L(s) = 1 | + i·2-s + 3-s − 4-s − i·5-s + i·6-s + 0.374·7-s − i·8-s + 9-s + 10-s − 6.11·11-s − 12-s − 5.44i·13-s + 0.374i·14-s − i·15-s + 16-s − 2.37i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577·3-s − 0.5·4-s − 0.447i·5-s + 0.408i·6-s + 0.141·7-s − 0.353i·8-s + 0.333·9-s + 0.316·10-s − 1.84·11-s − 0.288·12-s − 1.51i·13-s + 0.0999i·14-s − 0.258i·15-s + 0.250·16-s − 0.575i·17-s + ⋯ |
Λ(s)=(=(1110s/2ΓC(s)L(s)(0.444+0.895i)Λ(2−s)
Λ(s)=(=(1110s/2ΓC(s+1/2)L(s)(0.444+0.895i)Λ(1−s)
Degree: |
2 |
Conductor: |
1110
= 2⋅3⋅5⋅37
|
Sign: |
0.444+0.895i
|
Analytic conductor: |
8.86339 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1110(961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1110, ( :1/2), 0.444+0.895i)
|
Particular Values
L(1) |
≈ |
1.235535148 |
L(21) |
≈ |
1.235535148 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1−T |
| 5 | 1+iT |
| 37 | 1+(−2.70−5.44i)T |
good | 7 | 1−0.374T+7T2 |
| 11 | 1+6.11T+11T2 |
| 13 | 1+5.44iT−13T2 |
| 17 | 1+2.37iT−17T2 |
| 19 | 1+1.70iT−19T2 |
| 23 | 1+5.44iT−23T2 |
| 29 | 1−4.41iT−29T2 |
| 31 | 1+3.07iT−31T2 |
| 41 | 1−3.07T+41T2 |
| 43 | 1+7.82iT−43T2 |
| 47 | 1+13.3T+47T2 |
| 53 | 1−2.37T+53T2 |
| 59 | 1+10.8iT−59T2 |
| 61 | 1−4.07iT−61T2 |
| 67 | 1−10.1T+67T2 |
| 71 | 1−4.74T+71T2 |
| 73 | 1−8.19T+73T2 |
| 79 | 1+12.1iT−79T2 |
| 83 | 1−6.78T+83T2 |
| 89 | 1+0.551iT−89T2 |
| 97 | 1+8.15iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.643250500136900503648216274674, −8.527023911218116531486414470722, −8.077914705569534795624242974827, −7.48494037481886461616157557339, −6.36763560389966248533193120623, −5.13990249154716525426299727930, −4.93264080339173162798563934522, −3.37390782374923872688219762636, −2.45048548525437259149616380828, −0.48672693371614329752513174304,
1.75279153798382622683326816128, 2.61108377119400778804633141053, 3.61934492578378904858909251691, 4.57774513581011626737657588749, 5.59254541670223229303590087282, 6.74522537139669652952774237046, 7.82058160573652209554251003569, 8.248093614921785663155001568053, 9.472237342983389740511704198304, 9.863274838488575138934152885464