L(s) = 1 | + 2·2-s + 3·3-s + 4·4-s + 5·5-s + 6·6-s − 15·7-s + 8·8-s + 9·9-s + 10·10-s − 50.2·11-s + 12·12-s + 21.0·13-s − 30·14-s + 15·15-s + 16·16-s − 52.0·17-s + 18·18-s − 101.·19-s + 20·20-s − 45·21-s − 100.·22-s + 37.5·23-s + 24·24-s + 25·25-s + 42.1·26-s + 27·27-s − 60·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.447·5-s + 0.408·6-s − 0.809·7-s + 0.353·8-s + 0.333·9-s + 0.316·10-s − 1.37·11-s + 0.288·12-s + 0.449·13-s − 0.572·14-s + 0.258·15-s + 0.250·16-s − 0.742·17-s + 0.235·18-s − 1.22·19-s + 0.223·20-s − 0.467·21-s − 0.973·22-s + 0.340·23-s + 0.204·24-s + 0.200·25-s + 0.317·26-s + 0.192·27-s − 0.404·28-s + ⋯ |
Λ(s)=(=(1110s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1110s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−2T |
| 3 | 1−3T |
| 5 | 1−5T |
| 37 | 1+37T |
good | 7 | 1+15T+343T2 |
| 11 | 1+50.2T+1.33e3T2 |
| 13 | 1−21.0T+2.19e3T2 |
| 17 | 1+52.0T+4.91e3T2 |
| 19 | 1+101.T+6.85e3T2 |
| 23 | 1−37.5T+1.21e4T2 |
| 29 | 1+217.T+2.43e4T2 |
| 31 | 1+92.4T+2.97e4T2 |
| 41 | 1−418.T+6.89e4T2 |
| 43 | 1+383.T+7.95e4T2 |
| 47 | 1+10.5T+1.03e5T2 |
| 53 | 1+692.T+1.48e5T2 |
| 59 | 1−604.T+2.05e5T2 |
| 61 | 1−256.T+2.26e5T2 |
| 67 | 1+211.T+3.00e5T2 |
| 71 | 1+385.T+3.57e5T2 |
| 73 | 1+102.T+3.89e5T2 |
| 79 | 1+131.T+4.93e5T2 |
| 83 | 1+190.T+5.71e5T2 |
| 89 | 1+1.08e3T+7.04e5T2 |
| 97 | 1−1.45e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.067390319827868482280830045114, −8.215241971356809728310252408823, −7.27534755602640002920595316717, −6.43016238123071192543092571516, −5.64883855075278718172805936018, −4.65056697063125303034925956830, −3.62312777389315297434712970495, −2.71833802875145940837054996106, −1.88738428039713629892708528973, 0,
1.88738428039713629892708528973, 2.71833802875145940837054996106, 3.62312777389315297434712970495, 4.65056697063125303034925956830, 5.64883855075278718172805936018, 6.43016238123071192543092571516, 7.27534755602640002920595316717, 8.215241971356809728310252408823, 9.067390319827868482280830045114