^{8} + \cdots + 17\!\cdots\!00 Copy content Toggle raw display
5959 T8++75 ⁣ ⁣36 T^{8} + \cdots + 75\!\cdots\!36 Copy content Toggle raw display
6161 T8++30 ⁣ ⁣04 T^{8} + \cdots + 30\!\cdots\!04 Copy content Toggle raw display
6767 T8+39 ⁣ ⁣76 T^{8} + \cdots - 39\!\cdots\!76 Copy content Toggle raw display
7171 T8++36 ⁣ ⁣12 T^{8} + \cdots + 36\!\cdots\!12 Copy content Toggle raw display
7373 T8++41 ⁣ ⁣88 T^{8} + \cdots + 41\!\cdots\!88 Copy content Toggle raw display
7979 T8+89 ⁣ ⁣08 T^{8} + \cdots - 89\!\cdots\!08 Copy content Toggle raw display
8383 T8++80 ⁣ ⁣47 T^{8} + \cdots + 80\!\cdots\!47 Copy content Toggle raw display
8989 T8+34 ⁣ ⁣19 T^{8} + \cdots - 34\!\cdots\!19 Copy content Toggle raw display
9797 T8+23 ⁣ ⁣41 T^{8} + \cdots - 23\!\cdots\!41 Copy content Toggle raw display
show more
show less