gp: [N,k,chi] = [1100,6,Mod(749,1100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1100.749");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,0,0,0,0,0,-754,0,1936]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 16 + 2231 x 14 + 1950697 x 12 + 841157794 x 10 + 184347539486 x 8 + 19011199757266 x 6 + ⋯ + 36 ⋯ 25 x^{16} + 2231 x^{14} + 1950697 x^{12} + 841157794 x^{10} + 184347539486 x^{8} + 19011199757266 x^{6} + \cdots + 36\!\cdots\!25 x 1 6 + 2 2 3 1 x 1 4 + 1 9 5 0 6 9 7 x 1 2 + 8 4 1 1 5 7 7 9 4 x 1 0 + 1 8 4 3 4 7 5 3 9 4 8 6 x 8 + 1 9 0 1 1 1 9 9 7 5 7 2 6 6 x 6 + ⋯ + 3 6 ⋯ 2 5
x^16 + 2231*x^14 + 1950697*x^12 + 841157794*x^10 + 184347539486*x^8 + 19011199757266*x^6 + 761025943061793*x^4 + 11029470554922471*x^2 + 36582879760245225
:
β 1 \beta_{1} β 1 = = =
( 11678598862180 ν 14 + ⋯ − 10 ⋯ 11 ) / 36 ⋯ 24 ( 11678598862180 \nu^{14} + \cdots - 10\!\cdots\!11 ) / 36\!\cdots\!24 ( 1 1 6 7 8 5 9 8 8 6 2 1 8 0 ν 1 4 + ⋯ − 1 0 ⋯ 1 1 ) / 3 6 ⋯ 2 4
(11678598862180*v^14 + 23185297939504341*v^12 + 18003410340768016076*v^10 + 6490191635647275020068*v^8 + 893484911202881828572026*v^6 - 18846392353777716916215892*v^4 - 42283378596194345044367536320*v^2 - 10013627964516016502178508354011) / 36067963071986923752007955424
β 2 \beta_{2} β 2 = = =
( 58392994310900 ν 14 + ⋯ + 17 ⋯ 77 ) / 36 ⋯ 24 ( 58392994310900 \nu^{14} + \cdots + 17\!\cdots\!77 ) / 36\!\cdots\!24 ( 5 8 3 9 2 9 9 4 3 1 0 9 0 0 ν 1 4 + ⋯ + 1 7 ⋯ 7 7 ) / 3 6 ⋯ 2 4
(58392994310900*v^14 + 115926489697521705*v^12 + 90017051703840080380*v^10 + 32450958178236375100340*v^8 + 4467424556014409142860130*v^6 - 94231961768888584581079460*v^4 - 31077077621037106461797904480*v^2 + 174532736697702275654540135577) / 36067963071986923752007955424
β 3 \beta_{3} β 3 = = =
( 26 ⋯ 95 ν 14 + ⋯ − 41 ⋯ 09 ) / 14 ⋯ 68 ( 26\!\cdots\!95 \nu^{14} + \cdots - 41\!\cdots\!09 ) / 14\!\cdots\!68 ( 2 6 ⋯ 9 5 ν 1 4 + ⋯ − 4 1 ⋯ 0 9 ) / 1 4 ⋯ 6 8
(26071504441571960777760995*v^14 + 52078720401536568278310355933*v^12 + 38813075628541417699720809706022*v^10 + 12790860097546787943225038269366532*v^8 + 1488454787503013562602188435049290012*v^6 - 87024048663089552047281381526095667738*v^4 - 23102364599667285803552545796587177203327*v^2 - 414924080215088292601665340989145907832609) / 142674860068246611493058959215261169968
β 4 \beta_{4} β 4 = = =
( 47 ⋯ 93 ν 14 + ⋯ + 12 ⋯ 63 ) / 14 ⋯ 68 ( 47\!\cdots\!93 \nu^{14} + \cdots + 12\!\cdots\!63 ) / 14\!\cdots\!68 ( 4 7 ⋯ 9 3 ν 1 4 + ⋯ + 1 2 ⋯ 6 3 ) / 1 4 ⋯ 6 8
(47512443124349155950149593*v^14 + 107319573221886120188684645405*v^12 + 94341139054338407049661164477166*v^10 + 40329475985805523301984390323844320*v^8 + 8485413303562096945291574453528770340*v^6 + 769306236955546621757325992195412235438*v^4 + 19724925651042727820082486305428559042679*v^2 + 120474060830772211408074337915024899407463) / 142674860068246611493058959215261169968
β 5 \beta_{5} β 5 = = =
( 19 ⋯ 02 ν 14 + ⋯ + 80 ⋯ 85 ) / 28 ⋯ 36 ( 19\!\cdots\!02 \nu^{14} + \cdots + 80\!\cdots\!85 ) / 28\!\cdots\!36 ( 1 9 ⋯ 0 2 ν 1 4 + ⋯ + 8 0 ⋯ 8 5 ) / 2 8 ⋯ 3 6
(198159958929481659169640402*v^14 + 431675917701365584832796580801*v^12 + 366203365713566883966390100441520*v^10 + 151637773568204999545657698612292916*v^8 + 31320354178353629633813058046554399478*v^6 + 2923692817866372688153015981313918966768*v^4 + 94444292205062782832599848129348314571330*v^2 + 800122425685228380049753508922594761708085) / 285349720136493222986117918430522339936
β 6 \beta_{6} β 6 = = =
( − 67 ⋯ 65 ν 14 + ⋯ − 80 ⋯ 12 ) / 95 ⋯ 12 ( - 67\!\cdots\!65 \nu^{14} + \cdots - 80\!\cdots\!12 ) / 95\!\cdots\!12 ( − 6 7 ⋯ 6 5 ν 1 4 + ⋯ − 8 0 ⋯ 1 2 ) / 9 5 ⋯ 1 2
(-67675308395995488835347265*v^14 - 149877613374580763979038027688*v^12 - 128907264169837621446878065008788*v^10 - 53768836797132162523426763840208154*v^8 - 11008576416660071677699842272910714588*v^6 - 970133679589493716818341557268570848724*v^4 - 23605633073383295244691546752084967441785*v^2 - 80773204057332880973288476004393416981812) / 95116573378831074328705972810174113312
β 7 \beta_{7} β 7 = = =
( 41 ⋯ 13 ν 14 + ⋯ + 69 ⋯ 86 ) / 28 ⋯ 36 ( 41\!\cdots\!13 \nu^{14} + \cdots + 69\!\cdots\!86 ) / 28\!\cdots\!36 ( 4 1 ⋯ 1 3 ν 1 4 + ⋯ + 6 9 ⋯ 8 6 ) / 2 8 ⋯ 3 6
(412582842935335794809450713*v^14 + 910917657591225453299416475510*v^12 + 783883262219442777228369323088628*v^10 + 329081923457797306868506483090793050*v^8 + 68497832221951815106767676584506952656*v^6 + 6253110688373938530722975201860637331988*v^4 + 165708572639196196367818063809126084820161*v^2 + 697607309270727178756263866446272660388986) / 285349720136493222986117918430522339936
β 8 \beta_{8} β 8 = = =
( − 78 ⋯ 43 ν 15 + ⋯ − 17 ⋯ 73 ν ) / 10 ⋯ 60 ( - 78\!\cdots\!43 \nu^{15} + \cdots - 17\!\cdots\!73 \nu ) / 10\!\cdots\!60 ( − 7 8 ⋯ 4 3 ν 1 5 + ⋯ − 1 7 ⋯ 7 3 ν ) / 1 0 ⋯ 6 0
(-7816117698280095143*v^15 - 17370069951394645782133*v^13 - 15112496402162926872424016*v^11 - 6470241364548016337980221962*v^9 - 1403265207349325271773091091558*v^7 - 143415176549794132459559808604208*v^5 - 6057501184410419972510242848488259*v^3 - 17707763238147346882310396920979073*v) / 104524145453448985327534634639754960
β 9 \beta_{9} β 9 = = =
( 78 ⋯ 43 ν 15 + ⋯ + 12 ⋯ 33 ν ) / 41 ⋯ 84 ( 78\!\cdots\!43 \nu^{15} + \cdots + 12\!\cdots\!33 \nu ) / 41\!\cdots\!84 ( 7 8 ⋯ 4 3 ν 1 5 + ⋯ + 1 2 ⋯ 3 3 ν ) / 4 1 ⋯ 8 4
(7816117698280095143*v^15 + 17370069951394645782133*v^13 + 15112496402162926872424016*v^11 + 6470241364548016337980221962*v^9 + 1403265207349325271773091091558*v^7 + 143415176549794132459559808604208*v^5 + 6057501184410419972510242848488259*v^3 + 122231908691596332209845031560734033*v) / 41809658181379594131013853855901984
β 10 \beta_{10} β 1 0 = = =
( − 29 ⋯ 29 ν 15 + ⋯ − 64 ⋯ 07 ν ) / 11 ⋯ 92 ( - 29\!\cdots\!29 \nu^{15} + \cdots - 64\!\cdots\!07 \nu ) / 11\!\cdots\!92 ( − 2 9 ⋯ 2 9 ν 1 5 + ⋯ − 6 4 ⋯ 0 7 ν ) / 1 1 ⋯ 9 2
(-2999588625420019785230301920329*v^15 - 6641208364935264603065755153420295*v^13 - 5726885529203628647802824384101329640*v^11 - 2405875658499984557307778346484686483998*v^9 - 499746084764690066090210281796184341224922*v^7 - 45260163791715978333989165407375232439972712*v^5 - 1180093434902656846409577930464937425098377141*v^3 - 6481449618751364356608744699529448346158264307*v) / 110258275811580571882167005327798540584250592
β 11 \beta_{11} β 1 1 = = =
( − 87 ⋯ 76 ν 15 + ⋯ − 41 ⋯ 41 ν ) / 91 ⋯ 60 ( - 87\!\cdots\!76 \nu^{15} + \cdots - 41\!\cdots\!41 \nu ) / 91\!\cdots\!60 ( − 8 7 ⋯ 7 6 ν 1 5 + ⋯ − 4 1 ⋯ 4 1 ν ) / 9 1 ⋯ 6 0
(-8721566958001256909003260706576*v^15 - 19250029711209628903103633635455811*v^13 - 16562684437953184871586057742106185202*v^11 - 6959388212121426077210388652099311292814*v^9 - 1456197269877215230480190536177140437536996*v^7 - 136130073999113839689928322361491320703205266*v^5 - 4148110711526653491514262157424890302444884158*v^3 - 41679562781918312556261296366711629729509741441*v) / 91881896509650476568472504439832117153542160
β 12 \beta_{12} β 1 2 = = =
( − 30 ⋯ 31 ν 15 + ⋯ − 25 ⋯ 59 ν ) / 27 ⋯ 48 ( - 30\!\cdots\!31 \nu^{15} + \cdots - 25\!\cdots\!59 \nu ) / 27\!\cdots\!48 ( − 3 0 ⋯ 3 1 ν 1 5 + ⋯ − 2 5 ⋯ 5 9 ν ) / 2 7 ⋯ 4 8
(-3049569047035759046539842626831*v^15 - 6683004752304122114247568328948146*v^13 - 5690609445474277531277487989535403757*v^11 - 2350788465835085643979078689446917779089*v^9 - 475923382687727588627227379463102656413705*v^7 - 40967538130336594611306818918721588192540629*v^5 - 891547044751089829219056710410325180854926090*v^3 - 2587040205156777672864170136806487853087052559*v) / 27564568952895142970541751331949635146062648
β 13 \beta_{13} β 1 3 = = =
( 12 ⋯ 71 ν 15 + ⋯ − 65 ⋯ 66 ν ) / 11 ⋯ 92 ( 12\!\cdots\!71 \nu^{15} + \cdots - 65\!\cdots\!66 \nu ) / 11\!\cdots\!92 ( 1 2 ⋯ 7 1 ν 1 5 + ⋯ − 6 5 ⋯ 6 6 ν ) / 1 1 ⋯ 9 2
(12625137100570072594357832624371*v^15 + 27588538774152650451461930990065898*v^13 + 23372150087540570102737855202095032016*v^11 + 9553533028880452837714968774214600062298*v^9 + 1884369819885989662533071865602493281907188*v^7 + 148582632521245977884940344490947992341608944*v^5 + 1374479851290636393967467578959907703209317959*v^3 - 65868773559030981645065284542727783346610450966*v) / 110258275811580571882167005327798540584250592
β 14 \beta_{14} β 1 4 = = =
( − 14 ⋯ 56 ν 15 + ⋯ − 62 ⋯ 21 ν ) / 55 ⋯ 60 ( - 14\!\cdots\!56 \nu^{15} + \cdots - 62\!\cdots\!21 \nu ) / 55\!\cdots\!60 ( − 1 4 ⋯ 5 6 ν 1 5 + ⋯ − 6 2 ⋯ 2 1 ν ) / 5 5 ⋯ 6 0
(-146933990752964379483675922584056*v^15 - 325708996353595625975514285321721801*v^13 - 281780842804353029962608889888788818732*v^11 - 119309859297699206554196261578348757570204*v^9 - 25274701492225341881610076864935026987519506*v^7 - 2422508601859954192739554805302238224160553356*v^5 - 78824598793344547849986751684621514344588064388*v^3 - 624421354207299070811922582912074831635117612521*v) / 551291379057902859410835026638992702921252960
β 15 \beta_{15} β 1 5 = = =
( − 21 ⋯ 39 ν 15 + ⋯ − 12 ⋯ 54 ν ) / 55 ⋯ 60 ( - 21\!\cdots\!39 \nu^{15} + \cdots - 12\!\cdots\!54 \nu ) / 55\!\cdots\!60 ( − 2 1 ⋯ 3 9 ν 1 5 + ⋯ − 1 2 ⋯ 5 4 ν ) / 5 5 ⋯ 6 0
(-210970999371661450583542448050939*v^15 - 468249349021097647907990359579944254*v^13 - 406299101535534033197735751865301913688*v^11 - 173052070610917613492381053347503849213986*v^9 - 37080433492191188995198401456633339830648564*v^7 - 3638395882525187858198699631243908468992081144*v^5 - 125963787513079970892466591175282687593765831047*v^3 - 1270314883803361565874543269961805268267650060854*v) / 551291379057902859410835026638992702921252960
ν \nu ν = = =
( 2 β 9 + 5 β 8 ) / 5 ( 2\beta_{9} + 5\beta_{8} ) / 5 ( 2 β 9 + 5 β 8 ) / 5
(2*b9 + 5*b8) / 5
ν 2 \nu^{2} ν 2 = = =
( β 2 − 5 β 1 − 1393 ) / 5 ( \beta_{2} - 5\beta _1 - 1393 ) / 5 ( β 2 − 5 β 1 − 1 3 9 3 ) / 5
(b2 - 5*b1 - 1393) / 5
ν 3 \nu^{3} ν 3 = = =
( 5 β 14 − β 13 + 4 β 12 − 15 β 11 − 17 β 10 − 948 β 9 − 2415 β 8 ) / 5 ( 5\beta_{14} - \beta_{13} + 4\beta_{12} - 15\beta_{11} - 17\beta_{10} - 948\beta_{9} - 2415\beta_{8} ) / 5 ( 5 β 1 4 − β 1 3 + 4 β 1 2 − 1 5 β 1 1 − 1 7 β 1 0 − 9 4 8 β 9 − 2 4 1 5 β 8 ) / 5
(5*b14 - b13 + 4*b12 - 15*b11 - 17*b10 - 948*b9 - 2415*b8) / 5
ν 4 \nu^{4} ν 4 = = =
( − 49 β 7 + 77 β 6 + 88 β 5 + 181 β 4 + 21 β 3 − 340 β 2 + 2966 β 1 + 671767 ) / 5 ( -49\beta_{7} + 77\beta_{6} + 88\beta_{5} + 181\beta_{4} + 21\beta_{3} - 340\beta_{2} + 2966\beta _1 + 671767 ) / 5 ( − 4 9 β 7 + 7 7 β 6 + 8 8 β 5 + 1 8 1 β 4 + 2 1 β 3 − 3 4 0 β 2 + 2 9 6 6 β 1 + 6 7 1 7 6 7 ) / 5
(-49*b7 + 77*b6 + 88*b5 + 181*b4 + 21*b3 - 340*b2 + 2966*b1 + 671767) / 5
ν 5 \nu^{5} ν 5 = = =
( − 135 β 15 − 3205 β 14 − 460 β 13 − 4895 β 12 + 12390 β 11 + ⋯ + 1286665 β 8 ) / 5 ( - 135 \beta_{15} - 3205 \beta_{14} - 460 \beta_{13} - 4895 \beta_{12} + 12390 \beta_{11} + \cdots + 1286665 \beta_{8} ) / 5 ( − 1 3 5 β 1 5 − 3 2 0 5 β 1 4 − 4 6 0 β 1 3 − 4 8 9 5 β 1 2 + 1 2 3 9 0 β 1 1 + ⋯ + 1 2 8 6 6 6 5 β 8 ) / 5
(-135*b15 - 3205*b14 - 460*b13 - 4895*b12 + 12390*b11 + 8395*b10 + 566572*b9 + 1286665*b8) / 5
ν 6 \nu^{6} ν 6 = = =
( 37835 β 7 − 86599 β 6 − 75755 β 5 − 176645 β 4 − 26670 β 3 + ⋯ − 357061603 ) / 5 ( 37835 \beta_{7} - 86599 \beta_{6} - 75755 \beta_{5} - 176645 \beta_{4} - 26670 \beta_{3} + \cdots - 357061603 ) / 5 ( 3 7 8 3 5 β 7 − 8 6 5 9 9 β 6 − 7 5 7 5 5 β 5 − 1 7 6 6 4 5 β 4 − 2 6 6 7 0 β 3 + ⋯ − 3 5 7 0 6 1 6 0 3 ) / 5
(37835*b7 - 86599*b6 - 75755*b5 - 176645*b4 - 26670*b3 + 332431*b2 - 1705244*b1 - 357061603) / 5
ν 7 \nu^{7} ν 7 = = =
( 205665 β 15 + 1800585 β 14 + 824598 β 13 + 3978813 β 12 + ⋯ − 713544890 β 8 ) / 5 ( 205665 \beta_{15} + 1800585 \beta_{14} + 824598 \beta_{13} + 3978813 \beta_{12} + \cdots - 713544890 \beta_{8} ) / 5 ( 2 0 5 6 6 5 β 1 5 + 1 8 0 0 5 8 5 β 1 4 + 8 2 4 5 9 8 β 1 3 + 3 9 7 8 8 1 3 β 1 2 + ⋯ − 7 1 3 5 4 4 8 9 0 β 8 ) / 5
(205665*b15 + 1800585*b14 + 824598*b13 + 3978813*b12 - 8485170*b11 - 3555354*b10 - 273487109*b9 - 713544890*b8) / 5
ν 8 \nu^{8} ν 8 = = =
( − 24403371 β 7 + 69791979 β 6 + 53575827 β 5 + 131839674 β 4 + ⋯ + 197482475914 ) / 5 ( - 24403371 \beta_{7} + 69791979 \beta_{6} + 53575827 \beta_{5} + 131839674 \beta_{4} + \cdots + 197482475914 ) / 5 ( − 2 4 4 0 3 3 7 1 β 7 + 6 9 7 9 1 9 7 9 β 6 + 5 3 5 7 5 8 2 7 β 5 + 1 3 1 8 3 9 6 7 4 β 4 + ⋯ + 1 9 7 4 8 2 4 7 5 9 1 4 ) / 5
(-24403371*b7 + 69791979*b6 + 53575827*b5 + 131839674*b4 + 22306329*b3 - 348063967*b2 + 985302500*b1 + 197482475914) / 5
ν 9 \nu^{9} ν 9 = = =
( − 186236361 β 15 − 1001824847 β 14 − 790011254 β 13 − 2875838770 β 12 + ⋯ + 404625580416 β 8 ) / 5 ( - 186236361 \beta_{15} - 1001824847 \beta_{14} - 790011254 \beta_{13} - 2875838770 \beta_{12} + \cdots + 404625580416 \beta_{8} ) / 5 ( − 1 8 6 2 3 6 3 6 1 β 1 5 − 1 0 0 1 8 2 4 8 4 7 β 1 4 − 7 9 0 0 1 1 2 5 4 β 1 3 − 2 8 7 5 8 3 8 7 7 0 β 1 2 + ⋯ + 4 0 4 6 2 5 5 8 0 4 1 6 β 8 ) / 5
(-186236361*b15 - 1001824847*b14 - 790011254*b13 - 2875838770*b12 + 5458934553*b11 + 1401098609*b10 + 109962737316*b9 + 404625580416*b8) / 5
ν 10 \nu^{10} ν 1 0 = = =
( 15473594935 β 7 − 49189316903 β 6 − 35702615110 β 5 − 89838206710 β 4 + ⋯ − 111689955247228 ) / 5 ( 15473594935 \beta_{7} - 49189316903 \beta_{6} - 35702615110 \beta_{5} - 89838206710 \beta_{4} + \cdots - 111689955247228 ) / 5 ( 1 5 4 7 3 5 9 4 9 3 5 β 7 − 4 9 1 8 9 3 1 6 9 0 3 β 6 − 3 5 7 0 2 6 1 5 1 1 0 β 5 − 8 9 8 3 8 2 0 6 7 1 0 β 4 + ⋯ − 1 1 1 6 8 9 9 5 5 2 4 7 2 2 8 ) / 5
(15473594935*b7 - 49189316903*b6 - 35702615110*b5 - 89838206710*b4 - 16304835090*b3 + 311683996951*b2 - 573179302463*b1 - 111689955247228) / 5
ν 11 \nu^{11} ν 1 1 = = =
( 137132352009 β 15 + 566878487458 β 14 + 638666427451 β 13 + ⋯ − 232765266333919 β 8 ) / 5 ( 137132352009 \beta_{15} + 566878487458 \beta_{14} + 638666427451 \beta_{13} + \cdots - 232765266333919 \beta_{8} ) / 5 ( 1 3 7 1 3 2 3 5 2 0 0 9 β 1 5 + 5 6 6 8 7 8 4 8 7 4 5 8 β 1 4 + 6 3 8 6 6 6 4 2 7 4 5 1 β 1 3 + ⋯ − 2 3 2 7 6 5 2 6 6 3 3 3 9 1 9 β 8 ) / 5
(137132352009*b15 + 566878487458*b14 + 638666427451*b13 + 1973258333780*b12 - 3418674733482*b11 - 469861233841*b10 - 31822132955473*b9 - 232765266333919*b8) / 5
ν 12 \nu^{12} ν 1 2 = = =
( − 9903842142170 β 7 + 32383511642434 β 6 + 23100578496890 β 5 + 58783704339230 β 4 + ⋯ + 64 ⋯ 53 ) / 5 ( - 9903842142170 \beta_{7} + 32383511642434 \beta_{6} + 23100578496890 \beta_{5} + 58783704339230 \beta_{4} + \cdots + 64\!\cdots\!53 ) / 5 ( − 9 9 0 3 8 4 2 1 4 2 1 7 0 β 7 + 3 2 3 8 3 5 1 1 6 4 2 4 3 4 β 6 + 2 3 1 0 0 5 7 8 4 9 6 8 9 0 β 5 + 5 8 7 8 3 7 0 4 3 3 9 2 3 0 β 4 + ⋯ + 6 4 ⋯ 5 3 ) / 5
(-9903842142170*b7 + 32383511642434*b6 + 23100578496890*b5 + 58783704339230*b4 + 11156042923500*b3 - 249757419180346*b2 + 335461066502864*b1 + 64088776180787953) / 5
ν 13 \nu^{13} ν 1 3 = = =
( − 90993771245166 β 15 − 327663206213142 β 14 − 476369588987724 β 13 + ⋯ + 13 ⋯ 31 β 8 ) / 5 ( - 90993771245166 \beta_{15} - 327663206213142 \beta_{14} - 476369588987724 \beta_{13} + \cdots + 13\!\cdots\!31 \beta_{8} ) / 5 ( − 9 0 9 9 3 7 7 1 2 4 5 1 6 6 β 1 5 − 3 2 7 6 6 3 2 0 6 2 1 3 1 4 2 β 1 4 − 4 7 6 3 6 9 5 8 8 9 8 7 7 2 4 β 1 3 + ⋯ + 1 3 ⋯ 3 1 β 8 ) / 5
(-90993771245166*b15 - 327663206213142*b14 - 476369588987724*b13 - 1313910603767790*b12 + 2113997619449148*b11 + 74731649405244*b10 - 833249708902204*b9 + 135284688731466731*b8) / 5
ν 14 \nu^{14} ν 1 4 = = =
( 63 ⋯ 54 β 7 + ⋯ − 37 ⋯ 87 ) / 5 ( 63\!\cdots\!54 \beta_{7} + \cdots - 37\!\cdots\!87 ) / 5 ( 6 3 ⋯ 5 4 β 7 + ⋯ − 3 7 ⋯ 8 7 ) / 5
(6396326488908354*b7 - 20497592074186626*b6 - 14659114442988018*b5 - 37671257904442356*b4 - 7334858952764766*b3 + 186424816727157085*b2 - 197365587957936455*b1 - 37158520556810423887) / 5
ν 15 \nu^{15} ν 1 5 = = =
( 56 ⋯ 82 β 15 + ⋯ − 79 ⋯ 37 β 8 ) / 5 ( 56\!\cdots\!82 \beta_{15} + \cdots - 79\!\cdots\!37 \beta_{8} ) / 5 ( 5 6 ⋯ 8 2 β 1 5 + ⋯ − 7 9 ⋯ 3 7 β 8 ) / 5
(56794015768350582*b15 + 193099974328226009*b14 + 338939533883690753*b13 + 857674908281107600*b12 - 1299277869198236331*b11 + 80007461194012447*b10 + 11786803174053422580*b9 - 79257031735358267637*b8) / 5
Character values
We give the values of χ \chi χ on generators for ( Z / 1100 Z ) × \left(\mathbb{Z}/1100\mathbb{Z}\right)^\times ( Z / 1 1 0 0 Z ) × .
n n n
101 101 1 0 1
177 177 1 7 7
551 551 5 5 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 16 + 2321 T 3 14 + 2087326 T 3 12 + 924020173 T 3 10 + 214678632158 T 3 8 + ⋯ + 64 ⋯ 76 T_{3}^{16} + 2321 T_{3}^{14} + 2087326 T_{3}^{12} + 924020173 T_{3}^{10} + 214678632158 T_{3}^{8} + \cdots + 64\!\cdots\!76 T 3 1 6 + 2 3 2 1 T 3 1 4 + 2 0 8 7 3 2 6 T 3 1 2 + 9 2 4 0 2 0 1 7 3 T 3 1 0 + 2 1 4 6 7 8 6 3 2 1 5 8 T 3 8 + ⋯ + 6 4 ⋯ 7 6
T3^16 + 2321*T3^14 + 2087326*T3^12 + 924020173*T3^10 + 214678632158*T3^8 + 26670782667673*T3^6 + 1749655004415201*T3^4 + 55707429442387896*T3^2 + 649668040507055376
acting on S 6 n e w ( 1100 , [ χ ] ) S_{6}^{\mathrm{new}}(1100, [\chi]) S 6 n e w ( 1 1 0 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
T 16 + ⋯ + 64 ⋯ 76 T^{16} + \cdots + 64\!\cdots\!76 T 1 6 + ⋯ + 6 4 ⋯ 7 6
T^16 + 2321*T^14 + 2087326*T^12 + 924020173*T^10 + 214678632158*T^8 + 26670782667673*T^6 + 1749655004415201*T^4 + 55707429442387896*T^2 + 649668040507055376
5 5 5
T 16 T^{16} T 1 6
T^16
7 7 7
T 16 + ⋯ + 68 ⋯ 00 T^{16} + \cdots + 68\!\cdots\!00 T 1 6 + ⋯ + 6 8 ⋯ 0 0
T^16 + 161797*T^14 + 10523768910*T^12 + 353326091441185*T^10 + 6546208697846961790*T^8 + 66379643110022999910117*T^6 + 344956280922057608934796809*T^4 + 810621780659719306628885370000*T^2 + 685217015406263953838030400000000
11 11 1 1
( T − 121 ) 16 (T - 121)^{16} ( T − 1 2 1 ) 1 6
(T - 121)^16
13 13 1 3
T 16 + ⋯ + 79 ⋯ 25 T^{16} + \cdots + 79\!\cdots\!25 T 1 6 + ⋯ + 7 9 ⋯ 2 5
T^16 + 2733152*T^14 + 2802642976996*T^12 + 1386765416888153008*T^10 + 365077898697567774596846*T^8 + 51610390875472629368383317952*T^6 + 3611848386025712525363575132946676*T^4 + 98470937479864334742883832187292916400*T^2 + 794869828107341312117736850252431884765625
17 17 1 7
T 16 + ⋯ + 56 ⋯ 64 T^{16} + \cdots + 56\!\cdots\!64 T 1 6 + ⋯ + 5 6 ⋯ 6 4
T^16 + 6841589*T^14 + 17340184796710*T^12 + 20949287222325066817*T^10 + 13712472259996215235969670*T^8 + 5134407505838322883043838496357*T^6 + 1096497579602822284955806629426998913*T^4 + 123744522221883873828930562736210932435920*T^2 + 5692878526929904206998284537972670274486641664
19 19 1 9
( T 8 + ⋯ − 11 ⋯ 89 ) 2 (T^{8} + \cdots - 11\!\cdots\!89)^{2} ( T 8 + ⋯ − 1 1 ⋯ 8 9 ) 2
(T^8 - 354*T^7 - 11308006*T^6 + 6119322094*T^5 + 27781233806340*T^4 - 2929891334233846*T^3 - 22671404637401809946*T^2 - 10065684003726792063894*T - 1100875006767821221712389)^2
23 23 2 3
T 16 + ⋯ + 12 ⋯ 29 T^{16} + \cdots + 12\!\cdots\!29 T 1 6 + ⋯ + 1 2 ⋯ 2 9
T^16 + 46895791*T^14 + 864899302939353*T^12 + 8017697693376767526786*T^10 + 39199179588816454148164608558*T^8 + 95340514588194567319186923732710610*T^6 + 94174010747365348836322857397878510421953*T^4 + 26274922818199752859892306208902328544285859007*T^2 + 1236706299923400308278524979251303260158198736806329
29 29 2 9
( T 8 + ⋯ − 14 ⋯ 19 ) 2 (T^{8} + \cdots - 14\!\cdots\!19)^{2} ( T 8 + ⋯ − 1 4 ⋯ 1 9 ) 2
(T^8 + 2743*T^7 - 57702581*T^6 - 234480376864*T^5 + 627468091772648*T^4 + 4285929644426353184*T^3 + 5650159866888782520999*T^2 - 6020400749308731419943*T - 1498738735866810302369226819)^2
31 31 3 1
( T 8 + ⋯ + 62 ⋯ 25 ) 2 (T^{8} + \cdots + 62\!\cdots\!25)^{2} ( T 8 + ⋯ + 6 2 ⋯ 2 5 ) 2
(T^8 - 3768*T^7 - 104259904*T^6 + 245310001048*T^5 + 3172583179546026*T^4 - 1910619633030715528*T^3 - 26578345674921150247704*T^2 + 5356344429180936709930920*T + 62398456862040213736476862125)^2
37 37 3 7
T 16 + ⋯ + 91 ⋯ 04 T^{16} + \cdots + 91\!\cdots\!04 T 1 6 + ⋯ + 9 1 ⋯ 0 4
T^16 + 416373926*T^14 + 58602163718481823*T^12 + 3310868094385445754401716*T^10 + 84399334010019230377569072741743*T^8 + 1006296392413473804343431957616587308710*T^6 + 5041599521039185634618161144863880674667770513*T^4 + 6230983745731163630472824801081103334081642955555232*T^2 + 912166572744010645208145685408718142022139312933528987904
41 41 4 1
( T 8 + ⋯ − 31 ⋯ 00 ) 2 (T^{8} + \cdots - 31\!\cdots\!00)^{2} ( T 8 + ⋯ − 3 1 ⋯ 0 0 ) 2
(T^8 - 8756*T^7 - 355718271*T^6 + 1881514716244*T^5 + 45427691845325851*T^4 - 35414197539837661836*T^3 - 2197578108950692765072701*T^2 - 7137093357563808706937791380*T - 3176394822850950034213626511200)^2
43 43 4 3
T 16 + ⋯ + 12 ⋯ 24 T^{16} + \cdots + 12\!\cdots\!24 T 1 6 + ⋯ + 1 2 ⋯ 2 4
T^16 + 1226413834*T^14 + 537891756601175985*T^12 + 103025254160988518937606872*T^10 + 8718537268184361389384500913271920*T^8 + 331233890672859830700239266417056087512832*T^6 + 4911212962582298463466037929392979762504913628928*T^4 + 14315756242616784487228246119551504959450711367853905920*T^2 + 1299580743427995264234383716154159506555401224328773875175424
47 47 4 7
T 16 + ⋯ + 93 ⋯ 00 T^{16} + \cdots + 93\!\cdots\!00 T 1 6 + ⋯ + 9 3 ⋯ 0 0
T^16 + 3034231942*T^14 + 3817901123997344511*T^12 + 2599019472326378197515104788*T^10 + 1047306756852269229692342849398277551*T^8 + 255906316235515100647556836212544507577608902*T^6 + 37014679109037096315896615522458674082486284300769521*T^4 + 2893098907607022826289999174562183142186044487563778041000000*T^2 + 93237045176535648868323178845435993727746574173261088537308733440000
53 53 5 3
T 16 + ⋯ + 30 ⋯ 00 T^{16} + \cdots + 30\!\cdots\!00 T 1 6 + ⋯ + 3 0 ⋯ 0 0
T^16 + 2503727573*T^14 + 2348009888441408326*T^12 + 1128956057258356865656747225*T^10 + 309379300338687496220447843430143750*T^8 + 49524298717264167546048350293735427512328125*T^6 + 4463836619638421935772798139526165125779648506640625*T^4 + 199739415052136741110284179906079542698619256288954609375000*T^2 + 3057512036790379583460565526640799943345254360107270966597656250000
59 59 5 9
( T 8 + ⋯ + 75 ⋯ 36 ) 2 (T^{8} + \cdots + 75\!\cdots\!36)^{2} ( T 8 + ⋯ + 7 5 ⋯ 3 6 ) 2
(T^8 + 20400*T^7 - 3045878467*T^6 - 42042272145388*T^5 + 2794917475159660131*T^4 + 24698950229484726777832*T^3 - 877890243251729424281956737*T^2 - 4714882853825962765748824452780*T + 75742589574397792813009044256775136)^2
61 61 6 1
( T 8 + ⋯ + 30 ⋯ 04 ) 2 (T^{8} + \cdots + 30\!\cdots\!04)^{2} ( T 8 + ⋯ + 3 0 ⋯ 0 4 ) 2
(T^8 - 10511*T^7 - 2325908022*T^6 + 20662392339609*T^5 + 857491594857092358*T^4 - 553477079673106513395*T^3 - 73362305997996069462079927*T^2 - 233550183469848442136119827892*T + 308388166900774117261899860564604)^2
67 67 6 7
T 16 + ⋯ + 15 ⋯ 76 T^{16} + \cdots + 15\!\cdots\!76 T 1 6 + ⋯ + 1 5 ⋯ 7 6
T^16 + 7618073992*T^14 + 20660843064150250128*T^12 + 26938278894659869539510777344*T^10 + 18307167597598788225009620186740920320*T^8 + 6441591984882029537177623344282865928949202944*T^6 + 1109944771289240485794716962985552323756192143694102528*T^4 + 81612596606047605791205901990925193178080655864132285751099392*T^2 + 1529672748785238523902154887638071425824408592845120529347347507838976
71 71 7 1
( T 8 + ⋯ + 36 ⋯ 12 ) 2 (T^{8} + \cdots + 36\!\cdots\!12)^{2} ( T 8 + ⋯ + 3 6 ⋯ 1 2 ) 2
(T^8 - 31862*T^7 - 9670688481*T^6 + 194430744120902*T^5 + 31307686538856805472*T^4 - 312266714764719636827016*T^3 - 33282125696041971719016552192*T^2 + 146420027406260792467432116955488*T + 3695111656175761302693393261408117312)^2
73 73 7 3
T 16 + ⋯ + 17 ⋯ 44 T^{16} + \cdots + 17\!\cdots\!44 T 1 6 + ⋯ + 1 7 ⋯ 4 4
T^16 + 15182748821*T^14 + 77726500693309839838*T^12 + 158319450879239458553421640241*T^10 + 145014433570552141892444275692589625518*T^8 + 62468919125326441439966763055312001381458045205*T^6 + 11954288771096919774983494586266869528681364145014935673*T^4 + 820840620646786592542898690308491445733059033976764331869441232*T^2 + 17573500622424702558271695632059465445271707947204220805691744543744
79 79 7 9
( T 8 + ⋯ − 89 ⋯ 08 ) 2 (T^{8} + \cdots - 89\!\cdots\!08)^{2} ( T 8 + ⋯ − 8 9 ⋯ 0 8 ) 2
(T^8 - 71679*T^7 - 13023850944*T^6 + 1200494095111701*T^5 + 25673362585007064552*T^4 - 4410400647742499452536147*T^3 + 41677761291387432295080271367*T^2 + 4435923119017605774606329733741444*T - 89445275450693214466451475315715831008)^2
83 83 8 3
T 16 + ⋯ + 64 ⋯ 09 T^{16} + \cdots + 64\!\cdots\!09 T 1 6 + ⋯ + 6 4 ⋯ 0 9
T^16 + 24102902147*T^14 + 230013021434293551577*T^12 + 1122475671106753464858373866450*T^10 + 3030468140920671973724171769923012454582*T^8 + 4569200291928441416122664922703254994813717959426*T^6 + 3625855201691298061300339591990443106260156551611823005137*T^4 + 1235287636632724826877605442263459383112993528647557791046431397171*T^2 + 64336517742469473820546865558839687608820077120612309201760035536904756009
89 89 8 9
( T 8 + ⋯ − 34 ⋯ 19 ) 2 (T^{8} + \cdots - 34\!\cdots\!19)^{2} ( T 8 + ⋯ − 3 4 ⋯ 1 9 ) 2
(T^8 - 14961*T^7 - 20046089679*T^6 - 455787474947838*T^5 + 95473976846995236618*T^4 + 5801515231120842185690202*T^3 + 110070591243811703178840302661*T^2 + 464126498744364926221067808401079*T - 3414853333833232004113270952982089619)^2
97 97 9 7
T 16 + ⋯ + 57 ⋯ 81 T^{16} + \cdots + 57\!\cdots\!81 T 1 6 + ⋯ + 5 7 ⋯ 8 1
T^16 + 146571819299*T^14 + 9046513261505539200361*T^12 + 304263257765401300581394406676322*T^10 + 6013579377724596818654073987247321552229078*T^8 + 69836989258290229996866865320137332122802732278380242*T^6 + 444003134278733231033972190301758731392956198927490014526068321*T^4 + 1248368092484026072337804476250264735746540161548773614785159119389553779*T^2 + 570506435374902572516699077841993095448787585091403237221065832843030918847515881
show more
show less