Properties

Label 1110.2.h.g.961.7
Level $1110$
Weight $2$
Character 1110.961
Analytic conductor $8.863$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1110,2,Mod(961,1110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1110.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 132x^{4} + 297x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.7
Root \(2.87151i\) of defining polynomial
Character \(\chi\) \(=\) 1110.961
Dual form 1110.2.h.g.961.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000 q^{3} -1.00000 q^{4} -1.00000i q^{5} +1.00000i q^{6} +0.374052 q^{7} -1.00000i q^{8} +1.00000 q^{9} +1.00000 q^{10} -6.11707 q^{11} -1.00000 q^{12} -5.44814i q^{13} +0.374052i q^{14} -1.00000i q^{15} +1.00000 q^{16} -2.37405i q^{17} +1.00000i q^{18} -1.70513i q^{19} +1.00000i q^{20} +0.374052 q^{21} -6.11707i q^{22} -5.44814i q^{23} -1.00000i q^{24} -1.00000 q^{25} +5.44814 q^{26} +1.00000 q^{27} -0.374052 q^{28} +4.41194i q^{29} +1.00000 q^{30} -3.07409i q^{31} +1.00000i q^{32} -6.11707 q^{33} +2.37405 q^{34} -0.374052i q^{35} -1.00000 q^{36} +(2.70513 + 5.44814i) q^{37} +1.70513 q^{38} -5.44814i q^{39} -1.00000 q^{40} +3.07409 q^{41} +0.374052i q^{42} -7.82220i q^{43} +6.11707 q^{44} -1.00000i q^{45} +5.44814 q^{46} -13.3874 q^{47} +1.00000 q^{48} -6.86009 q^{49} -1.00000i q^{50} -2.37405i q^{51} +5.44814i q^{52} +2.37405 q^{53} +1.00000i q^{54} +6.11707i q^{55} -0.374052i q^{56} -1.70513i q^{57} -4.41194 q^{58} -10.8963i q^{59} +1.00000i q^{60} +4.07918i q^{61} +3.07409 q^{62} +0.374052 q^{63} -1.00000 q^{64} -5.44814 q^{65} -6.11707i q^{66} +10.1482 q^{67} +2.37405i q^{68} -5.44814i q^{69} +0.374052 q^{70} +4.74810 q^{71} -1.00000i q^{72} +8.19625 q^{73} +(-5.44814 + 2.70513i) q^{74} -1.00000 q^{75} +1.70513i q^{76} -2.28810 q^{77} +5.44814 q^{78} -12.1482i q^{79} -1.00000i q^{80} +1.00000 q^{81} +3.07409i q^{82} +6.78599 q^{83} -0.374052 q^{84} -2.37405 q^{85} +7.82220 q^{86} +4.41194i q^{87} +6.11707i q^{88} -0.551855i q^{89} +1.00000 q^{90} -2.03789i q^{91} +5.44814i q^{92} -3.07409i q^{93} -13.3874i q^{94} -1.70513 q^{95} +1.00000i q^{96} -8.15496i q^{97} -6.86009i q^{98} -6.11707 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 8 q^{4} - 4 q^{7} + 8 q^{9} + 8 q^{10} - 4 q^{11} - 8 q^{12} + 8 q^{16} - 4 q^{21} - 8 q^{25} + 2 q^{26} + 8 q^{27} + 4 q^{28} + 8 q^{30} - 4 q^{33} + 12 q^{34} - 8 q^{36} + 18 q^{37} + 10 q^{38}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000 0.577350
\(4\) −1.00000 −0.500000
\(5\) 1.00000i 0.447214i
\(6\) 1.00000i 0.408248i
\(7\) 0.374052 0.141378 0.0706892 0.997498i \(-0.477480\pi\)
0.0706892 + 0.997498i \(0.477480\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) −6.11707 −1.84437 −0.922183 0.386754i \(-0.873596\pi\)
−0.922183 + 0.386754i \(0.873596\pi\)
\(12\) −1.00000 −0.288675
\(13\) 5.44814i 1.51104i −0.655124 0.755522i \(-0.727383\pi\)
0.655124 0.755522i \(-0.272617\pi\)
\(14\) 0.374052i 0.0999696i
\(15\) 1.00000i 0.258199i
\(16\) 1.00000 0.250000
\(17\) 2.37405i 0.575792i −0.957662 0.287896i \(-0.907044\pi\)
0.957662 0.287896i \(-0.0929558\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.70513i 0.391183i −0.980685 0.195592i \(-0.937337\pi\)
0.980685 0.195592i \(-0.0626627\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 0.374052 0.0816248
\(22\) 6.11707i 1.30416i
\(23\) 5.44814i 1.13602i −0.823023 0.568008i \(-0.807714\pi\)
0.823023 0.568008i \(-0.192286\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.00000 −0.200000
\(26\) 5.44814 1.06847
\(27\) 1.00000 0.192450
\(28\) −0.374052 −0.0706892
\(29\) 4.41194i 0.819277i 0.912248 + 0.409638i \(0.134345\pi\)
−0.912248 + 0.409638i \(0.865655\pi\)
\(30\) 1.00000 0.182574
\(31\) 3.07409i 0.552123i −0.961140 0.276062i \(-0.910971\pi\)
0.961140 0.276062i \(-0.0890294\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −6.11707 −1.06484
\(34\) 2.37405 0.407147
\(35\) 0.374052i 0.0632263i
\(36\) −1.00000 −0.166667
\(37\) 2.70513 + 5.44814i 0.444720 + 0.895669i
\(38\) 1.70513 0.276608
\(39\) 5.44814i 0.872401i
\(40\) −1.00000 −0.158114
\(41\) 3.07409 0.480093 0.240046 0.970761i \(-0.422837\pi\)
0.240046 + 0.970761i \(0.422837\pi\)
\(42\) 0.374052i 0.0577175i
\(43\) 7.82220i 1.19287i −0.802660 0.596437i \(-0.796583\pi\)
0.802660 0.596437i \(-0.203417\pi\)
\(44\) 6.11707 0.922183
\(45\) 1.00000i 0.149071i
\(46\) 5.44814 0.803285
\(47\) −13.3874 −1.95275 −0.976377 0.216073i \(-0.930675\pi\)
−0.976377 + 0.216073i \(0.930675\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.86009 −0.980012
\(50\) 1.00000i 0.141421i
\(51\) 2.37405i 0.332434i
\(52\) 5.44814i 0.755522i
\(53\) 2.37405 0.326101 0.163051 0.986618i \(-0.447867\pi\)
0.163051 + 0.986618i \(0.447867\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 6.11707i 0.824825i
\(56\) 0.374052i 0.0499848i
\(57\) 1.70513i 0.225850i
\(58\) −4.41194 −0.579316
\(59\) 10.8963i 1.41858i −0.704919 0.709288i \(-0.749017\pi\)
0.704919 0.709288i \(-0.250983\pi\)
\(60\) 1.00000i 0.129099i
\(61\) 4.07918i 0.522285i 0.965300 + 0.261143i \(0.0840993\pi\)
−0.965300 + 0.261143i \(0.915901\pi\)
\(62\) 3.07409 0.390410
\(63\) 0.374052 0.0471261
\(64\) −1.00000 −0.125000
\(65\) −5.44814 −0.675759
\(66\) 6.11707i 0.752959i
\(67\) 10.1482 1.23980 0.619899 0.784682i \(-0.287174\pi\)
0.619899 + 0.784682i \(0.287174\pi\)
\(68\) 2.37405i 0.287896i
\(69\) 5.44814i 0.655880i
\(70\) 0.374052 0.0447077
\(71\) 4.74810 0.563496 0.281748 0.959488i \(-0.409086\pi\)
0.281748 + 0.959488i \(0.409086\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 8.19625 0.959298 0.479649 0.877460i \(-0.340764\pi\)
0.479649 + 0.877460i \(0.340764\pi\)
\(74\) −5.44814 + 2.70513i −0.633334 + 0.314465i
\(75\) −1.00000 −0.115470
\(76\) 1.70513i 0.195592i
\(77\) −2.28810 −0.260753
\(78\) 5.44814 0.616881
\(79\) 12.1482i 1.36678i −0.730055 0.683389i \(-0.760505\pi\)
0.730055 0.683389i \(-0.239495\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 1.00000 0.111111
\(82\) 3.07409i 0.339477i
\(83\) 6.78599 0.744859 0.372430 0.928060i \(-0.378525\pi\)
0.372430 + 0.928060i \(0.378525\pi\)
\(84\) −0.374052 −0.0408124
\(85\) −2.37405 −0.257502
\(86\) 7.82220 0.843489
\(87\) 4.41194i 0.473010i
\(88\) 6.11707i 0.652082i
\(89\) 0.551855i 0.0584965i −0.999572 0.0292483i \(-0.990689\pi\)
0.999572 0.0292483i \(-0.00931134\pi\)
\(90\) 1.00000 0.105409
\(91\) 2.03789i 0.213629i
\(92\) 5.44814i 0.568008i
\(93\) 3.07409i 0.318769i
\(94\) 13.3874i 1.38081i
\(95\) −1.70513 −0.174942
\(96\) 1.00000i 0.102062i
\(97\) 8.15496i 0.828010i −0.910275 0.414005i \(-0.864130\pi\)
0.910275 0.414005i \(-0.135870\pi\)
\(98\) 6.86009i 0.692973i
\(99\) −6.11707 −0.614789
\(100\) 1.00000 0.100000
\(101\) 3.74302 0.372444 0.186222 0.982508i \(-0.440376\pi\)
0.186222 + 0.982508i \(0.440376\pi\)
\(102\) 2.37405 0.235066
\(103\) 8.49112i 0.836655i 0.908296 + 0.418327i \(0.137384\pi\)
−0.908296 + 0.418327i \(0.862616\pi\)
\(104\) −5.44814 −0.534235
\(105\) 0.374052i 0.0365037i
\(106\) 2.37405i 0.230588i
\(107\) −17.4481 −1.68678 −0.843388 0.537305i \(-0.819442\pi\)
−0.843388 + 0.537305i \(0.819442\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 8.62086i 0.825729i 0.910793 + 0.412864i \(0.135472\pi\)
−0.910793 + 0.412864i \(0.864528\pi\)
\(110\) −6.11707 −0.583240
\(111\) 2.70513 + 5.44814i 0.256759 + 0.517115i
\(112\) 0.374052 0.0353446
\(113\) 18.7185i 1.76089i 0.474151 + 0.880444i \(0.342755\pi\)
−0.474151 + 0.880444i \(0.657245\pi\)
\(114\) 1.70513 0.159700
\(115\) −5.44814 −0.508042
\(116\) 4.41194i 0.409638i
\(117\) 5.44814i 0.503681i
\(118\) 10.8963 1.00308
\(119\) 0.888018i 0.0814045i
\(120\) −1.00000 −0.0912871
\(121\) 26.4185 2.40168
\(122\) −4.07918 −0.369312
\(123\) 3.07409 0.277182
\(124\) 3.07409i 0.276062i
\(125\) 1.00000i 0.0894427i
\(126\) 0.374052i 0.0333232i
\(127\) 16.1861 1.43628 0.718141 0.695898i \(-0.244993\pi\)
0.718141 + 0.695898i \(0.244993\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 7.82220i 0.688706i
\(130\) 5.44814i 0.477834i
\(131\) 10.8963i 0.952013i 0.879442 + 0.476007i \(0.157916\pi\)
−0.879442 + 0.476007i \(0.842084\pi\)
\(132\) 6.11707 0.532422
\(133\) 0.637806i 0.0553048i
\(134\) 10.1482i 0.876670i
\(135\) 1.00000i 0.0860663i
\(136\) −2.37405 −0.203573
\(137\) 0.332760 0.0284296 0.0142148 0.999899i \(-0.495475\pi\)
0.0142148 + 0.999899i \(0.495475\pi\)
\(138\) 5.44814 0.463777
\(139\) −13.8980 −1.17881 −0.589405 0.807837i \(-0.700638\pi\)
−0.589405 + 0.807837i \(0.700638\pi\)
\(140\) 0.374052i 0.0316132i
\(141\) −13.3874 −1.12742
\(142\) 4.74810i 0.398452i
\(143\) 33.3267i 2.78692i
\(144\) 1.00000 0.0833333
\(145\) 4.41194 0.366392
\(146\) 8.19625i 0.678326i
\(147\) −6.86009 −0.565810
\(148\) −2.70513 5.44814i −0.222360 0.447835i
\(149\) −11.9014 −0.974999 −0.487499 0.873123i \(-0.662091\pi\)
−0.487499 + 0.873123i \(0.662091\pi\)
\(150\) 1.00000i 0.0816497i
\(151\) 18.4304 1.49984 0.749922 0.661527i \(-0.230091\pi\)
0.749922 + 0.661527i \(0.230091\pi\)
\(152\) −1.70513 −0.138304
\(153\) 2.37405i 0.191931i
\(154\) 2.28810i 0.184380i
\(155\) −3.07409 −0.246917
\(156\) 5.44814i 0.436201i
\(157\) 7.98056 0.636918 0.318459 0.947937i \(-0.396835\pi\)
0.318459 + 0.947937i \(0.396835\pi\)
\(158\) 12.1482 0.966458
\(159\) 2.37405 0.188275
\(160\) 1.00000 0.0790569
\(161\) 2.03789i 0.160608i
\(162\) 1.00000i 0.0785674i
\(163\) 9.86009i 0.772301i −0.922436 0.386151i \(-0.873804\pi\)
0.922436 0.386151i \(-0.126196\pi\)
\(164\) −3.07409 −0.240046
\(165\) 6.11707i 0.476213i
\(166\) 6.78599i 0.526695i
\(167\) 22.4304i 1.73572i 0.496813 + 0.867858i \(0.334504\pi\)
−0.496813 + 0.867858i \(0.665496\pi\)
\(168\) 0.374052i 0.0288587i
\(169\) −16.6823 −1.28325
\(170\) 2.37405i 0.182081i
\(171\) 1.70513i 0.130394i
\(172\) 7.82220i 0.596437i
\(173\) −22.7665 −1.73091 −0.865454 0.500988i \(-0.832970\pi\)
−0.865454 + 0.500988i \(0.832970\pi\)
\(174\) −4.41194 −0.334468
\(175\) −0.374052 −0.0282757
\(176\) −6.11707 −0.461091
\(177\) 10.8963i 0.819015i
\(178\) 0.551855 0.0413633
\(179\) 11.1304i 0.831927i −0.909381 0.415964i \(-0.863444\pi\)
0.909381 0.415964i \(-0.136556\pi\)
\(180\) 1.00000i 0.0745356i
\(181\) −15.3378 −1.14005 −0.570027 0.821626i \(-0.693067\pi\)
−0.570027 + 0.821626i \(0.693067\pi\)
\(182\) 2.03789 0.151058
\(183\) 4.07918i 0.301542i
\(184\) −5.44814 −0.401643
\(185\) 5.44814 2.70513i 0.400556 0.198885i
\(186\) 3.07409 0.225403
\(187\) 14.5222i 1.06197i
\(188\) 13.3874 0.976377
\(189\) 0.374052 0.0272083
\(190\) 1.70513i 0.123703i
\(191\) 12.0184i 0.869624i −0.900521 0.434812i \(-0.856815\pi\)
0.900521 0.434812i \(-0.143185\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 17.2291i 1.24017i −0.784533 0.620087i \(-0.787097\pi\)
0.784533 0.620087i \(-0.212903\pi\)
\(194\) 8.15496 0.585492
\(195\) −5.44814 −0.390150
\(196\) 6.86009 0.490006
\(197\) 1.88970 0.134636 0.0673179 0.997732i \(-0.478556\pi\)
0.0673179 + 0.997732i \(0.478556\pi\)
\(198\) 6.11707i 0.434721i
\(199\) 14.1584i 1.00366i −0.864966 0.501830i \(-0.832660\pi\)
0.864966 0.501830i \(-0.167340\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 10.1482 0.715798
\(202\) 3.74302i 0.263358i
\(203\) 1.65029i 0.115828i
\(204\) 2.37405i 0.166217i
\(205\) 3.07409i 0.214704i
\(206\) −8.49112 −0.591604
\(207\) 5.44814i 0.378672i
\(208\) 5.44814i 0.377761i
\(209\) 10.4304i 0.721485i
\(210\) 0.374052 0.0258120
\(211\) 11.1600 0.768289 0.384145 0.923273i \(-0.374496\pi\)
0.384145 + 0.923273i \(0.374496\pi\)
\(212\) −2.37405 −0.163051
\(213\) 4.74810 0.325335
\(214\) 17.4481i 1.19273i
\(215\) −7.82220 −0.533469
\(216\) 1.00000i 0.0680414i
\(217\) 1.14987i 0.0780583i
\(218\) −8.62086 −0.583878
\(219\) 8.19625 0.553851
\(220\) 6.11707i 0.412413i
\(221\) −12.9342 −0.870047
\(222\) −5.44814 + 2.70513i −0.365656 + 0.181556i
\(223\) −10.5703 −0.707840 −0.353920 0.935276i \(-0.615151\pi\)
−0.353920 + 0.935276i \(0.615151\pi\)
\(224\) 0.374052i 0.0249924i
\(225\) −1.00000 −0.0666667
\(226\) −18.7185 −1.24514
\(227\) 2.05633i 0.136484i 0.997669 + 0.0682418i \(0.0217389\pi\)
−0.997669 + 0.0682418i \(0.978261\pi\)
\(228\) 1.70513i 0.112925i
\(229\) 8.08595 0.534335 0.267167 0.963650i \(-0.413912\pi\)
0.267167 + 0.963650i \(0.413912\pi\)
\(230\) 5.44814i 0.359240i
\(231\) −2.28810 −0.150546
\(232\) 4.41194 0.289658
\(233\) 22.1253 1.44948 0.724740 0.689023i \(-0.241960\pi\)
0.724740 + 0.689023i \(0.241960\pi\)
\(234\) 5.44814 0.356156
\(235\) 13.3874i 0.873298i
\(236\) 10.8963i 0.709288i
\(237\) 12.1482i 0.789109i
\(238\) 0.888018 0.0575617
\(239\) 5.23245i 0.338459i −0.985577 0.169230i \(-0.945872\pi\)
0.985577 0.169230i \(-0.0541279\pi\)
\(240\) 1.00000i 0.0645497i
\(241\) 2.50379i 0.161283i 0.996743 + 0.0806417i \(0.0256970\pi\)
−0.996743 + 0.0806417i \(0.974303\pi\)
\(242\) 26.4185i 1.69825i
\(243\) 1.00000 0.0641500
\(244\) 4.07918i 0.261143i
\(245\) 6.86009i 0.438275i
\(246\) 3.07409i 0.195997i
\(247\) −9.28978 −0.591095
\(248\) −3.07409 −0.195205
\(249\) 6.78599 0.430045
\(250\) −1.00000 −0.0632456
\(251\) 16.9822i 1.07191i −0.844247 0.535955i \(-0.819952\pi\)
0.844247 0.535955i \(-0.180048\pi\)
\(252\) −0.374052 −0.0235631
\(253\) 33.3267i 2.09523i
\(254\) 16.1861i 1.01560i
\(255\) −2.37405 −0.148669
\(256\) 1.00000 0.0625000
\(257\) 6.70004i 0.417937i 0.977922 + 0.208969i \(0.0670106\pi\)
−0.977922 + 0.208969i \(0.932989\pi\)
\(258\) 7.82220 0.486989
\(259\) 1.01186 + 2.03789i 0.0628738 + 0.126628i
\(260\) 5.44814 0.337880
\(261\) 4.41194i 0.273092i
\(262\) −10.8963 −0.673175
\(263\) 8.15496 0.502856 0.251428 0.967876i \(-0.419100\pi\)
0.251428 + 0.967876i \(0.419100\pi\)
\(264\) 6.11707i 0.376480i
\(265\) 2.37405i 0.145837i
\(266\) 0.637806 0.0391064
\(267\) 0.551855i 0.0337730i
\(268\) −10.1482 −0.619899
\(269\) −5.34952 −0.326166 −0.163083 0.986612i \(-0.552144\pi\)
−0.163083 + 0.986612i \(0.552144\pi\)
\(270\) 1.00000 0.0608581
\(271\) −27.2888 −1.65768 −0.828838 0.559489i \(-0.810997\pi\)
−0.828838 + 0.559489i \(0.810997\pi\)
\(272\) 2.37405i 0.143948i
\(273\) 2.03789i 0.123339i
\(274\) 0.332760i 0.0201028i
\(275\) 6.11707 0.368873
\(276\) 5.44814i 0.327940i
\(277\) 6.78599i 0.407731i −0.978999 0.203865i \(-0.934650\pi\)
0.978999 0.203865i \(-0.0653505\pi\)
\(278\) 13.8980i 0.833545i
\(279\) 3.07409i 0.184041i
\(280\) −0.374052 −0.0223539
\(281\) 18.8719i 1.12581i 0.826523 + 0.562903i \(0.190315\pi\)
−0.826523 + 0.562903i \(0.809685\pi\)
\(282\) 13.3874i 0.797209i
\(283\) 10.5417i 0.626638i 0.949648 + 0.313319i \(0.101441\pi\)
−0.949648 + 0.313319i \(0.898559\pi\)
\(284\) −4.74810 −0.281748
\(285\) −1.70513 −0.101003
\(286\) −33.3267 −1.97065
\(287\) 1.14987 0.0678747
\(288\) 1.00000i 0.0589256i
\(289\) 11.3639 0.668463
\(290\) 4.41194i 0.259078i
\(291\) 8.15496i 0.478052i
\(292\) −8.19625 −0.479649
\(293\) −8.46000 −0.494239 −0.247119 0.968985i \(-0.579484\pi\)
−0.247119 + 0.968985i \(0.579484\pi\)
\(294\) 6.86009i 0.400088i
\(295\) −10.8963 −0.634407
\(296\) 5.44814 2.70513i 0.316667 0.157232i
\(297\) −6.11707 −0.354948
\(298\) 11.9014i 0.689428i
\(299\) −29.6823 −1.71657
\(300\) 1.00000 0.0577350
\(301\) 2.92591i 0.168646i
\(302\) 18.4304i 1.06055i
\(303\) 3.74302 0.215031
\(304\) 1.70513i 0.0977958i
\(305\) 4.07918 0.233573
\(306\) 2.37405 0.135716
\(307\) −16.4683 −0.939894 −0.469947 0.882695i \(-0.655727\pi\)
−0.469947 + 0.882695i \(0.655727\pi\)
\(308\) 2.28810 0.130377
\(309\) 8.49112i 0.483043i
\(310\) 3.07409i 0.174597i
\(311\) 21.0741i 1.19500i −0.801868 0.597501i \(-0.796160\pi\)
0.801868 0.597501i \(-0.203840\pi\)
\(312\) −5.44814 −0.308440
\(313\) 27.6317i 1.56184i 0.624633 + 0.780919i \(0.285249\pi\)
−0.624633 + 0.780919i \(0.714751\pi\)
\(314\) 7.98056i 0.450369i
\(315\) 0.374052i 0.0210754i
\(316\) 12.1482i 0.683389i
\(317\) 16.4119 0.921786 0.460893 0.887456i \(-0.347529\pi\)
0.460893 + 0.887456i \(0.347529\pi\)
\(318\) 2.37405i 0.133130i
\(319\) 26.9881i 1.51105i
\(320\) 1.00000i 0.0559017i
\(321\) −17.4481 −0.973860
\(322\) 2.03789 0.113567
\(323\) −4.04806 −0.225240
\(324\) −1.00000 −0.0555556
\(325\) 5.44814i 0.302209i
\(326\) 9.86009 0.546100
\(327\) 8.62086i 0.476735i
\(328\) 3.07409i 0.169738i
\(329\) −5.00759 −0.276077
\(330\) −6.11707 −0.336734
\(331\) 32.9594i 1.81161i 0.423693 + 0.905806i \(0.360734\pi\)
−0.423693 + 0.905806i \(0.639266\pi\)
\(332\) −6.78599 −0.372430
\(333\) 2.70513 + 5.44814i 0.148240 + 0.298556i
\(334\) −22.4304 −1.22734
\(335\) 10.1482i 0.554455i
\(336\) 0.374052 0.0204062
\(337\) 23.1548 1.26132 0.630660 0.776059i \(-0.282784\pi\)
0.630660 + 0.776059i \(0.282784\pi\)
\(338\) 16.6823i 0.907397i
\(339\) 18.7185i 1.01665i
\(340\) 2.37405 0.128751
\(341\) 18.8044i 1.01832i
\(342\) 1.70513 0.0922028
\(343\) −5.18439 −0.279931
\(344\) −7.82220 −0.421745
\(345\) −5.44814 −0.293318
\(346\) 22.7665i 1.22394i
\(347\) 5.91405i 0.317483i 0.987320 + 0.158741i \(0.0507436\pi\)
−0.987320 + 0.158741i \(0.949256\pi\)
\(348\) 4.41194i 0.236505i
\(349\) 3.17949 0.170194 0.0850970 0.996373i \(-0.472880\pi\)
0.0850970 + 0.996373i \(0.472880\pi\)
\(350\) 0.374052i 0.0199939i
\(351\) 5.44814i 0.290800i
\(352\) 6.11707i 0.326041i
\(353\) 0.102026i 0.00543031i 0.999996 + 0.00271515i \(0.000864261\pi\)
−0.999996 + 0.00271515i \(0.999136\pi\)
\(354\) 10.8963 0.579131
\(355\) 4.74810i 0.252003i
\(356\) 0.551855i 0.0292483i
\(357\) 0.888018i 0.0469989i
\(358\) 11.1304 0.588261
\(359\) −13.5720 −0.716302 −0.358151 0.933664i \(-0.616593\pi\)
−0.358151 + 0.933664i \(0.616593\pi\)
\(360\) −1.00000 −0.0527046
\(361\) 16.0925 0.846976
\(362\) 15.3378i 0.806139i
\(363\) 26.4185 1.38661
\(364\) 2.03789i 0.106814i
\(365\) 8.19625i 0.429011i
\(366\) −4.07918 −0.213222
\(367\) 36.3284 1.89632 0.948162 0.317786i \(-0.102939\pi\)
0.948162 + 0.317786i \(0.102939\pi\)
\(368\) 5.44814i 0.284004i
\(369\) 3.07409 0.160031
\(370\) 2.70513 + 5.44814i 0.140633 + 0.283236i
\(371\) 0.888018 0.0461036
\(372\) 3.07409i 0.159384i
\(373\) 8.89629 0.460632 0.230316 0.973116i \(-0.426024\pi\)
0.230316 + 0.973116i \(0.426024\pi\)
\(374\) −14.5222 −0.750927
\(375\) 1.00000i 0.0516398i
\(376\) 13.3874i 0.690403i
\(377\) 24.0369 1.23796
\(378\) 0.374052i 0.0192392i
\(379\) −33.2028 −1.70552 −0.852758 0.522307i \(-0.825072\pi\)
−0.852758 + 0.522307i \(0.825072\pi\)
\(380\) 1.70513 0.0874712
\(381\) 16.1861 0.829238
\(382\) 12.0184 0.614917
\(383\) 27.2407i 1.39194i 0.718073 + 0.695968i \(0.245024\pi\)
−0.718073 + 0.695968i \(0.754976\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 2.28810i 0.116612i
\(386\) 17.2291 0.876936
\(387\) 7.82220i 0.397625i
\(388\) 8.15496i 0.414005i
\(389\) 4.64608i 0.235565i −0.993039 0.117783i \(-0.962421\pi\)
0.993039 0.117783i \(-0.0375786\pi\)
\(390\) 5.44814i 0.275878i
\(391\) −12.9342 −0.654110
\(392\) 6.86009i 0.346487i
\(393\) 10.8963i 0.549645i
\(394\) 1.88970i 0.0952018i
\(395\) −12.1482 −0.611242
\(396\) 6.11707 0.307394
\(397\) −15.5720 −0.781535 −0.390768 0.920489i \(-0.627790\pi\)
−0.390768 + 0.920489i \(0.627790\pi\)
\(398\) 14.1584 0.709694
\(399\) 0.637806i 0.0319303i
\(400\) −1.00000 −0.0500000
\(401\) 28.6645i 1.43144i −0.698388 0.715719i \(-0.746099\pi\)
0.698388 0.715719i \(-0.253901\pi\)
\(402\) 10.1482i 0.506146i
\(403\) −16.7481 −0.834282
\(404\) −3.74302 −0.186222
\(405\) 1.00000i 0.0496904i
\(406\) −1.65029 −0.0819027
\(407\) −16.5475 33.3267i −0.820227 1.65194i
\(408\) −2.37405 −0.117533
\(409\) 16.9822i 0.839718i 0.907589 + 0.419859i \(0.137920\pi\)
−0.907589 + 0.419859i \(0.862080\pi\)
\(410\) 3.07409 0.151819
\(411\) 0.332760 0.0164139
\(412\) 8.49112i 0.418327i
\(413\) 4.07578i 0.200556i
\(414\) 5.44814 0.267762
\(415\) 6.78599i 0.333111i
\(416\) 5.44814 0.267117
\(417\) −13.8980 −0.680587
\(418\) −10.4304 −0.510167
\(419\) 28.2949 1.38229 0.691147 0.722714i \(-0.257105\pi\)
0.691147 + 0.722714i \(0.257105\pi\)
\(420\) 0.374052i 0.0182519i
\(421\) 11.3150i 0.551459i −0.961235 0.275730i \(-0.911081\pi\)
0.961235 0.275730i \(-0.0889195\pi\)
\(422\) 11.1600i 0.543262i
\(423\) −13.3874 −0.650918
\(424\) 2.37405i 0.115294i
\(425\) 2.37405i 0.115158i
\(426\) 4.74810i 0.230046i
\(427\) 1.52582i 0.0738398i
\(428\) 17.4481 0.843388
\(429\) 33.3267i 1.60903i
\(430\) 7.82220i 0.377220i
\(431\) 13.1844i 0.635070i −0.948247 0.317535i \(-0.897145\pi\)
0.948247 0.317535i \(-0.102855\pi\)
\(432\) 1.00000 0.0481125
\(433\) 34.9711 1.68060 0.840301 0.542120i \(-0.182378\pi\)
0.840301 + 0.542120i \(0.182378\pi\)
\(434\) 1.14987 0.0551955
\(435\) 4.41194 0.211536
\(436\) 8.62086i 0.412864i
\(437\) −9.28978 −0.444391
\(438\) 8.19625i 0.391632i
\(439\) 3.27134i 0.156133i 0.996948 + 0.0780663i \(0.0248746\pi\)
−0.996948 + 0.0780663i \(0.975125\pi\)
\(440\) 6.11707 0.291620
\(441\) −6.86009 −0.326671
\(442\) 12.9342i 0.615216i
\(443\) 21.9645 1.04356 0.521782 0.853079i \(-0.325267\pi\)
0.521782 + 0.853079i \(0.325267\pi\)
\(444\) −2.70513 5.44814i −0.128380 0.258558i
\(445\) −0.551855 −0.0261604
\(446\) 10.5703i 0.500518i
\(447\) −11.9014 −0.562916
\(448\) −0.374052 −0.0176723
\(449\) 10.8103i 0.510171i 0.966918 + 0.255086i \(0.0821037\pi\)
−0.966918 + 0.255086i \(0.917896\pi\)
\(450\) 1.00000i 0.0471405i
\(451\) −18.8044 −0.885466
\(452\) 18.7185i 0.880444i
\(453\) 18.4304 0.865935
\(454\) −2.05633 −0.0965085
\(455\) −2.03789 −0.0955377
\(456\) −1.70513 −0.0798499
\(457\) 2.74133i 0.128234i 0.997942 + 0.0641171i \(0.0204231\pi\)
−0.997942 + 0.0641171i \(0.979577\pi\)
\(458\) 8.08595i 0.377832i
\(459\) 2.37405i 0.110811i
\(460\) 5.44814 0.254021
\(461\) 30.9526i 1.44161i −0.693139 0.720804i \(-0.743773\pi\)
0.693139 0.720804i \(-0.256227\pi\)
\(462\) 2.28810i 0.106452i
\(463\) 15.7430i 0.731640i −0.930686 0.365820i \(-0.880789\pi\)
0.930686 0.365820i \(-0.119211\pi\)
\(464\) 4.41194i 0.204819i
\(465\) −3.07409 −0.142558
\(466\) 22.1253i 1.02494i
\(467\) 17.7007i 0.819092i 0.912289 + 0.409546i \(0.134313\pi\)
−0.912289 + 0.409546i \(0.865687\pi\)
\(468\) 5.44814i 0.251841i
\(469\) 3.79595 0.175281
\(470\) −13.3874 −0.617515
\(471\) 7.98056 0.367725
\(472\) −10.8963 −0.501542
\(473\) 47.8489i 2.20010i
\(474\) 12.1482 0.557985
\(475\) 1.70513i 0.0782366i
\(476\) 0.888018i 0.0407023i
\(477\) 2.37405 0.108700
\(478\) 5.23245 0.239327
\(479\) 4.47945i 0.204671i 0.994750 + 0.102336i \(0.0326315\pi\)
−0.994750 + 0.102336i \(0.967368\pi\)
\(480\) 1.00000 0.0456435
\(481\) 29.6823 14.7379i 1.35340 0.671992i
\(482\) −2.50379 −0.114045
\(483\) 2.03789i 0.0927271i
\(484\) −26.4185 −1.20084
\(485\) −8.15496 −0.370298
\(486\) 1.00000i 0.0453609i
\(487\) 7.32518i 0.331935i −0.986131 0.165968i \(-0.946925\pi\)
0.986131 0.165968i \(-0.0530747\pi\)
\(488\) 4.07918 0.184656
\(489\) 9.86009i 0.445888i
\(490\) −6.86009 −0.309907
\(491\) 32.0015 1.44421 0.722104 0.691785i \(-0.243175\pi\)
0.722104 + 0.691785i \(0.243175\pi\)
\(492\) −3.07409 −0.138591
\(493\) 10.4742 0.471733
\(494\) 9.28978i 0.417967i
\(495\) 6.11707i 0.274942i
\(496\) 3.07409i 0.138031i
\(497\) 1.77604 0.0796661
\(498\) 6.78599i 0.304088i
\(499\) 35.4977i 1.58910i −0.607202 0.794548i \(-0.707708\pi\)
0.607202 0.794548i \(-0.292292\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) 22.4304i 1.00212i
\(502\) 16.9822 0.757954
\(503\) 2.01017i 0.0896292i 0.998995 + 0.0448146i \(0.0142697\pi\)
−0.998995 + 0.0448146i \(0.985730\pi\)
\(504\) 0.374052i 0.0166616i
\(505\) 3.74302i 0.166562i
\(506\) −33.3267 −1.48155
\(507\) −16.6823 −0.740886
\(508\) −16.1861 −0.718141
\(509\) −17.5468 −0.777747 −0.388873 0.921291i \(-0.627136\pi\)
−0.388873 + 0.921291i \(0.627136\pi\)
\(510\) 2.37405i 0.105125i
\(511\) 3.06582 0.135624
\(512\) 1.00000i 0.0441942i
\(513\) 1.70513i 0.0752832i
\(514\) −6.70004 −0.295526
\(515\) 8.49112 0.374163
\(516\) 7.82220i 0.344353i
\(517\) 81.8917 3.60159
\(518\) −2.03789 + 1.01186i −0.0895397 + 0.0444585i
\(519\) −22.7665 −0.999341
\(520\) 5.44814i 0.238917i
\(521\) 8.55676 0.374878 0.187439 0.982276i \(-0.439981\pi\)
0.187439 + 0.982276i \(0.439981\pi\)
\(522\) −4.41194 −0.193105
\(523\) 13.7202i 0.599941i 0.953948 + 0.299971i \(0.0969769\pi\)
−0.953948 + 0.299971i \(0.903023\pi\)
\(524\) 10.8963i 0.476007i
\(525\) −0.374052 −0.0163250
\(526\) 8.15496i 0.355573i
\(527\) −7.29806 −0.317908
\(528\) −6.11707 −0.266211
\(529\) −6.68228 −0.290534
\(530\) 2.37405 0.103122
\(531\) 10.8963i 0.472859i
\(532\) 0.637806i 0.0276524i
\(533\) 16.7481i 0.725441i
\(534\) 0.551855 0.0238811
\(535\) 17.4481i 0.754349i
\(536\) 10.1482i 0.438335i
\(537\) 11.1304i 0.480313i
\(538\) 5.34952i 0.230634i
\(539\) 41.9636 1.80750
\(540\) 1.00000i 0.0430331i
\(541\) 21.0430i 0.904708i −0.891838 0.452354i \(-0.850584\pi\)
0.891838 0.452354i \(-0.149416\pi\)
\(542\) 27.2888i 1.17215i
\(543\) −15.3378 −0.658210
\(544\) 2.37405 0.101787
\(545\) 8.62086 0.369277
\(546\) 2.03789 0.0872136
\(547\) 29.3461i 1.25475i −0.778718 0.627375i \(-0.784129\pi\)
0.778718 0.627375i \(-0.215871\pi\)
\(548\) −0.332760 −0.0142148
\(549\) 4.07918i 0.174095i
\(550\) 6.11707i 0.260833i
\(551\) 7.52292 0.320487
\(552\) −5.44814 −0.231888
\(553\) 4.54405i 0.193233i
\(554\) 6.78599 0.288309
\(555\) 5.44814 2.70513i 0.231261 0.114826i
\(556\) 13.8980 0.589405
\(557\) 19.4370i 0.823571i −0.911281 0.411785i \(-0.864905\pi\)
0.911281 0.411785i \(-0.135095\pi\)
\(558\) 3.07409 0.130137
\(559\) −42.6165 −1.80248
\(560\) 0.374052i 0.0158066i
\(561\) 14.5222i 0.613129i
\(562\) −18.8719 −0.796065
\(563\) 43.2981i 1.82480i −0.409305 0.912398i \(-0.634229\pi\)
0.409305 0.912398i \(-0.365771\pi\)
\(564\) 13.3874 0.563712
\(565\) 18.7185 0.787493
\(566\) −10.5417 −0.443100
\(567\) 0.374052 0.0157087
\(568\) 4.74810i 0.199226i
\(569\) 28.9240i 1.21256i −0.795252 0.606279i \(-0.792662\pi\)
0.795252 0.606279i \(-0.207338\pi\)
\(570\) 1.70513i 0.0714200i
\(571\) −7.07746 −0.296183 −0.148091 0.988974i \(-0.547313\pi\)
−0.148091 + 0.988974i \(0.547313\pi\)
\(572\) 33.3267i 1.39346i
\(573\) 12.0184i 0.502078i
\(574\) 1.14987i 0.0479947i
\(575\) 5.44814i 0.227203i
\(576\) −1.00000 −0.0416667
\(577\) 2.75060i 0.114509i −0.998360 0.0572545i \(-0.981765\pi\)
0.998360 0.0572545i \(-0.0182347\pi\)
\(578\) 11.3639i 0.472675i
\(579\) 17.2291i 0.716015i
\(580\) −4.41194 −0.183196
\(581\) 2.53831 0.105307
\(582\) 8.15496 0.338034
\(583\) −14.5222 −0.601450
\(584\) 8.19625i 0.339163i
\(585\) −5.44814 −0.225253
\(586\) 8.46000i 0.349480i
\(587\) 8.64271i 0.356723i −0.983965 0.178361i \(-0.942920\pi\)
0.983965 0.178361i \(-0.0570796\pi\)
\(588\) 6.86009 0.282905
\(589\) −5.24172 −0.215981
\(590\) 10.8963i 0.448593i
\(591\) 1.88970 0.0777320
\(592\) 2.70513 + 5.44814i 0.111180 + 0.223917i
\(593\) 32.7253 1.34387 0.671933 0.740612i \(-0.265464\pi\)
0.671933 + 0.740612i \(0.265464\pi\)
\(594\) 6.11707i 0.250986i
\(595\) −0.888018 −0.0364052
\(596\) 11.9014 0.487499
\(597\) 14.1584i 0.579463i
\(598\) 29.6823i 1.21380i
\(599\) 21.5584 0.880854 0.440427 0.897788i \(-0.354827\pi\)
0.440427 + 0.897788i \(0.354827\pi\)
\(600\) 1.00000i 0.0408248i
\(601\) 14.5946 0.595328 0.297664 0.954671i \(-0.403792\pi\)
0.297664 + 0.954671i \(0.403792\pi\)
\(602\) 2.92591 0.119251
\(603\) 10.1482 0.413266
\(604\) −18.4304 −0.749922
\(605\) 26.4185i 1.07407i
\(606\) 3.74302i 0.152050i
\(607\) 19.8188i 0.804420i 0.915547 + 0.402210i \(0.131758\pi\)
−0.915547 + 0.402210i \(0.868242\pi\)
\(608\) 1.70513 0.0691521
\(609\) 1.65029i 0.0668733i
\(610\) 4.07918i 0.165161i
\(611\) 72.9365i 2.95070i
\(612\) 2.37405i 0.0959654i
\(613\) 43.4666 1.75560 0.877800 0.479028i \(-0.159011\pi\)
0.877800 + 0.479028i \(0.159011\pi\)
\(614\) 16.4683i 0.664605i
\(615\) 3.07409i 0.123959i
\(616\) 2.28810i 0.0921902i
\(617\) 22.8599 0.920305 0.460152 0.887840i \(-0.347795\pi\)
0.460152 + 0.887840i \(0.347795\pi\)
\(618\) −8.49112 −0.341563
\(619\) −6.92591 −0.278376 −0.139188 0.990266i \(-0.544449\pi\)
−0.139188 + 0.990266i \(0.544449\pi\)
\(620\) 3.07409 0.123459
\(621\) 5.44814i 0.218627i
\(622\) 21.0741 0.844994
\(623\) 0.206422i 0.00827014i
\(624\) 5.44814i 0.218100i
\(625\) 1.00000 0.0400000
\(626\) −27.6317 −1.10439
\(627\) 10.4304i 0.416549i
\(628\) −7.98056 −0.318459
\(629\) 12.9342 6.42211i 0.515719 0.256066i
\(630\) 0.374052 0.0149026
\(631\) 6.95262i 0.276780i −0.990378 0.138390i \(-0.955807\pi\)
0.990378 0.138390i \(-0.0441927\pi\)
\(632\) −12.1482 −0.483229
\(633\) 11.1600 0.443572
\(634\) 16.4119i 0.651801i
\(635\) 16.1861i 0.642325i
\(636\) −2.37405 −0.0941373
\(637\) 37.3747i 1.48084i
\(638\) 26.9881 1.06847
\(639\) 4.74810 0.187832
\(640\) −1.00000 −0.0395285
\(641\) 45.9315 1.81419 0.907093 0.420931i \(-0.138297\pi\)
0.907093 + 0.420931i \(0.138297\pi\)
\(642\) 17.4481i 0.688623i
\(643\) 8.26276i 0.325851i −0.986638 0.162926i \(-0.947907\pi\)
0.986638 0.162926i \(-0.0520931\pi\)
\(644\) 2.03789i 0.0803041i
\(645\) −7.82220 −0.307999
\(646\) 4.04806i 0.159269i
\(647\) 30.6510i 1.20501i −0.798113 0.602507i \(-0.794168\pi\)
0.798113 0.602507i \(-0.205832\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 66.6534i 2.61637i
\(650\) −5.44814 −0.213694
\(651\) 1.14987i 0.0450670i
\(652\) 9.86009i 0.386151i
\(653\) 27.9645i 1.09433i −0.837023 0.547167i \(-0.815706\pi\)
0.837023 0.547167i \(-0.184294\pi\)
\(654\) −8.62086 −0.337102
\(655\) 10.8963 0.425753
\(656\) 3.07409 0.120023
\(657\) 8.19625 0.319766
\(658\) 5.00759i 0.195216i
\(659\) 44.6762 1.74034 0.870169 0.492754i \(-0.164010\pi\)
0.870169 + 0.492754i \(0.164010\pi\)
\(660\) 6.11707i 0.238107i
\(661\) 1.13483i 0.0441397i 0.999756 + 0.0220698i \(0.00702562\pi\)
−0.999756 + 0.0220698i \(0.992974\pi\)
\(662\) −32.9594 −1.28100
\(663\) −12.9342 −0.502322
\(664\) 6.78599i 0.263348i
\(665\) −0.637806 −0.0247331
\(666\) −5.44814 + 2.70513i −0.211111 + 0.104822i
\(667\) 24.0369 0.930712
\(668\) 22.4304i 0.867858i
\(669\) −10.5703 −0.408671
\(670\) 10.1482 0.392059
\(671\) 24.9526i 0.963285i
\(672\) 0.374052i 0.0144294i
\(673\) −43.4850 −1.67622 −0.838112 0.545497i \(-0.816341\pi\)
−0.838112 + 0.545497i \(0.816341\pi\)
\(674\) 23.1548i 0.891889i
\(675\) −1.00000 −0.0384900
\(676\) 16.6823 0.641626
\(677\) 5.96548 0.229272 0.114636 0.993408i \(-0.463430\pi\)
0.114636 + 0.993408i \(0.463430\pi\)
\(678\) −18.7185 −0.718879
\(679\) 3.05038i 0.117063i
\(680\) 2.37405i 0.0910407i
\(681\) 2.05633i 0.0787989i
\(682\) −18.8044 −0.720059
\(683\) 40.5348i 1.55102i 0.631335 + 0.775510i \(0.282507\pi\)
−0.631335 + 0.775510i \(0.717493\pi\)
\(684\) 1.70513i 0.0651972i
\(685\) 0.332760i 0.0127141i
\(686\) 5.18439i 0.197941i
\(687\) 8.08595 0.308498
\(688\) 7.82220i 0.298218i
\(689\) 12.9342i 0.492753i
\(690\) 5.44814i 0.207407i
\(691\) −32.4843 −1.23576 −0.617881 0.786271i \(-0.712009\pi\)
−0.617881 + 0.786271i \(0.712009\pi\)
\(692\) 22.7665 0.865454
\(693\) −2.28810 −0.0869178
\(694\) −5.91405 −0.224494
\(695\) 13.8980i 0.527180i
\(696\) 4.41194 0.167234
\(697\) 7.29806i 0.276434i
\(698\) 3.17949i 0.120345i
\(699\) 22.1253 0.836857
\(700\) 0.374052 0.0141378
\(701\) 24.3823i 0.920908i −0.887684 0.460454i \(-0.847687\pi\)
0.887684 0.460454i \(-0.152313\pi\)
\(702\) 5.44814 0.205627
\(703\) 9.28978 4.61259i 0.350371 0.173967i
\(704\) 6.11707 0.230546
\(705\) 13.3874i 0.504199i
\(706\) −0.102026 −0.00383981
\(707\) 1.40008 0.0526555
\(708\) 10.8963i 0.409508i
\(709\) 11.8339i 0.444430i 0.974998 + 0.222215i \(0.0713287\pi\)
−0.974998 + 0.222215i \(0.928671\pi\)
\(710\) 4.74810 0.178193
\(711\) 12.1482i 0.455593i
\(712\) −0.551855 −0.0206816
\(713\) −16.7481 −0.627221
\(714\) 0.888018 0.0332333
\(715\) 33.3267 1.24635
\(716\) 11.1304i 0.415964i
\(717\) 5.23245i 0.195410i
\(718\) 13.5720i 0.506502i
\(719\) 21.2990 0.794317 0.397159 0.917750i \(-0.369996\pi\)
0.397159 + 0.917750i \(0.369996\pi\)
\(720\) 1.00000i 0.0372678i
\(721\) 3.17612i 0.118285i
\(722\) 16.0925i 0.598902i
\(723\) 2.50379i 0.0931171i
\(724\) 15.3378 0.570027
\(725\) 4.41194i 0.163855i
\(726\) 26.4185i 0.980484i
\(727\) 16.8836i 0.626179i 0.949724 + 0.313089i \(0.101364\pi\)
−0.949724 + 0.313089i \(0.898636\pi\)
\(728\) −2.03789 −0.0755292
\(729\) 1.00000 0.0370370
\(730\) 8.19625 0.303357
\(731\) −18.5703 −0.686847
\(732\) 4.07918i 0.150771i
\(733\) −20.5111 −0.757593 −0.378797 0.925480i \(-0.623662\pi\)
−0.378797 + 0.925480i \(0.623662\pi\)
\(734\) 36.3284i 1.34090i
\(735\) 6.86009i 0.253038i
\(736\) 5.44814 0.200821
\(737\) −62.0771 −2.28664
\(738\) 3.07409i 0.113159i
\(739\) −4.71849 −0.173572 −0.0867862 0.996227i \(-0.527660\pi\)
−0.0867862 + 0.996227i \(0.527660\pi\)
\(740\) −5.44814 + 2.70513i −0.200278 + 0.0994425i
\(741\) −9.28978 −0.341269
\(742\) 0.888018i 0.0326002i
\(743\) −54.0098 −1.98143 −0.990713 0.135968i \(-0.956585\pi\)
−0.990713 + 0.135968i \(0.956585\pi\)
\(744\) −3.07409 −0.112702
\(745\) 11.9014i 0.436033i
\(746\) 8.89629i 0.325716i
\(747\) 6.78599 0.248286
\(748\) 14.5222i 0.530986i
\(749\) −6.52651 −0.238474
\(750\) −1.00000 −0.0365148
\(751\) 12.6520 0.461677 0.230839 0.972992i \(-0.425853\pi\)
0.230839 + 0.972992i \(0.425853\pi\)
\(752\) −13.3874 −0.488189
\(753\) 16.9822i 0.618867i
\(754\) 24.0369i 0.875372i
\(755\) 18.4304i 0.670750i
\(756\) −0.374052 −0.0136041
\(757\) 10.8618i 0.394778i −0.980325 0.197389i \(-0.936754\pi\)
0.980325 0.197389i \(-0.0632462\pi\)
\(758\) 33.2028i 1.20598i
\(759\) 33.3267i 1.20968i
\(760\) 1.70513i 0.0618515i
\(761\) 37.2358 1.34980 0.674899 0.737910i \(-0.264187\pi\)
0.674899 + 0.737910i \(0.264187\pi\)
\(762\) 16.1861i 0.586360i
\(763\) 3.22465i 0.116740i
\(764\) 12.0184i 0.434812i
\(765\) −2.37405 −0.0858340
\(766\) −27.2407 −0.984247
\(767\) −59.3646 −2.14353
\(768\) 1.00000 0.0360844
\(769\) 15.9039i 0.573508i 0.958004 + 0.286754i \(0.0925763\pi\)
−0.958004 + 0.286754i \(0.907424\pi\)
\(770\) −2.28810 −0.0824574
\(771\) 6.70004i 0.241296i
\(772\) 17.2291i 0.620087i
\(773\) −48.1666 −1.73243 −0.866217 0.499669i \(-0.833455\pi\)
−0.866217 + 0.499669i \(0.833455\pi\)
\(774\) 7.82220 0.281163
\(775\) 3.07409i 0.110425i
\(776\) −8.15496 −0.292746
\(777\) 1.01186 + 2.03789i 0.0363002 + 0.0731088i
\(778\) 4.64608 0.166570
\(779\) 5.24172i 0.187804i
\(780\) 5.44814 0.195075
\(781\) −29.0445 −1.03929
\(782\) 12.9342i 0.462525i
\(783\) 4.41194i 0.157670i
\(784\) −6.86009 −0.245003
\(785\) 7.98056i 0.284838i
\(786\) −10.8963 −0.388658
\(787\) 3.42380 0.122045 0.0610226 0.998136i \(-0.480564\pi\)
0.0610226 + 0.998136i \(0.480564\pi\)
\(788\) −1.88970 −0.0673179
\(789\) 8.15496 0.290324
\(790\) 12.1482i 0.432213i
\(791\) 7.00168i 0.248951i
\(792\) 6.11707i 0.217361i
\(793\) 22.2240 0.789196
\(794\) 15.5720i 0.552629i
\(795\) 2.37405i 0.0841989i
\(796\) 14.1584i 0.501830i
\(797\) 20.5407i 0.727588i −0.931479 0.363794i \(-0.881481\pi\)
0.931479 0.363794i \(-0.118519\pi\)
\(798\) 0.637806 0.0225781
\(799\) 31.7824i 1.12438i
\(800\) 1.00000i 0.0353553i
\(801\) 0.551855i 0.0194988i
\(802\) 28.6645 1.01218
\(803\) −50.1370 −1.76930
\(804\) −10.1482 −0.357899
\(805\) −2.03789 −0.0718261
\(806\) 16.7481i 0.589927i
\(807\) −5.34952 −0.188312
\(808\) 3.74302i 0.131679i
\(809\) 21.5476i 0.757575i −0.925484 0.378787i \(-0.876341\pi\)
0.925484 0.378787i \(-0.123659\pi\)
\(810\) 1.00000 0.0351364
\(811\) 0.293372 0.0103017 0.00515084 0.999987i \(-0.498360\pi\)
0.00515084 + 0.999987i \(0.498360\pi\)
\(812\) 1.65029i 0.0579140i
\(813\) −27.2888 −0.957060
\(814\) 33.3267 16.5475i 1.16810 0.579988i
\(815\) −9.86009 −0.345384
\(816\) 2.37405i 0.0831084i
\(817\) −13.3378 −0.466632
\(818\) −16.9822 −0.593770
\(819\) 2.03789i 0.0712096i
\(820\) 3.07409i 0.107352i
\(821\) −33.7217 −1.17689 −0.588447 0.808536i \(-0.700261\pi\)
−0.588447 + 0.808536i \(0.700261\pi\)
\(822\) 0.332760i 0.0116064i
\(823\) −35.0570 −1.22201 −0.611005 0.791626i \(-0.709235\pi\)
−0.611005 + 0.791626i \(0.709235\pi\)
\(824\) 8.49112 0.295802
\(825\) 6.11707 0.212969
\(826\) 4.07578 0.141814
\(827\) 30.8044i 1.07118i −0.844480 0.535588i \(-0.820090\pi\)
0.844480 0.535588i \(-0.179910\pi\)
\(828\) 5.44814i 0.189336i
\(829\) 27.6133i 0.959049i −0.877529 0.479524i \(-0.840809\pi\)
0.877529 0.479524i \(-0.159191\pi\)
\(830\) 6.78599 0.235545
\(831\) 6.78599i 0.235403i
\(832\) 5.44814i 0.188880i
\(833\) 16.2862i 0.564283i
\(834\) 13.8980i 0.481247i
\(835\) 22.4304 0.776236
\(836\) 10.4304i 0.360742i
\(837\) 3.07409i 0.106256i
\(838\) 28.2949i 0.977430i
\(839\) 15.1761 0.523938 0.261969 0.965076i \(-0.415628\pi\)
0.261969 + 0.965076i \(0.415628\pi\)
\(840\) −0.374052 −0.0129060
\(841\) 9.53478 0.328786
\(842\) 11.3150 0.389941
\(843\) 18.8719i 0.649984i
\(844\) −11.1600 −0.384145
\(845\) 16.6823i 0.573888i
\(846\) 13.3874i 0.460269i
\(847\) 9.88190 0.339546
\(848\) 2.37405 0.0815253
\(849\) 10.5417i 0.361790i
\(850\) −2.37405 −0.0814293
\(851\) 29.6823 14.7379i 1.01750 0.505210i
\(852\) −4.74810 −0.162667
\(853\) 27.4380i 0.939458i 0.882811 + 0.469729i \(0.155648\pi\)
−0.882811 + 0.469729i \(0.844352\pi\)
\(854\) −1.52582 −0.0522126
\(855\) −1.70513 −0.0583142
\(856\) 17.4481i 0.596365i
\(857\) 0.535780i 0.0183019i 0.999958 + 0.00915095i \(0.00291288\pi\)
−0.999958 + 0.00915095i \(0.997087\pi\)
\(858\) −33.3267 −1.13775
\(859\) 55.8649i 1.90608i −0.302837 0.953042i \(-0.597934\pi\)
0.302837 0.953042i \(-0.402066\pi\)
\(860\) 7.82220 0.266735
\(861\) 1.14987 0.0391875
\(862\) 13.1844 0.449062
\(863\) 10.5343 0.358591 0.179296 0.983795i \(-0.442618\pi\)
0.179296 + 0.983795i \(0.442618\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 22.7665i 0.774086i
\(866\) 34.9711i 1.18837i
\(867\) 11.3639 0.385938
\(868\) 1.14987i 0.0390291i
\(869\) 74.3113i 2.52084i
\(870\) 4.41194i 0.149579i
\(871\) 55.2888i 1.87339i
\(872\) 8.62086 0.291939
\(873\) 8.15496i 0.276003i
\(874\) 9.28978i 0.314232i
\(875\) 0.374052i 0.0126453i
\(876\) −8.19625 −0.276926
\(877\) −3.99410 −0.134871 −0.0674356 0.997724i \(-0.521482\pi\)
−0.0674356 + 0.997724i \(0.521482\pi\)
\(878\) −3.27134 −0.110402
\(879\) −8.46000 −0.285349
\(880\) 6.11707i 0.206206i
\(881\) −23.9971 −0.808483 −0.404241 0.914652i \(-0.632464\pi\)
−0.404241 + 0.914652i \(0.632464\pi\)
\(882\) 6.86009i 0.230991i
\(883\) 37.4422i 1.26003i 0.776582 + 0.630016i \(0.216952\pi\)
−0.776582 + 0.630016i \(0.783048\pi\)
\(884\) 12.9342 0.435023
\(885\) −10.8963 −0.366275
\(886\) 21.9645i 0.737911i
\(887\) 1.33444 0.0448063 0.0224031 0.999749i \(-0.492868\pi\)
0.0224031 + 0.999749i \(0.492868\pi\)
\(888\) 5.44814 2.70513i 0.182828 0.0907782i
\(889\) 6.05443 0.203059
\(890\) 0.551855i 0.0184982i
\(891\) −6.11707 −0.204930
\(892\) 10.5703 0.353920
\(893\) 22.8272i 0.763885i
\(894\) 11.9014i 0.398042i
\(895\) −11.1304 −0.372049
\(896\) 0.374052i 0.0124962i
\(897\) −29.6823 −0.991063
\(898\) −10.8103 −0.360746
\(899\) 13.5627 0.452342
\(900\) 1.00000 0.0333333
\(901\) 5.63612i 0.187766i
\(902\) 18.8044i 0.626119i
\(903\) 2.92591i 0.0973681i
\(904\) 18.7185 0.622568
\(905\) 15.3378i 0.509847i
\(906\) 18.4304i 0.612309i
\(907\) 18.9342i 0.628699i 0.949307 + 0.314350i \(0.101786\pi\)
−0.949307 + 0.314350i \(0.898214\pi\)
\(908\) 2.05633i 0.0682418i
\(909\) 3.74302 0.124148
\(910\) 2.03789i 0.0675553i
\(911\) 37.1338i 1.23030i −0.788411 0.615149i \(-0.789096\pi\)
0.788411 0.615149i \(-0.210904\pi\)
\(912\) 1.70513i 0.0564624i
\(913\) −41.5104 −1.37379
\(914\) −2.74133 −0.0906752
\(915\) 4.07918 0.134854
\(916\) −8.08595 −0.267167
\(917\) 4.07578i 0.134594i
\(918\) 2.37405 0.0783554
\(919\) 27.8548i 0.918846i 0.888218 + 0.459423i \(0.151944\pi\)
−0.888218 + 0.459423i \(0.848056\pi\)
\(920\) 5.44814i 0.179620i
\(921\) −16.4683 −0.542648
\(922\) 30.9526 1.01937
\(923\) 25.8684i 0.851467i
\(924\) 2.28810 0.0752730
\(925\) −2.70513 5.44814i −0.0889441 0.179134i
\(926\) 15.7430 0.517348
\(927\) 8.49112i 0.278885i
\(928\) −4.41194 −0.144829
\(929\) 15.7765 0.517610 0.258805 0.965930i \(-0.416671\pi\)
0.258805 + 0.965930i \(0.416671\pi\)
\(930\) 3.07409i 0.100803i
\(931\) 11.6973i 0.383364i
\(932\) −22.1253 −0.724740
\(933\) 21.0741i 0.689935i
\(934\) −17.7007 −0.579185
\(935\) 14.5222 0.474928
\(936\) −5.44814 −0.178078
\(937\) 19.6546 0.642087 0.321043 0.947064i \(-0.395966\pi\)
0.321043 + 0.947064i \(0.395966\pi\)
\(938\) 3.79595i 0.123942i
\(939\) 27.6317i 0.901727i
\(940\) 13.3874i 0.436649i
\(941\) −3.57111 −0.116415 −0.0582075 0.998305i \(-0.518539\pi\)
−0.0582075 + 0.998305i \(0.518539\pi\)
\(942\) 7.98056i 0.260021i
\(943\) 16.7481i 0.545393i
\(944\) 10.8963i 0.354644i
\(945\) 0.374052i 0.0121679i
\(946\) −47.8489 −1.55570
\(947\) 12.0462i 0.391448i 0.980659 + 0.195724i \(0.0627056\pi\)
−0.980659 + 0.195724i \(0.937294\pi\)
\(948\) 12.1482i 0.394555i
\(949\) 44.6543i 1.44954i
\(950\) −1.70513 −0.0553217
\(951\) 16.4119 0.532194
\(952\) −0.888018 −0.0287808
\(953\) 11.4632 0.371329 0.185665 0.982613i \(-0.440556\pi\)
0.185665 + 0.982613i \(0.440556\pi\)
\(954\) 2.37405i 0.0768628i
\(955\) −12.0184 −0.388908
\(956\) 5.23245i 0.169230i
\(957\) 26.9881i 0.872403i
\(958\) −4.47945 −0.144724
\(959\) 0.124470 0.00401933
\(960\) 1.00000i 0.0322749i
\(961\) 21.5500 0.695160
\(962\) 14.7379 + 29.6823i 0.475170 + 0.956995i
\(963\) −17.4481 −0.562259
\(964\) 2.50379i 0.0806417i
\(965\) −17.2291 −0.554623
\(966\) 2.03789 0.0655680
\(967\) 55.1211i 1.77258i −0.463135 0.886288i \(-0.653275\pi\)
0.463135 0.886288i \(-0.346725\pi\)
\(968\) 26.4185i 0.849124i
\(969\) −4.04806 −0.130043
\(970\) 8.15496i 0.261840i
\(971\) 20.6486 0.662644 0.331322 0.943518i \(-0.392505\pi\)
0.331322 + 0.943518i \(0.392505\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −5.19856 −0.166658
\(974\) 7.32518 0.234714
\(975\) 5.44814i 0.174480i
\(976\) 4.07918i 0.130571i
\(977\) 14.1768i 0.453556i 0.973946 + 0.226778i \(0.0728192\pi\)
−0.973946 + 0.226778i \(0.927181\pi\)
\(978\) 9.86009 0.315291
\(979\) 3.37574i 0.107889i
\(980\) 6.86009i 0.219137i
\(981\) 8.62086i 0.275243i
\(982\) 32.0015i 1.02121i
\(983\) 4.04229 0.128929 0.0644645 0.997920i \(-0.479466\pi\)
0.0644645 + 0.997920i \(0.479466\pi\)
\(984\) 3.07409i 0.0979985i
\(985\) 1.88970i 0.0602109i
\(986\) 10.4742i 0.333566i
\(987\) −5.00759 −0.159393
\(988\) 9.28978 0.295547
\(989\) −42.6165 −1.35512
\(990\) −6.11707 −0.194413
\(991\) 16.2147i 0.515077i −0.966268 0.257538i \(-0.917089\pi\)
0.966268 0.257538i \(-0.0829114\pi\)
\(992\) 3.07409 0.0976025
\(993\) 32.9594i 1.04593i
\(994\) 1.77604i 0.0563325i
\(995\) −14.1584 −0.448850
\(996\) −6.78599 −0.215022
\(997\) 41.0722i 1.30077i 0.759605 + 0.650385i \(0.225392\pi\)
−0.759605 + 0.650385i \(0.774608\pi\)
\(998\) 35.4977 1.12366
\(999\) 2.70513 + 5.44814i 0.0855865 + 0.172372i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1110.2.h.g.961.7 yes 8
3.2 odd 2 3330.2.h.o.2071.3 8
37.36 even 2 inner 1110.2.h.g.961.3 8
111.110 odd 2 3330.2.h.o.2071.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1110.2.h.g.961.3 8 37.36 even 2 inner
1110.2.h.g.961.7 yes 8 1.1 even 1 trivial
3330.2.h.o.2071.3 8 3.2 odd 2
3330.2.h.o.2071.7 8 111.110 odd 2