Properties

Label 1110.4.a.d
Level $1110$
Weight $4$
Character orbit 1110.a
Self dual yes
Analytic conductor $65.492$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1110,4,Mod(1,1110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1110.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1110.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.4921201064\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{61}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{61})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 3 q^{3} + 4 q^{4} + 5 q^{5} + 6 q^{6} - 15 q^{7} + 8 q^{8} + 9 q^{9} + 10 q^{10} + (3 \beta - 40) q^{11} + 12 q^{12} + ( - 10 \beta - 13) q^{13} - 30 q^{14} + 15 q^{15} + 16 q^{16} + (5 \beta - 35) q^{17}+ \cdots + (27 \beta - 360) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 6 q^{3} + 8 q^{4} + 10 q^{5} + 12 q^{6} - 30 q^{7} + 16 q^{8} + 18 q^{9} + 20 q^{10} - 77 q^{11} + 24 q^{12} - 36 q^{13} - 60 q^{14} + 30 q^{15} + 32 q^{16} - 65 q^{17} + 36 q^{18} - 55 q^{19}+ \cdots - 693 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.40512
4.40512
2.00000 3.00000 4.00000 5.00000 6.00000 −15.0000 8.00000 9.00000 10.0000
1.2 2.00000 3.00000 4.00000 5.00000 6.00000 −15.0000 8.00000 9.00000 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1110.4.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1110.4.a.d 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 15 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1110))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( (T + 15)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 77T + 1345 \) Copy content Toggle raw display
$13$ \( T^{2} + 36T - 1201 \) Copy content Toggle raw display
$17$ \( T^{2} + 65T + 675 \) Copy content Toggle raw display
$19$ \( T^{2} + 55T - 4749 \) Copy content Toggle raw display
$23$ \( T^{2} + 128T - 6213 \) Copy content Toggle raw display
$29$ \( T^{2} + 53T - 35913 \) Copy content Toggle raw display
$31$ \( T^{2} + 388T + 27327 \) Copy content Toggle raw display
$37$ \( (T + 37)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 118T - 125595 \) Copy content Toggle raw display
$43$ \( T^{2} + 353T - 11685 \) Copy content Toggle raw display
$47$ \( T^{2} + 146T + 1425 \) Copy content Toggle raw display
$53$ \( T^{2} + 448T - 169424 \) Copy content Toggle raw display
$59$ \( T^{2} + 17T - 375825 \) Copy content Toggle raw display
$61$ \( T^{2} + 18T - 70435 \) Copy content Toggle raw display
$67$ \( T^{2} - 147T - 75865 \) Copy content Toggle raw display
$71$ \( T^{2} + 45T - 131391 \) Copy content Toggle raw display
$73$ \( T^{2} - 163T - 27045 \) Copy content Toggle raw display
$79$ \( T^{2} + 53T - 10415 \) Copy content Toggle raw display
$83$ \( T^{2} + 1389 T + 228555 \) Copy content Toggle raw display
$89$ \( T^{2} + 1018T - 74955 \) Copy content Toggle raw display
$97$ \( T^{2} - 2318 T + 1255197 \) Copy content Toggle raw display
show more
show less