Properties

Label 1125.2.a.d
Level $1125$
Weight $2$
Character orbit 1125.a
Self dual yes
Analytic conductor $8.983$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1125,2,Mod(1,1125)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1125, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1125.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1125 = 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1125.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.98317022739\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 125)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + (\beta - 1) q^{4} - 3 q^{7} + ( - 2 \beta + 1) q^{8} + 3 q^{11} - 3 \beta q^{13} - 3 \beta q^{14} - 3 \beta q^{16} + ( - 2 \beta - 1) q^{17} + ( - \beta - 2) q^{19} + 3 \beta q^{22} + (2 \beta - 2) q^{23} + \cdots + 2 \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 6 q^{7} + 6 q^{11} - 3 q^{13} - 3 q^{14} - 3 q^{16} - 4 q^{17} - 5 q^{19} + 3 q^{22} - 2 q^{23} - 9 q^{26} + 3 q^{28} - q^{31} - 9 q^{32} - 7 q^{34} - 6 q^{37} - 5 q^{38} + 6 q^{41}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−0.618034 0 −1.61803 0 0 −3.00000 2.23607 0 0
1.2 1.61803 0 0.618034 0 0 −3.00000 −2.23607 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1125.2.a.d 2
3.b odd 2 1 125.2.a.a 2
5.b even 2 1 1125.2.a.c 2
5.c odd 4 2 1125.2.b.f 4
12.b even 2 1 2000.2.a.l 2
15.d odd 2 1 125.2.a.b yes 2
15.e even 4 2 125.2.b.b 4
21.c even 2 1 6125.2.a.d 2
24.f even 2 1 8000.2.a.c 2
24.h odd 2 1 8000.2.a.v 2
60.h even 2 1 2000.2.a.a 2
60.l odd 4 2 2000.2.c.e 4
75.h odd 10 2 625.2.d.a 4
75.h odd 10 2 625.2.d.g 4
75.j odd 10 2 625.2.d.d 4
75.j odd 10 2 625.2.d.j 4
75.l even 20 4 625.2.e.d 8
75.l even 20 4 625.2.e.g 8
105.g even 2 1 6125.2.a.g 2
120.i odd 2 1 8000.2.a.d 2
120.m even 2 1 8000.2.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
125.2.a.a 2 3.b odd 2 1
125.2.a.b yes 2 15.d odd 2 1
125.2.b.b 4 15.e even 4 2
625.2.d.a 4 75.h odd 10 2
625.2.d.d 4 75.j odd 10 2
625.2.d.g 4 75.h odd 10 2
625.2.d.j 4 75.j odd 10 2
625.2.e.d 8 75.l even 20 4
625.2.e.g 8 75.l even 20 4
1125.2.a.c 2 5.b even 2 1
1125.2.a.d 2 1.a even 1 1 trivial
1125.2.b.f 4 5.c odd 4 2
2000.2.a.a 2 60.h even 2 1
2000.2.a.l 2 12.b even 2 1
2000.2.c.e 4 60.l odd 4 2
6125.2.a.d 2 21.c even 2 1
6125.2.a.g 2 105.g even 2 1
8000.2.a.c 2 24.f even 2 1
8000.2.a.d 2 120.i odd 2 1
8000.2.a.u 2 120.m even 2 1
8000.2.a.v 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1125))\):

\( T_{2}^{2} - T_{2} - 1 \) Copy content Toggle raw display
\( T_{7} + 3 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 3)^{2} \) Copy content Toggle raw display
$11$ \( (T - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 3T - 9 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$19$ \( T^{2} + 5T + 5 \) Copy content Toggle raw display
$23$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$29$ \( T^{2} - 45 \) Copy content Toggle raw display
$31$ \( T^{2} + T - 31 \) Copy content Toggle raw display
$37$ \( T^{2} + 6T - 36 \) Copy content Toggle raw display
$41$ \( (T - 3)^{2} \) Copy content Toggle raw display
$43$ \( (T + 9)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - T - 61 \) Copy content Toggle raw display
$53$ \( T^{2} + 7T + 11 \) Copy content Toggle raw display
$59$ \( T^{2} + 15T + 45 \) Copy content Toggle raw display
$61$ \( T^{2} + T - 31 \) Copy content Toggle raw display
$67$ \( T^{2} + 21T + 99 \) Copy content Toggle raw display
$71$ \( (T - 3)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 3T - 9 \) Copy content Toggle raw display
$79$ \( T^{2} - 10T + 5 \) Copy content Toggle raw display
$83$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$89$ \( T^{2} - 180 \) Copy content Toggle raw display
$97$ \( T^{2} - 9T + 9 \) Copy content Toggle raw display
show more
show less