L(s) = 1 | + 3·2-s + 4·3-s + 7·4-s + 12·6-s − 12·7-s + 15·8-s + 13·9-s + 3·11-s + 28·12-s + 9·13-s − 36·14-s + 30·16-s + 3·17-s + 39·18-s − 48·21-s + 9·22-s + 4·23-s + 60·24-s + 27·26-s + 30·27-s − 84·28-s + 15·29-s + 13·31-s + 57·32-s + 12·33-s + 9·34-s + 91·36-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 2.30·3-s + 7/2·4-s + 4.89·6-s − 4.53·7-s + 5.30·8-s + 13/3·9-s + 0.904·11-s + 8.08·12-s + 2.49·13-s − 9.62·14-s + 15/2·16-s + 0.727·17-s + 9.19·18-s − 10.4·21-s + 1.91·22-s + 0.834·23-s + 12.2·24-s + 5.29·26-s + 5.77·27-s − 15.8·28-s + 2.78·29-s + 2.33·31-s + 10.0·32-s + 2.08·33-s + 1.54·34-s + 91/6·36-s + ⋯ |
Λ(s)=(=((516)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((516)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
516
|
Sign: |
1
|
Analytic conductor: |
620.338 |
Root analytic conductor: |
2.23397 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 516, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
33.93643765 |
L(21) |
≈ |
33.93643765 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | | 1 |
good | 2 | C22:C4 | 1−3T+pT2+T4+p3T6−3p3T7+p4T8 |
| 3 | C22:C4 | 1−4T+pT2+10T3−29T4+10pT5+p3T6−4p3T7+p4T8 |
| 7 | C2 | (1+3T+pT2)4 |
| 11 | C4×C2 | 1−3T−2T2+39T3−95T4+39pT5−2p2T6−3p3T7+p4T8 |
| 13 | C22:C4 | 1−9T+23T2−15T3+16T4−15pT5+23p2T6−9p3T7+p4T8 |
| 17 | C22:C4 | 1−3T+2T2−75T3+511T4−75pT5+2p2T6−3p3T7+p4T8 |
| 19 | C22:C4 | 1−9T2+70T3+291T4+70pT5−9p2T6+p4T8 |
| 23 | C22:C4 | 1−4T−7T2−70T3+821T4−70pT5−7p2T6−4p3T7+p4T8 |
| 29 | C4×C2 | 1−15T+106T2−675T3+4171T4−675pT5+106p2T6−15p3T7+p4T8 |
| 31 | C22:C4 | 1−13T+63T2−11pT3+80pT4−11p2T5+63p2T6−13p3T7+p4T8 |
| 37 | C22:C4 | 1+12T+107T2+870T3+6661T4+870pT5+107p2T6+12p3T7+p4T8 |
| 41 | C4×C2 | 1−3T−32T2+219T3+655T4+219pT5−32p2T6−3p3T7+p4T8 |
| 43 | C2 | (1+9T+pT2)4 |
| 47 | C22:C4 | 1+17T+137T2+1145T3+9596T4+1145pT5+137p2T6+17p3T7+p4T8 |
| 53 | C22:C4 | 1+T−37T2−305T3+1976T4−305pT5−37p2T6+p3T7+p4T8 |
| 59 | C22:C4 | 1+31T2−210T3+2851T4−210pT5+31p2T6+p4T8 |
| 61 | C4×C4 | (1−29T+331T2−29pT3+p2T4)(1+16T+166T2+16pT3+p2T4) |
| 67 | C22:C4 | 1−3T+77T2−375T3+3436T4−375pT5+77p2T6−3p3T7+p4T8 |
| 71 | C4×C2 | 1−3T−62T2+399T3+3205T4+399pT5−62p2T6−3p3T7+p4T8 |
| 73 | C22:C4 | 1+6T−37T2+300T3+7381T4+300pT5−37p2T6+6p3T7+p4T8 |
| 79 | C22:C4 | 1+15T+6T2−815T3−5979T4−815pT5+6p2T6+15p3T7+p4T8 |
| 83 | C22:C4 | 1−14T−7T2+640T3−2059T4+640pT5−7p2T6−14p3T7+p4T8 |
| 89 | C4×C2 | 1−30T+451T2−5400T3+56341T4−5400pT5+451p2T6−30p3T7+p4T8 |
| 97 | C22:C4 | 1−3T−43T2−765T3+11236T4−765pT5−43p2T6−3p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.50684870469363063174175620980, −7.22381330968840907906094937720, −6.74456190970950968403419079276, −6.71130919378217510094103776679, −6.70686955884954272532537570585, −6.48111086092776349042563356192, −6.41145826605197682644871307941, −6.21748982557253763632163374867, −6.06711439472992073531994287364, −5.20585015792649268876063448044, −5.20137392361901889397841789226, −4.76201622512382784594372815926, −4.73386085956054442173962955082, −3.97619891696898043366659814084, −3.91238675239480184149859892589, −3.79123734299926871180519417573, −3.32049576332143229011766960735, −3.30873241719855616087609529590, −3.17431869568649634579266873876, −3.04827072211827463998116430552, −2.76177653555214641126305964775, −2.17891869295448590502724055618, −1.69067021465241943755698994487, −1.28017460048614906423799288955, −1.12748878967438659210837673130,
1.12748878967438659210837673130, 1.28017460048614906423799288955, 1.69067021465241943755698994487, 2.17891869295448590502724055618, 2.76177653555214641126305964775, 3.04827072211827463998116430552, 3.17431869568649634579266873876, 3.30873241719855616087609529590, 3.32049576332143229011766960735, 3.79123734299926871180519417573, 3.91238675239480184149859892589, 3.97619891696898043366659814084, 4.73386085956054442173962955082, 4.76201622512382784594372815926, 5.20137392361901889397841789226, 5.20585015792649268876063448044, 6.06711439472992073531994287364, 6.21748982557253763632163374867, 6.41145826605197682644871307941, 6.48111086092776349042563356192, 6.70686955884954272532537570585, 6.71130919378217510094103776679, 6.74456190970950968403419079276, 7.22381330968840907906094937720, 7.50684870469363063174175620980