Properties

Label 1127.1.v.a.325.1
Level $1127$
Weight $1$
Character 1127.325
Analytic conductor $0.562$
Analytic rank $0$
Dimension $20$
Projective image $D_{11}$
CM discriminant -7
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,1,Mod(31,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([11, 18]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.31");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1127.v (of order \(66\), degree \(20\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.562446269237\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\Q(\zeta_{33})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} + x^{17} - x^{16} + x^{14} - x^{13} + x^{11} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 161)
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

Embedding invariants

Embedding label 325.1
Root \(-0.995472 - 0.0950560i\) of defining polynomial
Character \(\chi\) \(=\) 1127.325
Dual form 1127.1.v.a.215.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50842 - 1.18624i) q^{2} +(0.632425 - 2.60689i) q^{4} +(-1.34125 - 2.93694i) q^{8} +(-0.327068 + 0.945001i) q^{9} +(-0.653077 - 0.513585i) q^{11} +(-3.12278 - 1.60990i) q^{16} +(0.627639 + 1.81344i) q^{18} -1.59435 q^{22} +(0.981929 + 0.189251i) q^{23} +(0.928368 + 0.371662i) q^{25} +(0.273100 + 0.0801894i) q^{29} +(-3.44985 + 0.664903i) q^{32} +(2.25667 + 1.45027i) q^{36} +(-0.550294 + 1.58997i) q^{37} +(-0.544078 + 1.19136i) q^{43} +(-1.75188 + 1.37770i) q^{44} +(1.70566 - 0.879330i) q^{46} +(1.84125 - 0.540641i) q^{50} +(-0.0135432 - 0.284307i) q^{53} +(0.507075 - 0.203002i) q^{58} +(-2.11435 + 2.44009i) q^{64} +(-1.78153 - 0.713215i) q^{67} +(-0.118239 - 0.822373i) q^{71} +(3.21409 - 0.306908i) q^{72} +(1.05601 + 3.05113i) q^{74} +(-0.0135432 + 0.284307i) q^{79} +(-0.786053 - 0.618159i) q^{81} +(0.592542 + 2.44249i) q^{86} +(-0.632425 + 2.60689i) q^{88} +(1.11435 - 2.44009i) q^{92} +(0.698939 - 0.449181i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{2} + 3 q^{4} - 8 q^{8} + q^{9} + 2 q^{11} - 6 q^{16} + 2 q^{18} - 8 q^{22} + q^{23} + q^{25} - 4 q^{29} - 5 q^{32} + 16 q^{36} + 2 q^{37} - 4 q^{43} - 5 q^{44} + 2 q^{46} + 18 q^{50} + 2 q^{53}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1127\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50842 1.18624i 1.50842 1.18624i 0.580057 0.814576i \(-0.303030\pi\)
0.928368 0.371662i \(-0.121212\pi\)
\(3\) 0 0 −0.580057 0.814576i \(-0.696970\pi\)
0.580057 + 0.814576i \(0.303030\pi\)
\(4\) 0.632425 2.60689i 0.632425 2.60689i
\(5\) 0 0 −0.981929 0.189251i \(-0.939394\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.34125 2.93694i −1.34125 2.93694i
\(9\) −0.327068 + 0.945001i −0.327068 + 0.945001i
\(10\) 0 0
\(11\) −0.653077 0.513585i −0.653077 0.513585i 0.235759 0.971812i \(-0.424242\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(12\) 0 0
\(13\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.12278 1.60990i −3.12278 1.60990i
\(17\) 0 0 0.723734 0.690079i \(-0.242424\pi\)
−0.723734 + 0.690079i \(0.757576\pi\)
\(18\) 0.627639 + 1.81344i 0.627639 + 1.81344i
\(19\) 0 0 −0.723734 0.690079i \(-0.757576\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.59435 −1.59435
\(23\) 0.981929 + 0.189251i 0.981929 + 0.189251i
\(24\) 0 0
\(25\) 0.928368 + 0.371662i 0.928368 + 0.371662i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(30\) 0 0
\(31\) 0 0 −0.995472 0.0950560i \(-0.969697\pi\)
0.995472 + 0.0950560i \(0.0303030\pi\)
\(32\) −3.44985 + 0.664903i −3.44985 + 0.664903i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 2.25667 + 1.45027i 2.25667 + 1.45027i
\(37\) −0.550294 + 1.58997i −0.550294 + 1.58997i 0.235759 + 0.971812i \(0.424242\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(42\) 0 0
\(43\) −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i \(0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(44\) −1.75188 + 1.37770i −1.75188 + 1.37770i
\(45\) 0 0
\(46\) 1.70566 0.879330i 1.70566 0.879330i
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.84125 0.540641i 1.84125 0.540641i
\(51\) 0 0
\(52\) 0 0
\(53\) −0.0135432 0.284307i −0.0135432 0.284307i −0.995472 0.0950560i \(-0.969697\pi\)
0.981929 0.189251i \(-0.0606061\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0.507075 0.203002i 0.507075 0.203002i
\(59\) 0 0 0.888835 0.458227i \(-0.151515\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(60\) 0 0
\(61\) 0 0 0.580057 0.814576i \(-0.303030\pi\)
−0.580057 + 0.814576i \(0.696970\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −2.11435 + 2.44009i −2.11435 + 2.44009i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.78153 0.713215i −1.78153 0.713215i −0.995472 0.0950560i \(-0.969697\pi\)
−0.786053 0.618159i \(-0.787879\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(72\) 3.21409 0.306908i 3.21409 0.306908i
\(73\) 0 0 0.235759 0.971812i \(-0.424242\pi\)
−0.235759 + 0.971812i \(0.575758\pi\)
\(74\) 1.05601 + 3.05113i 1.05601 + 3.05113i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.0135432 + 0.284307i −0.0135432 + 0.284307i 0.981929 + 0.189251i \(0.0606061\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(80\) 0 0
\(81\) −0.786053 0.618159i −0.786053 0.618159i
\(82\) 0 0
\(83\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.592542 + 2.44249i 0.592542 + 2.44249i
\(87\) 0 0
\(88\) −0.632425 + 2.60689i −0.632425 + 2.60689i
\(89\) 0 0 0.995472 0.0950560i \(-0.0303030\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.11435 2.44009i 1.11435 2.44009i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(98\) 0 0
\(99\) 0.698939 0.449181i 0.698939 0.449181i
\(100\) 1.55601 2.18511i 1.55601 2.18511i
\(101\) 0 0 0.981929 0.189251i \(-0.0606061\pi\)
−0.981929 + 0.189251i \(0.939394\pi\)
\(102\) 0 0
\(103\) 0 0 0.928368 0.371662i \(-0.121212\pi\)
−0.928368 + 0.371662i \(0.878788\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.357685 0.412791i −0.357685 0.412791i
\(107\) 0.975950 1.37053i 0.975950 1.37053i 0.0475819 0.998867i \(-0.484848\pi\)
0.928368 0.371662i \(-0.121212\pi\)
\(108\) 0 0
\(109\) −1.38884 + 1.32425i −1.38884 + 1.32425i −0.500000 + 0.866025i \(0.666667\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.381761 0.661229i 0.381761 0.661229i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.0730196 0.300991i −0.0730196 0.300991i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(128\) −0.127639 + 2.67947i −0.127639 + 2.67947i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.888835 0.458227i \(-0.848485\pi\)
0.888835 + 0.458227i \(0.151515\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.53334 + 1.03748i −3.53334 + 1.03748i
\(135\) 0 0
\(136\) 0 0
\(137\) 0.959493 1.66189i 0.959493 1.66189i 0.235759 0.971812i \(-0.424242\pi\)
0.723734 0.690079i \(-0.242424\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.15389 1.10023i −1.15389 1.10023i
\(143\) 0 0
\(144\) 2.54272 2.42448i 2.54272 2.42448i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 3.79686 + 2.44009i 3.79686 + 2.44009i
\(149\) −1.21590 + 0.486774i −1.21590 + 0.486774i −0.888835 0.458227i \(-0.848485\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(150\) 0 0
\(151\) 0.252989 0.130425i 0.252989 0.130425i −0.327068 0.945001i \(-0.606061\pi\)
0.580057 + 0.814576i \(0.303030\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.235759 0.971812i \(-0.424242\pi\)
−0.235759 + 0.971812i \(0.575758\pi\)
\(158\) 0.316827 + 0.444922i 0.316827 + 0.444922i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −1.91899 −1.91899
\(163\) 0.223734 0.175946i 0.223734 0.175946i −0.500000 0.866025i \(-0.666667\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(168\) 0 0
\(169\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(170\) 0 0
\(171\) 0 0
\(172\) 2.76167 + 2.17180i 2.76167 + 2.17180i
\(173\) 0 0 0.928368 0.371662i \(-0.121212\pi\)
−0.928368 + 0.371662i \(0.878788\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.21259 + 2.65520i 1.21259 + 2.65520i
\(177\) 0 0
\(178\) 0 0
\(179\) 0.428368 + 1.23769i 0.428368 + 1.23769i 0.928368 + 0.371662i \(0.121212\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.761197 3.13770i −0.761197 3.13770i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.49547 0.770969i −1.49547 0.770969i −0.500000 0.866025i \(-0.666667\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(192\) 0 0
\(193\) 0.815816 0.157236i 0.815816 0.157236i 0.235759 0.971812i \(-0.424242\pi\)
0.580057 + 0.814576i \(0.303030\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(198\) 0.521461 1.50666i 0.521461 1.50666i
\(199\) 0 0 −0.995472 0.0950560i \(-0.969697\pi\)
0.995472 + 0.0950560i \(0.0303030\pi\)
\(200\) −0.153628 3.22505i −0.153628 3.22505i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(212\) −0.749723 0.144497i −0.749723 0.144497i
\(213\) 0 0
\(214\) −0.153628 3.22505i −0.153628 3.22505i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −0.524075 + 3.64502i −0.524075 + 3.64502i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(224\) 0 0
\(225\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(226\) 1.81899 + 1.73440i 1.81899 + 1.73440i
\(227\) 0 0 −0.580057 0.814576i \(-0.696970\pi\)
0.580057 + 0.814576i \(0.303030\pi\)
\(228\) 0 0
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.130785 0.909632i −0.130785 0.909632i
\(233\) −1.67489 + 0.159932i −1.67489 + 0.159932i −0.888835 0.458227i \(-0.848485\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(240\) 0 0
\(241\) 0 0 −0.786053 0.618159i \(-0.787879\pi\)
0.786053 + 0.618159i \(0.212121\pi\)
\(242\) −0.467192 0.367404i −0.467192 0.367404i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(252\) 0 0
\(253\) −0.544078 0.627899i −0.544078 0.627899i
\(254\) −1.25667 2.17661i −1.25667 2.17661i
\(255\) 0 0
\(256\) 1.11312 + 1.56316i 1.11312 + 1.56316i
\(257\) 0 0 −0.723734 0.690079i \(-0.757576\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −0.165101 + 0.231852i −0.165101 + 0.231852i
\(262\) 0 0
\(263\) 1.70566 0.879330i 1.70566 0.879330i 0.723734 0.690079i \(-0.242424\pi\)
0.981929 0.189251i \(-0.0606061\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −2.98596 + 4.19319i −2.98596 + 4.19319i
\(269\) 0 0 −0.0475819 0.998867i \(-0.515152\pi\)
0.0475819 + 0.998867i \(0.484848\pi\)
\(270\) 0 0
\(271\) 0 0 −0.981929 0.189251i \(-0.939394\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −0.524075 3.64502i −0.524075 3.64502i
\(275\) −0.415415 0.719520i −0.415415 0.719520i
\(276\) 0 0
\(277\) −0.841254 + 1.45709i −0.841254 + 1.45709i 0.0475819 + 0.998867i \(0.484848\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(282\) 0 0
\(283\) 0 0 −0.0475819 0.998867i \(-0.515152\pi\)
0.0475819 + 0.998867i \(0.484848\pi\)
\(284\) −2.21862 0.211852i −2.21862 0.211852i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.500000 3.47758i 0.500000 3.47758i
\(289\) 0.0475819 0.998867i 0.0475819 0.998867i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 5.40773 0.516375i 5.40773 0.516375i
\(297\) 0 0
\(298\) −1.25667 + 2.17661i −1.25667 + 2.17661i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0.226900 0.496841i 0.226900 0.496841i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.786053 0.618159i \(-0.787879\pi\)
0.786053 + 0.618159i \(0.212121\pi\)
\(312\) 0 0
\(313\) 0 0 0.327068 0.945001i \(-0.393939\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.732593 + 0.215109i 0.732593 + 0.215109i
\(317\) 1.65210 + 0.318417i 1.65210 + 0.318417i 0.928368 0.371662i \(-0.121212\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(318\) 0 0
\(319\) −0.137171 0.192630i −0.137171 0.192630i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −2.10859 + 1.65822i −2.10859 + 1.65822i
\(325\) 0 0
\(326\) 0.128772 0.530804i 0.128772 0.530804i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.428368 1.23769i 0.428368 1.23769i −0.500000 0.866025i \(-0.666667\pi\)
0.928368 0.371662i \(-0.121212\pi\)
\(332\) 0 0
\(333\) −1.32254 1.04006i −1.32254 1.04006i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(338\) 1.70566 + 0.879330i 1.70566 + 0.879330i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 4.22871 4.22871
\(345\) 0 0
\(346\) 0 0
\(347\) 1.56199 + 0.625325i 1.56199 + 0.625325i 0.981929 0.189251i \(-0.0606061\pi\)
0.580057 + 0.814576i \(0.303030\pi\)
\(348\) 0 0
\(349\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.59450 + 1.33756i 2.59450 + 1.33756i
\(353\) 0 0 −0.995472 0.0950560i \(-0.969697\pi\)
0.995472 + 0.0950560i \(0.0303030\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 2.11435 + 1.35881i 2.11435 + 1.35881i
\(359\) 0.428368 1.23769i 0.428368 1.23769i −0.500000 0.866025i \(-0.666667\pi\)
0.928368 0.371662i \(-0.121212\pi\)
\(360\) 0 0
\(361\) 0.0475819 + 0.998867i 0.0475819 + 0.998867i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) −2.76167 2.17180i −2.76167 2.17180i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.815816 + 0.157236i 0.815816 + 0.157236i 0.580057 0.814576i \(-0.303030\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
1.00000 \(0\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.17036 + 0.611037i −3.17036 + 0.611037i
\(383\) 0 0 0.580057 0.814576i \(-0.303030\pi\)
−0.580057 + 0.814576i \(0.696970\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.04408 1.20493i 1.04408 1.20493i
\(387\) −0.947890 0.903811i −0.947890 0.903811i
\(388\) 0 0
\(389\) 0.771316 + 0.308788i 0.771316 + 0.308788i 0.723734 0.690079i \(-0.242424\pi\)
0.0475819 + 0.998867i \(0.484848\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −2.50196 + 0.238908i −2.50196 + 0.238908i
\(395\) 0 0
\(396\) −0.728939 2.10613i −0.728939 2.10613i
\(397\) 0 0 −0.235759 0.971812i \(-0.575758\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −2.30075 2.65520i −2.30075 2.65520i
\(401\) 0.0800569 1.68060i 0.0800569 1.68060i −0.500000 0.866025i \(-0.666667\pi\)
0.580057 0.814576i \(-0.303030\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.17597 0.755750i 1.17597 0.755750i
\(408\) 0 0
\(409\) 0 0 −0.327068 0.945001i \(-0.606061\pi\)
0.327068 + 0.945001i \(0.393939\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(420\) 0 0
\(421\) −1.10181 + 0.708089i −1.10181 + 0.708089i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(422\) −0.924814 + 1.29872i −0.924814 + 1.29872i
\(423\) 0 0
\(424\) −0.816827 + 0.421104i −0.816827 + 0.421104i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −2.95561 3.41095i −2.95561 3.41095i
\(429\) 0 0
\(430\) 0 0
\(431\) −0.947890 + 0.903811i −0.947890 + 0.903811i −0.995472 0.0950560i \(-0.969697\pi\)
0.0475819 + 0.998867i \(0.484848\pi\)
\(432\) 0 0
\(433\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.57385 + 4.45803i 2.57385 + 4.45803i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.786053 0.618159i \(-0.212121\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.195876 + 0.807410i 0.195876 + 0.807410i 0.981929 + 0.189251i \(0.0606061\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(450\) −0.0913090 + 1.91681i −0.0913090 + 1.91681i
\(451\) 0 0
\(452\) 3.49743 + 0.333964i 3.49743 + 0.333964i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.283341 0.0270558i 0.283341 0.0270558i 0.0475819 0.998867i \(-0.484848\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(464\) −0.723734 0.690079i −0.723734 0.690079i
\(465\) 0 0
\(466\) −2.33673 + 2.22806i −2.33673 + 2.22806i
\(467\) 0 0 −0.888835 0.458227i \(-0.848485\pi\)
0.888835 + 0.458227i \(0.151515\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.967192 0.498622i 0.967192 0.498622i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(478\) −3.17036 0.611037i −3.17036 0.611037i
\(479\) 0 0 0.235759 0.971812i \(-0.424242\pi\)
−0.235759 + 0.971812i \(0.575758\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.830830 −0.830830
\(485\) 0 0
\(486\) 0 0
\(487\) −0.308779 + 1.27280i −0.308779 + 1.27280i 0.580057 + 0.814576i \(0.303030\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.70566 + 0.879330i 1.70566 + 0.879330i 0.981929 + 0.189251i \(0.0606061\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1.56554 0.301733i −1.56554 0.301733i
\(507\) 0 0
\(508\) −3.26167 1.30578i −3.26167 1.30578i
\(509\) 0 0 0.995472 0.0950560i \(-0.0303030\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.995472 0.0950560i \(-0.969697\pi\)
0.995472 + 0.0950560i \(0.0303030\pi\)
\(522\) 0.0259893 + 0.545582i 0.0259893 + 0.545582i
\(523\) 0 0 −0.235759 0.971812i \(-0.575758\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.52977 3.34973i 1.52977 3.34973i
\(527\) 0 0
\(528\) 0 0
\(529\) 0.928368 + 0.371662i 0.928368 + 0.371662i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0.294810 + 6.18883i 0.294810 + 6.18883i
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.78153 + 0.713215i −1.78153 + 0.713215i −0.786053 + 0.618159i \(0.787879\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(548\) −3.72556 3.55232i −3.72556 3.55232i
\(549\) 0 0
\(550\) −1.48014 0.592560i −1.48014 0.592560i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.459493 + 3.19584i 0.459493 + 3.19584i
\(555\) 0 0
\(556\) 0 0
\(557\) −0.654136 1.89000i −0.654136 1.89000i −0.327068 0.945001i \(-0.606061\pi\)
−0.327068 0.945001i \(-0.606061\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.0259893 0.545582i 0.0259893 0.545582i
\(563\) 0 0 −0.786053 0.618159i \(-0.787879\pi\)
0.786053 + 0.618159i \(0.212121\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −2.25667 + 1.45027i −2.25667 + 1.45027i
\(569\) 0.396666 + 1.63508i 0.396666 + 1.63508i 0.723734 + 0.690079i \(0.242424\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(570\) 0 0
\(571\) 0.396666 1.63508i 0.396666 1.63508i −0.327068 0.945001i \(-0.606061\pi\)
0.723734 0.690079i \(-0.242424\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(576\) −1.61435 2.79614i −1.61435 2.79614i
\(577\) 0 0 −0.928368 0.371662i \(-0.878788\pi\)
0.928368 + 0.371662i \(0.121212\pi\)
\(578\) −1.11312 1.56316i −1.11312 1.56316i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.137171 + 0.192630i −0.137171 + 0.192630i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 4.27815 4.07921i 4.27815 4.07921i
\(593\) 0 0 −0.981929 0.189251i \(-0.939394\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.500000 + 3.47758i 0.500000 + 3.47758i
\(597\) 0 0
\(598\) 0 0
\(599\) 0.959493 1.66189i 0.959493 1.66189i 0.235759 0.971812i \(-0.424242\pi\)
0.723734 0.690079i \(-0.242424\pi\)
\(600\) 0 0
\(601\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(602\) 0 0
\(603\) 1.25667 1.45027i 1.25667 1.45027i
\(604\) −0.180007 0.741999i −0.180007 0.741999i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.327068 0.945001i \(-0.393939\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.91030 + 0.182411i 1.91030 + 0.182411i 0.981929 0.189251i \(-0.0606061\pi\)
0.928368 + 0.371662i \(0.121212\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(618\) 0 0
\(619\) 0 0 −0.928368 0.371662i \(-0.878788\pi\)
0.928368 + 0.371662i \(0.121212\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.723734 + 0.690079i 0.723734 + 0.690079i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(632\) 0.853157 0.341553i 0.853157 0.341553i
\(633\) 0 0
\(634\) 2.86979 1.47948i 2.86979 1.47948i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −0.435418 0.127850i −0.435418 0.127850i
\(639\) 0.815816 + 0.157236i 0.815816 + 0.157236i
\(640\) 0 0
\(641\) 1.16011 + 1.62915i 1.16011 + 1.62915i 0.580057 + 0.814576i \(0.303030\pi\)
0.580057 + 0.814576i \(0.303030\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.580057 0.814576i \(-0.696970\pi\)
0.580057 + 0.814576i \(0.303030\pi\)
\(648\) −0.761197 + 3.13770i −0.761197 + 3.13770i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.317178 0.694523i −0.317178 0.694523i
\(653\) 0.627639 1.81344i 0.627639 1.81344i 0.0475819 0.998867i \(-0.484848\pi\)
0.580057 0.814576i \(-0.303030\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(660\) 0 0
\(661\) 0 0 0.723734 0.690079i \(-0.242424\pi\)
−0.723734 + 0.690079i \(0.757576\pi\)
\(662\) −0.822032 2.37511i −0.822032 2.37511i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −3.22871 −3.22871
\(667\) 0.252989 + 0.130425i 0.252989 + 0.130425i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(674\) 1.41712 + 0.730574i 1.41712 + 0.730574i
\(675\) 0 0
\(676\) 2.63403 0.507668i 2.63403 0.507668i
\(677\) 0 0 0.0475819 0.998867i \(-0.484848\pi\)
−0.0475819 + 0.998867i \(0.515152\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.0800569 + 1.68060i 0.0800569 + 1.68060i 0.580057 + 0.814576i \(0.303030\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 3.61702 2.84445i 3.61702 2.84445i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 3.09792 0.909632i 3.09792 0.909632i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 2.63403 0.507668i 2.63403 0.507668i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.601300 + 0.573338i 0.601300 + 0.573338i 0.928368 0.371662i \(-0.121212\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(710\) 0 0
\(711\) −0.264241 0.105786i −0.264241 0.105786i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 3.49743 0.333964i 3.49743 0.333964i
\(717\) 0 0
\(718\) −0.822032 2.37511i −0.822032 2.37511i
\(719\) 0 0 −0.235759 0.971812i \(-0.575758\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(723\) 0 0
\(724\) 0 0
\(725\) 0.223734 + 0.175946i 0.223734 + 0.175946i
\(726\) 0 0
\(727\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(728\) 0 0
\(729\) 0.841254 0.540641i 0.841254 0.540641i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.995472 0.0950560i \(-0.0303030\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −3.51334 −3.51334
\(737\) 0.797176 + 1.38075i 0.797176 + 1.38075i
\(738\) 0 0
\(739\) −1.11312 1.56316i −1.11312 1.56316i −0.786053 0.618159i \(-0.787879\pi\)
−0.327068 0.945001i \(-0.606061\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.41712 0.730574i 1.41712 0.730574i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −0.165101 + 0.231852i −0.165101 + 0.231852i −0.888835 0.458227i \(-0.848485\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(758\) −0.273100 0.473023i −0.273100 0.473023i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.786053 0.618159i \(-0.212121\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −2.95561 + 3.41095i −2.95561 + 3.41095i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.106046 2.22618i 0.106046 2.22618i
\(773\) 0 0 0.981929 0.189251i \(-0.0606061\pi\)
−0.981929 + 0.189251i \(0.939394\pi\)
\(774\) −2.50196 0.238908i −2.50196 0.238908i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 1.52977 0.449181i 1.52977 0.449181i
\(779\) 0 0
\(780\) 0 0
\(781\) −0.345139 + 0.597799i −0.345139 + 0.597799i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.327068 0.945001i \(-0.606061\pi\)
0.327068 + 0.945001i \(0.393939\pi\)
\(788\) −2.54272 + 2.42448i −2.54272 + 2.42448i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −2.25667 1.45027i −2.25667 1.45027i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −3.44985 0.664903i −3.44985 0.664903i
\(801\) 0 0
\(802\) −1.87283 2.63003i −1.87283 2.63003i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −0.0671040 + 0.276606i −0.0671040 + 0.276606i −0.995472 0.0950560i \(-0.969697\pi\)
0.928368 + 0.371662i \(0.121212\pi\)
\(810\) 0 0
\(811\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0.877362 2.53497i 0.877362 2.53497i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.738471 0.380708i −0.738471 0.380708i 0.0475819 0.998867i \(-0.484848\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(822\) 0 0
\(823\) 0.0930932 + 0.268975i 0.0930932 + 0.268975i 0.981929 0.189251i \(-0.0606061\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(828\) 1.94142 + 1.85114i 1.94142 + 1.85114i
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(840\) 0 0
\(841\) −0.773100 0.496841i −0.773100 0.496841i
\(842\) −0.822032 + 2.37511i −0.822032 + 2.37511i
\(843\) 0 0
\(844\) 0.106046 + 2.22618i 0.106046 + 2.22618i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(849\) 0 0
\(850\) 0 0
\(851\) −0.841254 + 1.45709i −0.841254 + 1.45709i
\(852\) 0 0
\(853\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −5.33415 1.02807i −5.33415 1.02807i
\(857\) 0 0 0.723734 0.690079i \(-0.242424\pi\)
−0.723734 + 0.690079i \(0.757576\pi\)
\(858\) 0 0
\(859\) 0 0 0.580057 0.814576i \(-0.303030\pi\)
−0.580057 + 0.814576i \(0.696970\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.357685 + 2.48775i −0.357685 + 2.48775i
\(863\) 0.771316 0.308788i 0.771316 0.308788i 0.0475819 0.998867i \(-0.484848\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.154861 0.178719i 0.154861 0.178719i
\(870\) 0 0
\(871\) 0 0
\(872\) 5.75202 + 2.30276i 5.75202 + 2.30276i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.827068 + 0.0789754i −0.827068 + 0.0789754i −0.500000 0.866025i \(-0.666667\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(882\) 0 0
\(883\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.25324 + 0.985562i 1.25324 + 0.985562i
\(887\) 0 0 0.0475819 0.998867i \(-0.484848\pi\)
−0.0475819 + 0.998867i \(0.515152\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.195876 + 0.807410i 0.195876 + 0.807410i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 1.61435 + 2.79614i 1.61435 + 2.79614i
\(899\) 0 0
\(900\) 1.55601 + 2.18511i 1.55601 + 2.18511i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 3.55742 2.28621i 3.55742 2.28621i
\(905\) 0 0
\(906\) 0 0
\(907\) 1.70566 0.879330i 1.70566 0.879330i 0.723734 0.690079i \(-0.242424\pi\)
0.981929 0.189251i \(-0.0606061\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i \(0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.395304 0.376921i 0.395304 0.376921i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −0.841254 1.45709i −0.841254 1.45709i −0.888835 0.458227i \(-0.848485\pi\)
0.0475819 0.998867i \(-0.484848\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(926\) 0.868184 + 3.57870i 0.868184 + 3.57870i
\(927\) 0 0
\(928\) −0.995472 0.0950560i −0.995472 0.0950560i
\(929\) 0 0 0.327068 0.945001i \(-0.393939\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.642315 + 4.46740i −0.642315 + 4.46740i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.928368 0.371662i \(-0.878788\pi\)
0.928368 + 0.371662i \(0.121212\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0.867451 1.89945i 0.867451 1.89945i
\(947\) 1.21769 + 1.16106i 1.21769 + 1.16106i 0.981929 + 0.189251i \(0.0606061\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(954\) 0.507075 0.203002i 0.507075 0.203002i
\(955\) 0 0
\(956\) −4.01161 + 2.06813i −4.01161 + 2.06813i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.981929 + 0.189251i 0.981929 + 0.189251i
\(962\) 0 0
\(963\) 0.975950 + 1.37053i 0.975950 + 1.37053i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(968\) −0.786053 + 0.618159i −0.786053 + 0.618159i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.981929 0.189251i \(-0.939394\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.04408 + 2.28621i 1.04408 + 2.28621i
\(975\) 0 0
\(976\) 0 0
\(977\) −1.57211 1.23632i −1.57211 1.23632i −0.786053 0.618159i \(-0.787879\pi\)
−0.786053 0.618159i \(-0.787879\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −0.797176 1.74557i −0.797176 1.74557i
\(982\) −3.27314 1.68742i −3.27314 1.68742i
\(983\) 0 0 0.723734 0.690079i \(-0.242424\pi\)
−0.723734 + 0.690079i \(0.757576\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.759713 + 1.06687i −0.759713 + 1.06687i
\(990\) 0 0
\(991\) −1.78153 0.713215i −1.78153 0.713215i −0.995472 0.0950560i \(-0.969697\pi\)
−0.786053 0.618159i \(-0.787879\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.995472 0.0950560i \(-0.969697\pi\)
0.995472 + 0.0950560i \(0.0303030\pi\)
\(998\) 3.61596 0.696919i 3.61596 0.696919i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.1.v.a.325.1 20
7.2 even 3 inner 1127.1.v.a.509.1 20
7.3 odd 6 161.1.l.a.118.1 10
7.4 even 3 161.1.l.a.118.1 10
7.5 odd 6 inner 1127.1.v.a.509.1 20
7.6 odd 2 CM 1127.1.v.a.325.1 20
21.11 odd 6 1449.1.bq.a.118.1 10
21.17 even 6 1449.1.bq.a.118.1 10
23.8 even 11 inner 1127.1.v.a.31.1 20
28.3 even 6 2576.1.cj.a.1889.1 10
28.11 odd 6 2576.1.cj.a.1889.1 10
161.3 odd 66 3703.1.l.c.2603.1 10
161.4 even 33 3703.1.l.b.3429.1 10
161.10 even 66 3703.1.b.b.1588.1 5
161.11 odd 66 3703.1.l.i.2617.1 10
161.17 even 66 3703.1.l.e.706.1 10
161.18 even 33 3703.1.l.c.2582.1 10
161.25 even 33 3703.1.l.b.1392.1 10
161.31 odd 66 161.1.l.a.146.1 yes 10
161.32 even 33 3703.1.l.a.2911.1 10
161.38 even 66 3703.1.l.f.3044.1 10
161.39 even 33 3703.1.l.h.699.1 10
161.45 even 6 3703.1.l.f.118.1 10
161.52 odd 66 3703.1.l.a.706.1 10
161.53 odd 66 3703.1.l.i.699.1 10
161.54 odd 66 inner 1127.1.v.a.215.1 20
161.59 odd 66 3703.1.b.c.1588.1 5
161.60 odd 66 3703.1.l.e.2911.1 10
161.66 even 66 3703.1.l.g.2603.1 10
161.67 odd 66 3703.1.l.d.1392.1 10
161.73 odd 66 3703.1.l.b.3429.1 10
161.74 odd 66 3703.1.l.g.2582.1 10
161.80 even 66 3703.1.l.i.2617.1 10
161.81 even 33 3703.1.l.h.2617.1 10
161.87 odd 66 3703.1.l.c.2582.1 10
161.88 odd 66 3703.1.l.d.3429.1 10
161.94 odd 66 3703.1.l.b.1392.1 10
161.95 even 33 3703.1.l.c.2603.1 10
161.100 even 33 inner 1127.1.v.a.215.1 20
161.101 odd 66 3703.1.l.a.2911.1 10
161.102 odd 66 3703.1.b.b.1588.1 5
161.108 odd 66 3703.1.l.h.699.1 10
161.109 odd 66 3703.1.l.e.706.1 10
161.122 even 66 3703.1.l.i.699.1 10
161.123 even 33 161.1.l.a.146.1 yes 10
161.129 even 66 3703.1.l.e.2911.1 10
161.130 odd 66 3703.1.l.f.3044.1 10
161.136 even 66 3703.1.l.d.1392.1 10
161.137 odd 6 3703.1.l.f.118.1 10
161.143 even 66 3703.1.l.g.2582.1 10
161.144 even 33 3703.1.l.a.706.1 10
161.146 odd 22 inner 1127.1.v.a.31.1 20
161.150 odd 66 3703.1.l.h.2617.1 10
161.151 even 33 3703.1.b.c.1588.1 5
161.157 even 66 3703.1.l.d.3429.1 10
161.158 odd 66 3703.1.l.g.2603.1 10
483.284 odd 66 1449.1.bq.a.307.1 10
483.353 even 66 1449.1.bq.a.307.1 10
644.31 even 66 2576.1.cj.a.2561.1 10
644.123 odd 66 2576.1.cj.a.2561.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.1.l.a.118.1 10 7.3 odd 6
161.1.l.a.118.1 10 7.4 even 3
161.1.l.a.146.1 yes 10 161.31 odd 66
161.1.l.a.146.1 yes 10 161.123 even 33
1127.1.v.a.31.1 20 23.8 even 11 inner
1127.1.v.a.31.1 20 161.146 odd 22 inner
1127.1.v.a.215.1 20 161.54 odd 66 inner
1127.1.v.a.215.1 20 161.100 even 33 inner
1127.1.v.a.325.1 20 1.1 even 1 trivial
1127.1.v.a.325.1 20 7.6 odd 2 CM
1127.1.v.a.509.1 20 7.2 even 3 inner
1127.1.v.a.509.1 20 7.5 odd 6 inner
1449.1.bq.a.118.1 10 21.11 odd 6
1449.1.bq.a.118.1 10 21.17 even 6
1449.1.bq.a.307.1 10 483.284 odd 66
1449.1.bq.a.307.1 10 483.353 even 66
2576.1.cj.a.1889.1 10 28.3 even 6
2576.1.cj.a.1889.1 10 28.11 odd 6
2576.1.cj.a.2561.1 10 644.31 even 66
2576.1.cj.a.2561.1 10 644.123 odd 66
3703.1.b.b.1588.1 5 161.10 even 66
3703.1.b.b.1588.1 5 161.102 odd 66
3703.1.b.c.1588.1 5 161.59 odd 66
3703.1.b.c.1588.1 5 161.151 even 33
3703.1.l.a.706.1 10 161.52 odd 66
3703.1.l.a.706.1 10 161.144 even 33
3703.1.l.a.2911.1 10 161.32 even 33
3703.1.l.a.2911.1 10 161.101 odd 66
3703.1.l.b.1392.1 10 161.25 even 33
3703.1.l.b.1392.1 10 161.94 odd 66
3703.1.l.b.3429.1 10 161.4 even 33
3703.1.l.b.3429.1 10 161.73 odd 66
3703.1.l.c.2582.1 10 161.18 even 33
3703.1.l.c.2582.1 10 161.87 odd 66
3703.1.l.c.2603.1 10 161.3 odd 66
3703.1.l.c.2603.1 10 161.95 even 33
3703.1.l.d.1392.1 10 161.67 odd 66
3703.1.l.d.1392.1 10 161.136 even 66
3703.1.l.d.3429.1 10 161.88 odd 66
3703.1.l.d.3429.1 10 161.157 even 66
3703.1.l.e.706.1 10 161.17 even 66
3703.1.l.e.706.1 10 161.109 odd 66
3703.1.l.e.2911.1 10 161.60 odd 66
3703.1.l.e.2911.1 10 161.129 even 66
3703.1.l.f.118.1 10 161.45 even 6
3703.1.l.f.118.1 10 161.137 odd 6
3703.1.l.f.3044.1 10 161.38 even 66
3703.1.l.f.3044.1 10 161.130 odd 66
3703.1.l.g.2582.1 10 161.74 odd 66
3703.1.l.g.2582.1 10 161.143 even 66
3703.1.l.g.2603.1 10 161.66 even 66
3703.1.l.g.2603.1 10 161.158 odd 66
3703.1.l.h.699.1 10 161.39 even 33
3703.1.l.h.699.1 10 161.108 odd 66
3703.1.l.h.2617.1 10 161.81 even 33
3703.1.l.h.2617.1 10 161.150 odd 66
3703.1.l.i.699.1 10 161.53 odd 66
3703.1.l.i.699.1 10 161.122 even 66
3703.1.l.i.2617.1 10 161.11 odd 66
3703.1.l.i.2617.1 10 161.80 even 66