Properties

Label 1100.6.b.i
Level 11001100
Weight 66
Character orbit 1100.b
Analytic conductor 176.422176.422
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 1100=225211 1100 = 2^{2} \cdot 5^{2} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 1100.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 176.422201794176.422201794
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+2231x14+1950697x12+841157794x10+184347539486x8+19011199757266x6++36 ⁣ ⁣25 x^{16} + 2231 x^{14} + 1950697 x^{12} + 841157794 x^{10} + 184347539486 x^{8} + 19011199757266 x^{6} + \cdots + 36\!\cdots\!25 Copy content Toggle raw display
Coefficient ring: Z[a1,,a29]\Z[a_1, \ldots, a_{29}]
Coefficient ring index: 214510 2^{14}\cdot 5^{10}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β9+β8)q3+(β102β9)q7+(β2β147)q9+121q11+(β12β10+5β8)q13+(β12+β11+13β9)q17++(121β2121β15687)q99+O(q100) q + (\beta_{9} + \beta_{8}) q^{3} + (\beta_{10} - 2 \beta_{9}) q^{7} + ( - \beta_{2} - \beta_1 - 47) q^{9} + 121 q^{11} + (\beta_{12} - \beta_{10} + \cdots - 5 \beta_{8}) q^{13} + ( - \beta_{12} + \beta_{11} + \cdots - 13 \beta_{9}) q^{17}+ \cdots + ( - 121 \beta_{2} - 121 \beta_1 - 5687) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q754q9+1936q11+708q191176q215486q29+7536q31+20054q39+17512q4154682q49+9414q5140800q59+21022q61144904q69+63724q71+91234q99+O(q100) 16 q - 754 q^{9} + 1936 q^{11} + 708 q^{19} - 1176 q^{21} - 5486 q^{29} + 7536 q^{31} + 20054 q^{39} + 17512 q^{41} - 54682 q^{49} + 9414 q^{51} - 40800 q^{59} + 21022 q^{61} - 144904 q^{69} + 63724 q^{71}+ \cdots - 91234 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+2231x14+1950697x12+841157794x10+184347539486x8+19011199757266x6++36 ⁣ ⁣25 x^{16} + 2231 x^{14} + 1950697 x^{12} + 841157794 x^{10} + 184347539486 x^{8} + 19011199757266 x^{6} + \cdots + 36\!\cdots\!25 : Copy content Toggle raw display

β1\beta_{1}== (11678598862180ν14+10 ⁣ ⁣11)/36 ⁣ ⁣24 ( 11678598862180 \nu^{14} + \cdots - 10\!\cdots\!11 ) / 36\!\cdots\!24 Copy content Toggle raw display
β2\beta_{2}== (58392994310900ν14++17 ⁣ ⁣77)/36 ⁣ ⁣24 ( 58392994310900 \nu^{14} + \cdots + 17\!\cdots\!77 ) / 36\!\cdots\!24 Copy content Toggle raw display
β3\beta_{3}== (26 ⁣ ⁣95ν14+41 ⁣ ⁣09)/14 ⁣ ⁣68 ( 26\!\cdots\!95 \nu^{14} + \cdots - 41\!\cdots\!09 ) / 14\!\cdots\!68 Copy content Toggle raw display
β4\beta_{4}== (47 ⁣ ⁣93ν14++12 ⁣ ⁣63)/14 ⁣ ⁣68 ( 47\!\cdots\!93 \nu^{14} + \cdots + 12\!\cdots\!63 ) / 14\!\cdots\!68 Copy content Toggle raw display
β5\beta_{5}== (19 ⁣ ⁣02ν14++80 ⁣ ⁣85)/28 ⁣ ⁣36 ( 19\!\cdots\!02 \nu^{14} + \cdots + 80\!\cdots\!85 ) / 28\!\cdots\!36 Copy content Toggle raw display
β6\beta_{6}== (67 ⁣ ⁣65ν14+80 ⁣ ⁣12)/95 ⁣ ⁣12 ( - 67\!\cdots\!65 \nu^{14} + \cdots - 80\!\cdots\!12 ) / 95\!\cdots\!12 Copy content Toggle raw display
β7\beta_{7}== (41 ⁣ ⁣13ν14++69 ⁣ ⁣86)/28 ⁣ ⁣36 ( 41\!\cdots\!13 \nu^{14} + \cdots + 69\!\cdots\!86 ) / 28\!\cdots\!36 Copy content Toggle raw display
β8\beta_{8}== (78 ⁣ ⁣43ν15+17 ⁣ ⁣73ν)/10 ⁣ ⁣60 ( - 78\!\cdots\!43 \nu^{15} + \cdots - 17\!\cdots\!73 \nu ) / 10\!\cdots\!60 Copy content Toggle raw display
β9\beta_{9}== (78 ⁣ ⁣43ν15++12 ⁣ ⁣33ν)/41 ⁣ ⁣84 ( 78\!\cdots\!43 \nu^{15} + \cdots + 12\!\cdots\!33 \nu ) / 41\!\cdots\!84 Copy content Toggle raw display
β10\beta_{10}== (29 ⁣ ⁣29ν15+64 ⁣ ⁣07ν)/11 ⁣ ⁣92 ( - 29\!\cdots\!29 \nu^{15} + \cdots - 64\!\cdots\!07 \nu ) / 11\!\cdots\!92 Copy content Toggle raw display
β11\beta_{11}== (87 ⁣ ⁣76ν15+41 ⁣ ⁣41ν)/91 ⁣ ⁣60 ( - 87\!\cdots\!76 \nu^{15} + \cdots - 41\!\cdots\!41 \nu ) / 91\!\cdots\!60 Copy content Toggle raw display
β12\beta_{12}== (30 ⁣ ⁣31ν15+25 ⁣ ⁣59ν)/27 ⁣ ⁣48 ( - 30\!\cdots\!31 \nu^{15} + \cdots - 25\!\cdots\!59 \nu ) / 27\!\cdots\!48 Copy content Toggle raw display
β13\beta_{13}== (12 ⁣ ⁣71ν15+65 ⁣ ⁣66ν)/11 ⁣ ⁣92 ( 12\!\cdots\!71 \nu^{15} + \cdots - 65\!\cdots\!66 \nu ) / 11\!\cdots\!92 Copy content Toggle raw display
β14\beta_{14}== (14 ⁣ ⁣56ν15+62 ⁣ ⁣21ν)/55 ⁣ ⁣60 ( - 14\!\cdots\!56 \nu^{15} + \cdots - 62\!\cdots\!21 \nu ) / 55\!\cdots\!60 Copy content Toggle raw display
β15\beta_{15}== (21 ⁣ ⁣39ν15+12 ⁣ ⁣54ν)/55 ⁣ ⁣60 ( - 21\!\cdots\!39 \nu^{15} + \cdots - 12\!\cdots\!54 \nu ) / 55\!\cdots\!60 Copy content Toggle raw display
ν\nu== (2β9+5β8)/5 ( 2\beta_{9} + 5\beta_{8} ) / 5 Copy content Toggle raw display
ν2\nu^{2}== (β25β11393)/5 ( \beta_{2} - 5\beta _1 - 1393 ) / 5 Copy content Toggle raw display
ν3\nu^{3}== (5β14β13+4β1215β1117β10948β92415β8)/5 ( 5\beta_{14} - \beta_{13} + 4\beta_{12} - 15\beta_{11} - 17\beta_{10} - 948\beta_{9} - 2415\beta_{8} ) / 5 Copy content Toggle raw display
ν4\nu^{4}== (49β7+77β6+88β5+181β4+21β3340β2+2966β1+671767)/5 ( -49\beta_{7} + 77\beta_{6} + 88\beta_{5} + 181\beta_{4} + 21\beta_{3} - 340\beta_{2} + 2966\beta _1 + 671767 ) / 5 Copy content Toggle raw display
ν5\nu^{5}== (135β153205β14460β134895β12+12390β11++1286665β8)/5 ( - 135 \beta_{15} - 3205 \beta_{14} - 460 \beta_{13} - 4895 \beta_{12} + 12390 \beta_{11} + \cdots + 1286665 \beta_{8} ) / 5 Copy content Toggle raw display
ν6\nu^{6}== (37835β786599β675755β5176645β426670β3+357061603)/5 ( 37835 \beta_{7} - 86599 \beta_{6} - 75755 \beta_{5} - 176645 \beta_{4} - 26670 \beta_{3} + \cdots - 357061603 ) / 5 Copy content Toggle raw display
ν7\nu^{7}== (205665β15+1800585β14+824598β13+3978813β12+713544890β8)/5 ( 205665 \beta_{15} + 1800585 \beta_{14} + 824598 \beta_{13} + 3978813 \beta_{12} + \cdots - 713544890 \beta_{8} ) / 5 Copy content Toggle raw display
ν8\nu^{8}== (24403371β7+69791979β6+53575827β5+131839674β4++197482475914)/5 ( - 24403371 \beta_{7} + 69791979 \beta_{6} + 53575827 \beta_{5} + 131839674 \beta_{4} + \cdots + 197482475914 ) / 5 Copy content Toggle raw display
ν9\nu^{9}== (186236361β151001824847β14790011254β132875838770β12++404625580416β8)/5 ( - 186236361 \beta_{15} - 1001824847 \beta_{14} - 790011254 \beta_{13} - 2875838770 \beta_{12} + \cdots + 404625580416 \beta_{8} ) / 5 Copy content Toggle raw display
ν10\nu^{10}== (15473594935β749189316903β635702615110β589838206710β4+111689955247228)/5 ( 15473594935 \beta_{7} - 49189316903 \beta_{6} - 35702615110 \beta_{5} - 89838206710 \beta_{4} + \cdots - 111689955247228 ) / 5 Copy content Toggle raw display
ν11\nu^{11}== (137132352009β15+566878487458β14+638666427451β13+232765266333919β8)/5 ( 137132352009 \beta_{15} + 566878487458 \beta_{14} + 638666427451 \beta_{13} + \cdots - 232765266333919 \beta_{8} ) / 5 Copy content Toggle raw display
ν12\nu^{12}== (9903842142170β7+32383511642434β6+23100578496890β5+58783704339230β4++64 ⁣ ⁣53)/5 ( - 9903842142170 \beta_{7} + 32383511642434 \beta_{6} + 23100578496890 \beta_{5} + 58783704339230 \beta_{4} + \cdots + 64\!\cdots\!53 ) / 5 Copy content Toggle raw display
ν13\nu^{13}== (90993771245166β15327663206213142β14476369588987724β13++13 ⁣ ⁣31β8)/5 ( - 90993771245166 \beta_{15} - 327663206213142 \beta_{14} - 476369588987724 \beta_{13} + \cdots + 13\!\cdots\!31 \beta_{8} ) / 5 Copy content Toggle raw display
ν14\nu^{14}== (63 ⁣ ⁣54β7+37 ⁣ ⁣87)/5 ( 63\!\cdots\!54 \beta_{7} + \cdots - 37\!\cdots\!87 ) / 5 Copy content Toggle raw display
ν15\nu^{15}== (56 ⁣ ⁣82β15+79 ⁣ ⁣37β8)/5 ( 56\!\cdots\!82 \beta_{15} + \cdots - 79\!\cdots\!37 \beta_{8} ) / 5 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1100Z)×\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times.

nn 101101 177177 551551
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
749.1
23.6316i
22.3000i
24.8760i
17.8741i
13.1518i
6.06056i
4.75672i
2.15294i
2.15294i
4.75672i
6.06056i
13.1518i
17.8741i
24.8760i
22.3000i
23.6316i
0 26.6316i 0 0 0 210.828i 0 −466.240 0
749.2 0 25.3000i 0 0 0 150.442i 0 −397.092 0
749.3 0 21.8760i 0 0 0 48.9354i 0 −235.558 0
749.4 0 14.8741i 0 0 0 166.492i 0 21.7626 0
749.5 0 10.1518i 0 0 0 122.703i 0 139.941 0
749.6 0 9.06056i 0 0 0 199.386i 0 160.906 0
749.7 0 7.75672i 0 0 0 86.6415i 0 182.833 0
749.8 0 5.15294i 0 0 0 47.7885i 0 216.447 0
749.9 0 5.15294i 0 0 0 47.7885i 0 216.447 0
749.10 0 7.75672i 0 0 0 86.6415i 0 182.833 0
749.11 0 9.06056i 0 0 0 199.386i 0 160.906 0
749.12 0 10.1518i 0 0 0 122.703i 0 139.941 0
749.13 0 14.8741i 0 0 0 166.492i 0 21.7626 0
749.14 0 21.8760i 0 0 0 48.9354i 0 −235.558 0
749.15 0 25.3000i 0 0 0 150.442i 0 −397.092 0
749.16 0 26.6316i 0 0 0 210.828i 0 −466.240 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 749.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.6.b.i 16
5.b even 2 1 inner 1100.6.b.i 16
5.c odd 4 1 1100.6.a.h 8
5.c odd 4 1 1100.6.a.k yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1100.6.a.h 8 5.c odd 4 1
1100.6.a.k yes 8 5.c odd 4 1
1100.6.b.i 16 1.a even 1 1 trivial
1100.6.b.i 16 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T316+2321T314+2087326T312+924020173T310+214678632158T38++64 ⁣ ⁣76 T_{3}^{16} + 2321 T_{3}^{14} + 2087326 T_{3}^{12} + 924020173 T_{3}^{10} + 214678632158 T_{3}^{8} + \cdots + 64\!\cdots\!76 acting on S6new(1100,[χ])S_{6}^{\mathrm{new}}(1100, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16++64 ⁣ ⁣76 T^{16} + \cdots + 64\!\cdots\!76 Copy content Toggle raw display
55 T16 T^{16} Copy content Toggle raw display
77 T16++68 ⁣ ⁣00 T^{16} + \cdots + 68\!\cdots\!00 Copy content Toggle raw display
1111 (T121)16 (T - 121)^{16} Copy content Toggle raw display
1313 T16++79 ⁣ ⁣25 T^{16} + \cdots + 79\!\cdots\!25 Copy content Toggle raw display
1717 T16++56 ⁣ ⁣64 T^{16} + \cdots + 56\!\cdots\!64 Copy content Toggle raw display
1919 (T8+11 ⁣ ⁣89)2 (T^{8} + \cdots - 11\!\cdots\!89)^{2} Copy content Toggle raw display
2323 T16++12 ⁣ ⁣29 T^{16} + \cdots + 12\!\cdots\!29 Copy content Toggle raw display
2929 (T8+14 ⁣ ⁣19)2 (T^{8} + \cdots - 14\!\cdots\!19)^{2} Copy content Toggle raw display
3131 (T8++62 ⁣ ⁣25)2 (T^{8} + \cdots + 62\!\cdots\!25)^{2} Copy content Toggle raw display
3737 T16++91 ⁣ ⁣04 T^{16} + \cdots + 91\!\cdots\!04 Copy content Toggle raw display
4141 (T8+31 ⁣ ⁣00)2 (T^{8} + \cdots - 31\!\cdots\!00)^{2} Copy content Toggle raw display
4343 T16++12 ⁣ ⁣24 T^{16} + \cdots + 12\!\cdots\!24 Copy content Toggle raw display
4747 T16++93 ⁣ ⁣00 T^{16} + \cdots + 93\!\cdots\!00 Copy content Toggle raw display
5353 T16++30 ⁣ ⁣00 T^{16} + \cdots + 30\!\cdots\!00 Copy content Toggle raw display
5959 (T8++75 ⁣ ⁣36)2 (T^{8} + \cdots + 75\!\cdots\!36)^{2} Copy content Toggle raw display
6161 (T8++30 ⁣ ⁣04)2 (T^{8} + \cdots + 30\!\cdots\!04)^{2} Copy content Toggle raw display
6767 T16++15 ⁣ ⁣76 T^{16} + \cdots + 15\!\cdots\!76 Copy content Toggle raw display
7171 (T8++36 ⁣ ⁣12)2 (T^{8} + \cdots + 36\!\cdots\!12)^{2} Copy content Toggle raw display
7373 T16++17 ⁣ ⁣44 T^{16} + \cdots + 17\!\cdots\!44 Copy content Toggle raw display
7979 (T8+89 ⁣ ⁣08)2 (T^{8} + \cdots - 89\!\cdots\!08)^{2} Copy content Toggle raw display
8383 T16++64 ⁣ ⁣09 T^{16} + \cdots + 64\!\cdots\!09 Copy content Toggle raw display
8989 (T8+34 ⁣ ⁣19)2 (T^{8} + \cdots - 34\!\cdots\!19)^{2} Copy content Toggle raw display
9797 T16++57 ⁣ ⁣81 T^{16} + \cdots + 57\!\cdots\!81 Copy content Toggle raw display
show more
show less