Properties

Label 2-1125-1.1-c1-0-22
Degree $2$
Conductor $1125$
Sign $-1$
Analytic cond. $8.98317$
Root an. cond. $2.99719$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.618·2-s − 1.61·4-s − 3·7-s + 2.23·8-s + 3·11-s + 1.85·13-s + 1.85·14-s + 1.85·16-s + 0.236·17-s − 1.38·19-s − 1.85·22-s − 3.23·23-s − 1.14·26-s + 4.85·28-s + 6.70·29-s − 6.09·31-s − 5.61·32-s − 0.145·34-s − 9.70·37-s + 0.854·38-s + 3·41-s − 9·43-s − 4.85·44-s + 2.00·46-s − 7.32·47-s + 2·49-s − 3·52-s + ⋯
L(s)  = 1  − 0.437·2-s − 0.809·4-s − 1.13·7-s + 0.790·8-s + 0.904·11-s + 0.514·13-s + 0.495·14-s + 0.463·16-s + 0.0572·17-s − 0.317·19-s − 0.395·22-s − 0.674·23-s − 0.224·26-s + 0.917·28-s + 1.24·29-s − 1.09·31-s − 0.993·32-s − 0.0250·34-s − 1.59·37-s + 0.138·38-s + 0.468·41-s − 1.37·43-s − 0.731·44-s + 0.294·46-s − 1.06·47-s + 0.285·49-s − 0.416·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1125 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1125 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1125\)    =    \(3^{2} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(8.98317\)
Root analytic conductor: \(2.99719\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1125,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 0.618T + 2T^{2} \)
7 \( 1 + 3T + 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 - 1.85T + 13T^{2} \)
17 \( 1 - 0.236T + 17T^{2} \)
19 \( 1 + 1.38T + 19T^{2} \)
23 \( 1 + 3.23T + 23T^{2} \)
29 \( 1 - 6.70T + 29T^{2} \)
31 \( 1 + 6.09T + 31T^{2} \)
37 \( 1 + 9.70T + 37T^{2} \)
41 \( 1 - 3T + 41T^{2} \)
43 \( 1 + 9T + 43T^{2} \)
47 \( 1 + 7.32T + 47T^{2} \)
53 \( 1 + 2.38T + 53T^{2} \)
59 \( 1 + 10.8T + 59T^{2} \)
61 \( 1 - 5.09T + 61T^{2} \)
67 \( 1 + 7.14T + 67T^{2} \)
71 \( 1 - 3T + 71T^{2} \)
73 \( 1 + 4.85T + 73T^{2} \)
79 \( 1 - 9.47T + 79T^{2} \)
83 \( 1 - 8.47T + 83T^{2} \)
89 \( 1 + 13.4T + 89T^{2} \)
97 \( 1 - 1.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.364548413281520664964006656047, −8.767499683874449884153001477285, −7.982644500631273399449482634357, −6.83618840359182586655778819742, −6.20349528195766851787401906927, −5.06964172214320127073450208450, −3.99124950656939240773113677567, −3.28553482112215943120812418959, −1.53511278705354164363266331654, 0, 1.53511278705354164363266331654, 3.28553482112215943120812418959, 3.99124950656939240773113677567, 5.06964172214320127073450208450, 6.20349528195766851787401906927, 6.83618840359182586655778819742, 7.982644500631273399449482634357, 8.767499683874449884153001477285, 9.364548413281520664964006656047

Graph of the $Z$-function along the critical line