Properties

Label 1127.1.d.d
Level $1127$
Weight $1$
Character orbit 1127.d
Self dual yes
Analytic conductor $0.562$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,1,Mod(344,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.344");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1127.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.562446269237\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.181447.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta q^{3} - \beta q^{6} - q^{8} + 2 q^{9} + \beta q^{13} - q^{16} + 2 q^{18} + q^{23} + \beta q^{24} + q^{25} + \beta q^{26} - \beta q^{27} - q^{29} + \beta q^{31} - 3 q^{39} + \beta q^{41} + \cdots - \beta q^{94} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{8} + 4 q^{9} - 2 q^{16} + 4 q^{18} + 2 q^{23} + 2 q^{25} - 2 q^{29} - 6 q^{39} + 2 q^{46} + 2 q^{50} - 2 q^{58} + 2 q^{64} - 2 q^{71} - 4 q^{72} - 6 q^{78} + 2 q^{81} - 6 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1127\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
344.1
1.73205
−1.73205
1.00000 −1.73205 0 0 −1.73205 0 −1.00000 2.00000 0
344.2 1.00000 1.73205 0 0 1.73205 0 −1.00000 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
7.b odd 2 1 inner
161.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1127.1.d.d 2
7.b odd 2 1 inner 1127.1.d.d 2
7.c even 3 2 1127.1.f.d 4
7.d odd 6 2 1127.1.f.d 4
23.b odd 2 1 CM 1127.1.d.d 2
161.c even 2 1 inner 1127.1.d.d 2
161.f odd 6 2 1127.1.f.d 4
161.g even 6 2 1127.1.f.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1127.1.d.d 2 1.a even 1 1 trivial
1127.1.d.d 2 7.b odd 2 1 inner
1127.1.d.d 2 23.b odd 2 1 CM
1127.1.d.d 2 161.c even 2 1 inner
1127.1.f.d 4 7.c even 3 2
1127.1.f.d 4 7.d odd 6 2
1127.1.f.d 4 161.f odd 6 2
1127.1.f.d 4 161.g even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{1}^{\mathrm{new}}(1127, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 3 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( (T - 1)^{2} \) Copy content Toggle raw display
$29$ \( (T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 3 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 3 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 3 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( (T + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 3 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less