Properties

Label 2-1110-37.36-c1-0-27
Degree $2$
Conductor $1110$
Sign $0.444 + 0.895i$
Analytic cond. $8.86339$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + 3-s − 4-s i·5-s + i·6-s + 0.374·7-s i·8-s + 9-s + 10-s − 6.11·11-s − 12-s − 5.44i·13-s + 0.374i·14-s i·15-s + 16-s − 2.37i·17-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.577·3-s − 0.5·4-s − 0.447i·5-s + 0.408i·6-s + 0.141·7-s − 0.353i·8-s + 0.333·9-s + 0.316·10-s − 1.84·11-s − 0.288·12-s − 1.51i·13-s + 0.0999i·14-s − 0.258i·15-s + 0.250·16-s − 0.575i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 + 0.895i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1110\)    =    \(2 \cdot 3 \cdot 5 \cdot 37\)
Sign: $0.444 + 0.895i$
Analytic conductor: \(8.86339\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1110} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1110,\ (\ :1/2),\ 0.444 + 0.895i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.235535148\)
\(L(\frac12)\) \(\approx\) \(1.235535148\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 - T \)
5 \( 1 + iT \)
37 \( 1 + (-2.70 - 5.44i)T \)
good7 \( 1 - 0.374T + 7T^{2} \)
11 \( 1 + 6.11T + 11T^{2} \)
13 \( 1 + 5.44iT - 13T^{2} \)
17 \( 1 + 2.37iT - 17T^{2} \)
19 \( 1 + 1.70iT - 19T^{2} \)
23 \( 1 + 5.44iT - 23T^{2} \)
29 \( 1 - 4.41iT - 29T^{2} \)
31 \( 1 + 3.07iT - 31T^{2} \)
41 \( 1 - 3.07T + 41T^{2} \)
43 \( 1 + 7.82iT - 43T^{2} \)
47 \( 1 + 13.3T + 47T^{2} \)
53 \( 1 - 2.37T + 53T^{2} \)
59 \( 1 + 10.8iT - 59T^{2} \)
61 \( 1 - 4.07iT - 61T^{2} \)
67 \( 1 - 10.1T + 67T^{2} \)
71 \( 1 - 4.74T + 71T^{2} \)
73 \( 1 - 8.19T + 73T^{2} \)
79 \( 1 + 12.1iT - 79T^{2} \)
83 \( 1 - 6.78T + 83T^{2} \)
89 \( 1 + 0.551iT - 89T^{2} \)
97 \( 1 + 8.15iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.643250500136900503648216274674, −8.527023911218116531486414470722, −8.077914705569534795624242974827, −7.48494037481886461616157557339, −6.36763560389966248533193120623, −5.13990249154716525426299727930, −4.93264080339173162798563934522, −3.37390782374923872688219762636, −2.45048548525437259149616380828, −0.48672693371614329752513174304, 1.75279153798382622683326816128, 2.61108377119400778804633141053, 3.61934492578378904858909251691, 4.57774513581011626737657588749, 5.59254541670223229303590087282, 6.74522537139669652952774237046, 7.82058160573652209554251003569, 8.248093614921785663155001568053, 9.472237342983389740511704198304, 9.863274838488575138934152885464

Graph of the $Z$-function along the critical line