Properties

Label 1110.4.a.d
Level 11101110
Weight 44
Character orbit 1110.a
Self dual yes
Analytic conductor 65.49265.492
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1110,4,Mod(1,1110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1110.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1110=23537 1110 = 2 \cdot 3 \cdot 5 \cdot 37
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1110.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 65.492120106465.4921201064
Analytic rank: 11
Dimension: 22
Coefficient field: Q(61)\Q(\sqrt{61})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x15 x^{2} - x - 15 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+61)\beta = \frac{1}{2}(1 + \sqrt{61}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2q2+3q3+4q4+5q5+6q615q7+8q8+9q9+10q10+(3β40)q11+12q12+(10β13)q1330q14+15q15+16q16+(5β35)q17++(27β360)q99+O(q100) q + 2 q^{2} + 3 q^{3} + 4 q^{4} + 5 q^{5} + 6 q^{6} - 15 q^{7} + 8 q^{8} + 9 q^{9} + 10 q^{10} + (3 \beta - 40) q^{11} + 12 q^{12} + ( - 10 \beta - 13) q^{13} - 30 q^{14} + 15 q^{15} + 16 q^{16} + (5 \beta - 35) q^{17}+ \cdots + (27 \beta - 360) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q2+6q3+8q4+10q5+12q630q7+16q8+18q9+20q1077q11+24q1236q1360q14+30q15+32q1665q17+36q1855q19+693q99+O(q100) 2 q + 4 q^{2} + 6 q^{3} + 8 q^{4} + 10 q^{5} + 12 q^{6} - 30 q^{7} + 16 q^{8} + 18 q^{9} + 20 q^{10} - 77 q^{11} + 24 q^{12} - 36 q^{13} - 60 q^{14} + 30 q^{15} + 32 q^{16} - 65 q^{17} + 36 q^{18} - 55 q^{19}+ \cdots - 693 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−3.40512
4.40512
2.00000 3.00000 4.00000 5.00000 6.00000 −15.0000 8.00000 9.00000 10.0000
1.2 2.00000 3.00000 4.00000 5.00000 6.00000 −15.0000 8.00000 9.00000 10.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 1 -1
3737 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1110.4.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1110.4.a.d 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T7+15 T_{7} + 15 acting on S4new(Γ0(1110))S_{4}^{\mathrm{new}}(\Gamma_0(1110)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2)2 (T - 2)^{2} Copy content Toggle raw display
33 (T3)2 (T - 3)^{2} Copy content Toggle raw display
55 (T5)2 (T - 5)^{2} Copy content Toggle raw display
77 (T+15)2 (T + 15)^{2} Copy content Toggle raw display
1111 T2+77T+1345 T^{2} + 77T + 1345 Copy content Toggle raw display
1313 T2+36T1201 T^{2} + 36T - 1201 Copy content Toggle raw display
1717 T2+65T+675 T^{2} + 65T + 675 Copy content Toggle raw display
1919 T2+55T4749 T^{2} + 55T - 4749 Copy content Toggle raw display
2323 T2+128T6213 T^{2} + 128T - 6213 Copy content Toggle raw display
2929 T2+53T35913 T^{2} + 53T - 35913 Copy content Toggle raw display
3131 T2+388T+27327 T^{2} + 388T + 27327 Copy content Toggle raw display
3737 (T+37)2 (T + 37)^{2} Copy content Toggle raw display
4141 T2118T125595 T^{2} - 118T - 125595 Copy content Toggle raw display
4343 T2+353T11685 T^{2} + 353T - 11685 Copy content Toggle raw display
4747 T2+146T+1425 T^{2} + 146T + 1425 Copy content Toggle raw display
5353 T2+448T169424 T^{2} + 448T - 169424 Copy content Toggle raw display
5959 T2+17T375825 T^{2} + 17T - 375825 Copy content Toggle raw display
6161 T2+18T70435 T^{2} + 18T - 70435 Copy content Toggle raw display
6767 T2147T75865 T^{2} - 147T - 75865 Copy content Toggle raw display
7171 T2+45T131391 T^{2} + 45T - 131391 Copy content Toggle raw display
7373 T2163T27045 T^{2} - 163T - 27045 Copy content Toggle raw display
7979 T2+53T10415 T^{2} + 53T - 10415 Copy content Toggle raw display
8383 T2+1389T+228555 T^{2} + 1389 T + 228555 Copy content Toggle raw display
8989 T2+1018T74955 T^{2} + 1018T - 74955 Copy content Toggle raw display
9797 T22318T+1255197 T^{2} - 2318 T + 1255197 Copy content Toggle raw display
show more
show less