L(s) = 1 | + (1.50 − 1.18i)2-s + (0.632 − 2.60i)4-s + (−1.34 − 2.93i)8-s + (−0.327 + 0.945i)9-s + (−0.653 − 0.513i)11-s + (−3.12 − 1.60i)16-s + (0.627 + 1.81i)18-s − 1.59·22-s + (0.981 + 0.189i)23-s + (0.928 + 0.371i)25-s + (0.273 + 0.0801i)29-s + (−3.44 + 0.664i)32-s + (2.25 + 1.45i)36-s + (−0.550 + 1.58i)37-s + (−0.544 + 1.19i)43-s + (−1.75 + 1.37i)44-s + ⋯ |
L(s) = 1 | + (1.50 − 1.18i)2-s + (0.632 − 2.60i)4-s + (−1.34 − 2.93i)8-s + (−0.327 + 0.945i)9-s + (−0.653 − 0.513i)11-s + (−3.12 − 1.60i)16-s + (0.627 + 1.81i)18-s − 1.59·22-s + (0.981 + 0.189i)23-s + (0.928 + 0.371i)25-s + (0.273 + 0.0801i)29-s + (−3.44 + 0.664i)32-s + (2.25 + 1.45i)36-s + (−0.550 + 1.58i)37-s + (−0.544 + 1.19i)43-s + (−1.75 + 1.37i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.462 + 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.462 + 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.166734829\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.166734829\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 + (-0.981 - 0.189i)T \) |
good | 2 | \( 1 + (-1.50 + 1.18i)T + (0.235 - 0.971i)T^{2} \) |
| 3 | \( 1 + (0.327 - 0.945i)T^{2} \) |
| 5 | \( 1 + (-0.928 - 0.371i)T^{2} \) |
| 11 | \( 1 + (0.653 + 0.513i)T + (0.235 + 0.971i)T^{2} \) |
| 13 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 17 | \( 1 + (-0.0475 + 0.998i)T^{2} \) |
| 19 | \( 1 + (-0.0475 - 0.998i)T^{2} \) |
| 29 | \( 1 + (-0.273 - 0.0801i)T + (0.841 + 0.540i)T^{2} \) |
| 31 | \( 1 + (-0.981 - 0.189i)T^{2} \) |
| 37 | \( 1 + (0.550 - 1.58i)T + (-0.786 - 0.618i)T^{2} \) |
| 41 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 43 | \( 1 + (0.544 - 1.19i)T + (-0.654 - 0.755i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.0135 + 0.284i)T + (-0.995 + 0.0950i)T^{2} \) |
| 59 | \( 1 + (-0.580 + 0.814i)T^{2} \) |
| 61 | \( 1 + (0.327 + 0.945i)T^{2} \) |
| 67 | \( 1 + (1.78 + 0.713i)T + (0.723 + 0.690i)T^{2} \) |
| 71 | \( 1 + (0.118 + 0.822i)T + (-0.959 + 0.281i)T^{2} \) |
| 73 | \( 1 + (0.888 + 0.458i)T^{2} \) |
| 79 | \( 1 + (0.0135 - 0.284i)T + (-0.995 - 0.0950i)T^{2} \) |
| 83 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 89 | \( 1 + (-0.981 + 0.189i)T^{2} \) |
| 97 | \( 1 + (0.142 + 0.989i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28594287660078257479863710406, −9.234160759326829274576350425656, −8.155628571223475129004486822576, −6.92885273848245166747990047922, −5.97734376810402675638248821633, −5.08120266492599458417377440190, −4.68260706031711349690108405013, −3.26880390614205131684428745042, −2.75254036681795501308162052269, −1.47669665814270921933352119751,
2.57437384039313020388566752442, 3.45570445423395629131178945840, 4.41703500435576621049991599536, 5.24008749437731047217468126920, 5.98366452303404522029924652680, 6.89773818281505889556336627348, 7.35674945918912766232064473122, 8.457660111961138907653648283800, 9.060629186595598492397508690873, 10.43448655596122400110413422963