L(s) = 1 | + 8·3-s − 4·4-s − 4·7-s + 36·9-s − 4·11-s − 32·12-s + 10·16-s − 32·21-s − 4·25-s + 120·27-s + 16·28-s − 32·33-s − 144·36-s + 18·37-s − 10·41-s + 16·44-s + 28·47-s + 80·48-s − 6·49-s + 12·53-s − 144·63-s − 20·64-s + 12·67-s + 24·71-s + 10·73-s − 32·75-s + 16·77-s + ⋯ |
L(s) = 1 | + 4.61·3-s − 2·4-s − 1.51·7-s + 12·9-s − 1.20·11-s − 9.23·12-s + 5/2·16-s − 6.98·21-s − 4/5·25-s + 23.0·27-s + 3.02·28-s − 5.57·33-s − 24·36-s + 2.95·37-s − 1.56·41-s + 2.41·44-s + 4.08·47-s + 11.5·48-s − 6/7·49-s + 1.64·53-s − 18.1·63-s − 5/2·64-s + 1.46·67-s + 2.84·71-s + 1.17·73-s − 3.69·75-s + 1.82·77-s + ⋯ |
Λ(s)=(=((28⋅38⋅58⋅378)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((28⋅38⋅58⋅378)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
23.15347402 |
L(21) |
≈ |
23.15347402 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+T2)4 |
| 3 | (1−T)8 |
| 5 | (1+T2)4 |
| 37 | 1−18T+120T2−230T3−610T4−230pT5+120p2T6−18p3T7+p4T8 |
good | 7 | (1+2T+9T2+6T3+44T4+6pT5+9p2T6+2p3T7+p4T8)2 |
| 11 | (1+2T+pT2+28T3+60T4+28pT5+p3T6+2p3T7+p4T8)2 |
| 13 | 1−51T2+1450T4−27925T6+412138T8−27925p2T10+1450p4T12−51p6T14+p8T16 |
| 17 | 1−86T2+3449T4−88262T6+1685524T8−88262p2T10+3449p4T12−86p6T14+p8T16 |
| 19 | 1−71T2+3066T4−90321T6+1978538T8−90321p2T10+3066p4T12−71p6T14+p8T16 |
| 23 | 1−131T2+8350T4−334125T6+9172738T8−334125p2T10+8350p4T12−131p6T14+p8T16 |
| 29 | 1−19T2+1426T4−9669T6+1269306T8−9669p2T10+1426p4T12−19p6T14+p8T16 |
| 31 | 1−131T2+8502T4−362061T6+12194738T8−362061p2T10+8502p4T12−131p6T14+p8T16 |
| 41 | (1+5T+118T2+563T3+6674T4+563pT5+118p2T6+5p3T7+p4T8)2 |
| 43 | 1−255T2+30706T4−2298169T6+117805018T8−2298169p2T10+30706p4T12−255p6T14+p8T16 |
| 47 | (1−14T+64T2+586T3−7618T4+586pT5+64p2T6−14p3T7+p4T8)2 |
| 53 | (1−6T+205T2−922T3+16124T4−922pT5+205p2T6−6p3T7+p4T8)2 |
| 59 | 1−260T2+36052T4−3325212T6+226302646T8−3325212p2T10+36052p4T12−260p6T14+p8T16 |
| 61 | 1−311T2+47598T4−77205pT6+334310210T8−77205p3T10+47598p4T12−311p6T14+p8T16 |
| 67 | (1−6T+60T2+74T3+3158T4+74pT5+60p2T6−6p3T7+p4T8)2 |
| 71 | (1−12T+256T2−2300T3+26462T4−2300pT5+256p2T6−12p3T7+p4T8)2 |
| 73 | (1−5T+210T2−867T3+21882T4−867pT5+210p2T6−5p3T7+p4T8)2 |
| 79 | 1−140T2+21204T4−2466036T6+185705942T8−2466036p2T10+21204p4T12−140p6T14+p8T16 |
| 83 | (1−3T+208T2+5T3+20174T4+5pT5+208p2T6−3p3T7+p4T8)2 |
| 89 | 1−527T2+132910T4−20902113T6+2232605602T8−20902113p2T10+132910p4T12−527p6T14+p8T16 |
| 97 | 1−275T2+62634T4−8629437T6+1011478730T8−8629437p2T10+62634p4T12−275p6T14+p8T16 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.04746385607230922513384260244, −4.02547163112643252288104562762, −3.92330080889104943902022518475, −3.78038841065032231900085266698, −3.61934492578378904858909251691, −3.54711612946183544983508582897, −3.51886649165010669220867172732, −3.37390782374923872688219762636, −3.18997448682146557318369095360, −2.93937626845352026859992847508, −2.74263697392464393422584078254, −2.61108377119400778804633141053, −2.60696791974846211043663761359, −2.48200156597610685879991356126, −2.45048548525437259149616380828, −2.40818767875137690903752965027, −2.25555573660070458621494075485, −1.75279153798382622683326816128, −1.64349430186259516883569783444, −1.40684933185677598087008931822, −1.35741105328725901855168827261, −1.18847311637681584561643726167, −0.71282682693049078513423651912, −0.48672693371614329752513174304, −0.43816467838509020214220256905,
0.43816467838509020214220256905, 0.48672693371614329752513174304, 0.71282682693049078513423651912, 1.18847311637681584561643726167, 1.35741105328725901855168827261, 1.40684933185677598087008931822, 1.64349430186259516883569783444, 1.75279153798382622683326816128, 2.25555573660070458621494075485, 2.40818767875137690903752965027, 2.45048548525437259149616380828, 2.48200156597610685879991356126, 2.60696791974846211043663761359, 2.61108377119400778804633141053, 2.74263697392464393422584078254, 2.93937626845352026859992847508, 3.18997448682146557318369095360, 3.37390782374923872688219762636, 3.51886649165010669220867172732, 3.54711612946183544983508582897, 3.61934492578378904858909251691, 3.78038841065032231900085266698, 3.92330080889104943902022518475, 4.02547163112643252288104562762, 4.04746385607230922513384260244
Plot not available for L-functions of degree greater than 10.