Properties

Label 2-1127-23.22-c0-0-8
Degree $2$
Conductor $1127$
Sign $1$
Analytic cond. $0.562446$
Root an. cond. $0.749964$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.73·3-s + 1.73·6-s − 8-s + 1.99·9-s − 1.73·13-s − 16-s + 1.99·18-s + 23-s − 1.73·24-s + 25-s − 1.73·26-s + 1.73·27-s − 29-s − 1.73·31-s − 2.99·39-s − 1.73·41-s + 46-s + 1.73·47-s − 1.73·48-s + 50-s + 1.73·54-s − 58-s − 1.73·62-s + 64-s + 1.73·69-s − 71-s + ⋯
L(s)  = 1  + 2-s + 1.73·3-s + 1.73·6-s − 8-s + 1.99·9-s − 1.73·13-s − 16-s + 1.99·18-s + 23-s − 1.73·24-s + 25-s − 1.73·26-s + 1.73·27-s − 29-s − 1.73·31-s − 2.99·39-s − 1.73·41-s + 46-s + 1.73·47-s − 1.73·48-s + 50-s + 1.73·54-s − 58-s − 1.73·62-s + 64-s + 1.73·69-s − 71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1127\)    =    \(7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(0.562446\)
Root analytic conductor: \(0.749964\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1127} (344, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1127,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.400569811\)
\(L(\frac12)\) \(\approx\) \(2.400569811\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
23 \( 1 - T \)
good2 \( 1 - T + T^{2} \)
3 \( 1 - 1.73T + T^{2} \)
5 \( 1 - T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 + 1.73T + T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - T^{2} \)
29 \( 1 + T + T^{2} \)
31 \( 1 + 1.73T + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + 1.73T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - 1.73T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 + T + T^{2} \)
73 \( 1 - 1.73T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.669163541510414716133438503487, −9.179965275849793451652471011900, −8.536098643059979346920811162565, −7.43486447586164643800255959229, −6.95365250957126660093384655387, −5.41583107225550668934781340970, −4.69015119018573074482191805952, −3.71649043049436442047744266606, −2.98411339137512860393557114936, −2.12057645981206078869168367361, 2.12057645981206078869168367361, 2.98411339137512860393557114936, 3.71649043049436442047744266606, 4.69015119018573074482191805952, 5.41583107225550668934781340970, 6.95365250957126660093384655387, 7.43486447586164643800255959229, 8.536098643059979346920811162565, 9.179965275849793451652471011900, 9.669163541510414716133438503487

Graph of the $Z$-function along the critical line