Properties

Label 2-1127-161.3-c0-0-0
Degree 22
Conductor 11271127
Sign 0.462+0.886i-0.462 + 0.886i
Analytic cond. 0.5624460.562446
Root an. cond. 0.7499640.749964
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.50 − 1.18i)2-s + (0.632 − 2.60i)4-s + (−1.34 − 2.93i)8-s + (−0.327 + 0.945i)9-s + (−0.653 − 0.513i)11-s + (−3.12 − 1.60i)16-s + (0.627 + 1.81i)18-s − 1.59·22-s + (0.981 + 0.189i)23-s + (0.928 + 0.371i)25-s + (0.273 + 0.0801i)29-s + (−3.44 + 0.664i)32-s + (2.25 + 1.45i)36-s + (−0.550 + 1.58i)37-s + (−0.544 + 1.19i)43-s + (−1.75 + 1.37i)44-s + ⋯
L(s)  = 1  + (1.50 − 1.18i)2-s + (0.632 − 2.60i)4-s + (−1.34 − 2.93i)8-s + (−0.327 + 0.945i)9-s + (−0.653 − 0.513i)11-s + (−3.12 − 1.60i)16-s + (0.627 + 1.81i)18-s − 1.59·22-s + (0.981 + 0.189i)23-s + (0.928 + 0.371i)25-s + (0.273 + 0.0801i)29-s + (−3.44 + 0.664i)32-s + (2.25 + 1.45i)36-s + (−0.550 + 1.58i)37-s + (−0.544 + 1.19i)43-s + (−1.75 + 1.37i)44-s + ⋯

Functional equation

Λ(s)=(1127s/2ΓC(s)L(s)=((0.462+0.886i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.462 + 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1127s/2ΓC(s)L(s)=((0.462+0.886i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.462 + 0.886i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 11271127    =    72237^{2} \cdot 23
Sign: 0.462+0.886i-0.462 + 0.886i
Analytic conductor: 0.5624460.562446
Root analytic conductor: 0.7499640.749964
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1127(325,)\chi_{1127} (325, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1127, ( :0), 0.462+0.886i)(2,\ 1127,\ (\ :0),\ -0.462 + 0.886i)

Particular Values

L(12)L(\frac{1}{2}) \approx 2.1667348292.166734829
L(12)L(\frac12) \approx 2.1667348292.166734829
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1 1
23 1+(0.9810.189i)T 1 + (-0.981 - 0.189i)T
good2 1+(1.50+1.18i)T+(0.2350.971i)T2 1 + (-1.50 + 1.18i)T + (0.235 - 0.971i)T^{2}
3 1+(0.3270.945i)T2 1 + (0.327 - 0.945i)T^{2}
5 1+(0.9280.371i)T2 1 + (-0.928 - 0.371i)T^{2}
11 1+(0.653+0.513i)T+(0.235+0.971i)T2 1 + (0.653 + 0.513i)T + (0.235 + 0.971i)T^{2}
13 1+(0.4150.909i)T2 1 + (-0.415 - 0.909i)T^{2}
17 1+(0.0475+0.998i)T2 1 + (-0.0475 + 0.998i)T^{2}
19 1+(0.04750.998i)T2 1 + (-0.0475 - 0.998i)T^{2}
29 1+(0.2730.0801i)T+(0.841+0.540i)T2 1 + (-0.273 - 0.0801i)T + (0.841 + 0.540i)T^{2}
31 1+(0.9810.189i)T2 1 + (-0.981 - 0.189i)T^{2}
37 1+(0.5501.58i)T+(0.7860.618i)T2 1 + (0.550 - 1.58i)T + (-0.786 - 0.618i)T^{2}
41 1+(0.142+0.989i)T2 1 + (0.142 + 0.989i)T^{2}
43 1+(0.5441.19i)T+(0.6540.755i)T2 1 + (0.544 - 1.19i)T + (-0.654 - 0.755i)T^{2}
47 1+(0.50.866i)T2 1 + (0.5 - 0.866i)T^{2}
53 1+(0.0135+0.284i)T+(0.995+0.0950i)T2 1 + (0.0135 + 0.284i)T + (-0.995 + 0.0950i)T^{2}
59 1+(0.580+0.814i)T2 1 + (-0.580 + 0.814i)T^{2}
61 1+(0.327+0.945i)T2 1 + (0.327 + 0.945i)T^{2}
67 1+(1.78+0.713i)T+(0.723+0.690i)T2 1 + (1.78 + 0.713i)T + (0.723 + 0.690i)T^{2}
71 1+(0.118+0.822i)T+(0.959+0.281i)T2 1 + (0.118 + 0.822i)T + (-0.959 + 0.281i)T^{2}
73 1+(0.888+0.458i)T2 1 + (0.888 + 0.458i)T^{2}
79 1+(0.01350.284i)T+(0.9950.0950i)T2 1 + (0.0135 - 0.284i)T + (-0.995 - 0.0950i)T^{2}
83 1+(0.1420.989i)T2 1 + (0.142 - 0.989i)T^{2}
89 1+(0.981+0.189i)T2 1 + (-0.981 + 0.189i)T^{2}
97 1+(0.142+0.989i)T2 1 + (0.142 + 0.989i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.28594287660078257479863710406, −9.234160759326829274576350425656, −8.155628571223475129004486822576, −6.92885273848245166747990047922, −5.97734376810402675638248821633, −5.08120266492599458417377440190, −4.68260706031711349690108405013, −3.26880390614205131684428745042, −2.75254036681795501308162052269, −1.47669665814270921933352119751, 2.57437384039313020388566752442, 3.45570445423395629131178945840, 4.41703500435576621049991599536, 5.24008749437731047217468126920, 5.98366452303404522029924652680, 6.89773818281505889556336627348, 7.35674945918912766232064473122, 8.457660111961138907653648283800, 9.060629186595598492397508690873, 10.43448655596122400110413422963

Graph of the ZZ-function along the critical line