Properties

Label 625.2.d.j
Level 625625
Weight 22
Character orbit 625.d
Analytic conductor 4.9914.991
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [625,2,Mod(126,625)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(625, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("625.126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 625=54 625 = 5^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 625.d (of order 55, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.990650126334.99065012633
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 125)
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ10\zeta_{10}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ103+1)q2+(ζ103ζ10+1)q3+(ζ10+1)q4+(ζ103ζ102+ζ10)q63q7+(2ζ103++2ζ10)q8++(9ζ103+9ζ102+3)q99+O(q100) q + ( - \zeta_{10}^{3} + 1) q^{2} + (\zeta_{10}^{3} - \zeta_{10} + 1) q^{3} + ( - \zeta_{10} + 1) q^{4} + (\zeta_{10}^{3} - \zeta_{10}^{2} + \zeta_{10}) q^{6} - 3 q^{7} + (2 \zeta_{10}^{3} + \cdots + 2 \zeta_{10}) q^{8}+ \cdots + ( - 9 \zeta_{10}^{3} + 9 \zeta_{10}^{2} + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+3q2+4q3+3q4+3q612q7+5q8+7q9+3q11+3q12+9q139q14+9q16+3q17+14q1812q21+6q22+4q23+10q24+18q26+6q99+O(q100) 4 q + 3 q^{2} + 4 q^{3} + 3 q^{4} + 3 q^{6} - 12 q^{7} + 5 q^{8} + 7 q^{9} + 3 q^{11} + 3 q^{12} + 9 q^{13} - 9 q^{14} + 9 q^{16} + 3 q^{17} + 14 q^{18} - 12 q^{21} + 6 q^{22} + 4 q^{23} + 10 q^{24} + 18 q^{26}+ \cdots - 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/625Z)×\left(\mathbb{Z}/625\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) ζ103-\zeta_{10}^{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
126.1
−0.309017 + 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 0.951057i
0.190983 + 0.587785i 2.11803 1.53884i 1.30902 0.951057i 0 1.30902 + 0.951057i −3.00000 1.80902 + 1.31433i 1.19098 3.66547i 0
251.1 1.30902 0.951057i −0.118034 + 0.363271i 0.190983 0.587785i 0 0.190983 + 0.587785i −3.00000 0.690983 + 2.12663i 2.30902 + 1.67760i 0
376.1 1.30902 + 0.951057i −0.118034 0.363271i 0.190983 + 0.587785i 0 0.190983 0.587785i −3.00000 0.690983 2.12663i 2.30902 1.67760i 0
501.1 0.190983 0.587785i 2.11803 + 1.53884i 1.30902 + 0.951057i 0 1.30902 0.951057i −3.00000 1.80902 1.31433i 1.19098 + 3.66547i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 625.2.d.j 4
5.b even 2 1 625.2.d.a 4
5.c odd 4 2 625.2.e.d 8
25.d even 5 1 125.2.a.a 2
25.d even 5 2 625.2.d.d 4
25.d even 5 1 inner 625.2.d.j 4
25.e even 10 1 125.2.a.b yes 2
25.e even 10 1 625.2.d.a 4
25.e even 10 2 625.2.d.g 4
25.f odd 20 2 125.2.b.b 4
25.f odd 20 2 625.2.e.d 8
25.f odd 20 4 625.2.e.g 8
75.h odd 10 1 1125.2.a.c 2
75.j odd 10 1 1125.2.a.d 2
75.l even 20 2 1125.2.b.f 4
100.h odd 10 1 2000.2.a.a 2
100.j odd 10 1 2000.2.a.l 2
100.l even 20 2 2000.2.c.e 4
175.l odd 10 1 6125.2.a.d 2
175.m odd 10 1 6125.2.a.g 2
200.n odd 10 1 8000.2.a.c 2
200.o even 10 1 8000.2.a.d 2
200.s odd 10 1 8000.2.a.u 2
200.t even 10 1 8000.2.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
125.2.a.a 2 25.d even 5 1
125.2.a.b yes 2 25.e even 10 1
125.2.b.b 4 25.f odd 20 2
625.2.d.a 4 5.b even 2 1
625.2.d.a 4 25.e even 10 1
625.2.d.d 4 25.d even 5 2
625.2.d.g 4 25.e even 10 2
625.2.d.j 4 1.a even 1 1 trivial
625.2.d.j 4 25.d even 5 1 inner
625.2.e.d 8 5.c odd 4 2
625.2.e.d 8 25.f odd 20 2
625.2.e.g 8 25.f odd 20 4
1125.2.a.c 2 75.h odd 10 1
1125.2.a.d 2 75.j odd 10 1
1125.2.b.f 4 75.l even 20 2
2000.2.a.a 2 100.h odd 10 1
2000.2.a.l 2 100.j odd 10 1
2000.2.c.e 4 100.l even 20 2
6125.2.a.d 2 175.l odd 10 1
6125.2.a.g 2 175.m odd 10 1
8000.2.a.c 2 200.n odd 10 1
8000.2.a.d 2 200.o even 10 1
8000.2.a.u 2 200.s odd 10 1
8000.2.a.v 2 200.t even 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(625,[χ])S_{2}^{\mathrm{new}}(625, [\chi]):

T243T23+4T222T2+1 T_{2}^{4} - 3T_{2}^{3} + 4T_{2}^{2} - 2T_{2} + 1 Copy content Toggle raw display
T344T33+6T32+T3+1 T_{3}^{4} - 4T_{3}^{3} + 6T_{3}^{2} + T_{3} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T43T3++1 T^{4} - 3 T^{3} + \cdots + 1 Copy content Toggle raw display
33 T44T3++1 T^{4} - 4 T^{3} + \cdots + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T+3)4 (T + 3)^{4} Copy content Toggle raw display
1111 T43T3++81 T^{4} - 3 T^{3} + \cdots + 81 Copy content Toggle raw display
1313 T49T3++81 T^{4} - 9 T^{3} + \cdots + 81 Copy content Toggle raw display
1717 T43T3++1 T^{4} - 3 T^{3} + \cdots + 1 Copy content Toggle raw display
1919 T4+10T2++25 T^{4} + 10 T^{2} + \cdots + 25 Copy content Toggle raw display
2323 T44T3++16 T^{4} - 4 T^{3} + \cdots + 16 Copy content Toggle raw display
2929 T415T3++2025 T^{4} - 15 T^{3} + \cdots + 2025 Copy content Toggle raw display
3131 T413T3++961 T^{4} - 13 T^{3} + \cdots + 961 Copy content Toggle raw display
3737 T4+12T3++1296 T^{4} + 12 T^{3} + \cdots + 1296 Copy content Toggle raw display
4141 T43T3++81 T^{4} - 3 T^{3} + \cdots + 81 Copy content Toggle raw display
4343 (T+9)4 (T + 9)^{4} Copy content Toggle raw display
4747 T4+17T3++3721 T^{4} + 17 T^{3} + \cdots + 3721 Copy content Toggle raw display
5353 T4+T3++121 T^{4} + T^{3} + \cdots + 121 Copy content Toggle raw display
5959 T4+90T2++2025 T^{4} + 90 T^{2} + \cdots + 2025 Copy content Toggle raw display
6161 T413T3++961 T^{4} - 13 T^{3} + \cdots + 961 Copy content Toggle raw display
6767 T43T3++9801 T^{4} - 3 T^{3} + \cdots + 9801 Copy content Toggle raw display
7171 T43T3++81 T^{4} - 3 T^{3} + \cdots + 81 Copy content Toggle raw display
7373 T4+6T3++81 T^{4} + 6 T^{3} + \cdots + 81 Copy content Toggle raw display
7979 T4+15T3++25 T^{4} + 15 T^{3} + \cdots + 25 Copy content Toggle raw display
8383 T414T3++16 T^{4} - 14 T^{3} + \cdots + 16 Copy content Toggle raw display
8989 T430T3++32400 T^{4} - 30 T^{3} + \cdots + 32400 Copy content Toggle raw display
9797 T43T3++81 T^{4} - 3 T^{3} + \cdots + 81 Copy content Toggle raw display
show more
show less