L(s) = 1 | + 26.6i·3-s + 210. i·7-s − 466.·9-s + 121·11-s − 457. i·13-s + 531. i·17-s − 515.·19-s − 5.61e3·21-s + 2.84e3i·23-s − 5.94e3i·27-s + 443.·29-s − 3.97e3·31-s + 3.22e3i·33-s − 1.31e4i·37-s + 1.21e4·39-s + ⋯ |
L(s) = 1 | + 1.70i·3-s + 1.62i·7-s − 1.91·9-s + 0.301·11-s − 0.750i·13-s + 0.446i·17-s − 0.327·19-s − 2.77·21-s + 1.12i·23-s − 1.56i·27-s + 0.0978·29-s − 0.742·31-s + 0.515i·33-s − 1.58i·37-s + 1.28·39-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)(0.894+0.447i)Λ(6−s)
Λ(s)=(=(1100s/2ΓC(s+5/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1100
= 22⋅52⋅11
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
176.422 |
Root analytic conductor: |
13.2824 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1100(749,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1100, ( :5/2), 0.894+0.447i)
|
Particular Values
L(3) |
≈ |
0.1280367804 |
L(21) |
≈ |
0.1280367804 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1−121T |
good | 3 | 1−26.6iT−243T2 |
| 7 | 1−210.iT−1.68e4T2 |
| 13 | 1+457.iT−3.71e5T2 |
| 17 | 1−531.iT−1.41e6T2 |
| 19 | 1+515.T+2.47e6T2 |
| 23 | 1−2.84e3iT−6.43e6T2 |
| 29 | 1−443.T+2.05e7T2 |
| 31 | 1+3.97e3T+2.86e7T2 |
| 37 | 1+1.31e4iT−6.93e7T2 |
| 41 | 1+530.T+1.15e8T2 |
| 43 | 1+1.91e3iT−1.47e8T2 |
| 47 | 1+1.33e4iT−2.29e8T2 |
| 53 | 1−1.93e4iT−4.18e8T2 |
| 59 | 1+3.15e4T+7.14e8T2 |
| 61 | 1+1.20e4T+8.44e8T2 |
| 67 | 1+3.15e4iT−1.35e9T2 |
| 71 | 1+9.16e3T+1.80e9T2 |
| 73 | 1+2.69e4iT−2.07e9T2 |
| 79 | 1−6.54e4T+3.07e9T2 |
| 83 | 1+4.71e4iT−3.93e9T2 |
| 89 | 1+2.77e4T+5.58e9T2 |
| 97 | 1+1.33e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.087096904233841052361777486352, −8.696333613990979224310694057391, −7.63356753734935064382727355613, −6.04809029971237095921209714073, −5.58554366271268116454335178780, −4.82905120711980314701645781314, −3.76201402131411278617520671787, −3.04670700992558287017569500125, −1.95640564894760578157892667047, −0.02650031426718303801556754171,
0.908241317144951174689116027231, 1.58119526631057442314114709293, 2.69570493109021607004450118214, 3.90336460812283686085735858350, 4.88497996730206777083167695478, 6.37980913655533982762595945666, 6.67803661739543867059495580651, 7.44815736038680089766635168503, 8.063473864004356841697414348360, 8.986214886033112834955706483253