Properties

Label 1127.1.v.a.325.1
Level 11271127
Weight 11
Character 1127.325
Analytic conductor 0.5620.562
Analytic rank 00
Dimension 2020
Projective image D11D_{11}
CM discriminant -7
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,1,Mod(31,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([11, 18]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.31");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1127=7223 1127 = 7^{2} \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1127.v (of order 6666, degree 2020, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5624462692370.562446269237
Analytic rank: 00
Dimension: 2020
Coefficient field: Q(ζ33)\Q(\zeta_{33})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20x19+x17x16+x14x13+x11x10+x9x7+x6x4+x3x+1 x^{20} - x^{19} + x^{17} - x^{16} + x^{14} - x^{13} + x^{11} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 161)
Projective image: D11D_{11}
Projective field: Galois closure of Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)

Embedding invariants

Embedding label 325.1
Root 0.9954720.0950560i-0.995472 - 0.0950560i of defining polynomial
Character χ\chi == 1127.325
Dual form 1127.1.v.a.215.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.508421.18624i)q2+(0.6324252.60689i)q4+(1.341252.93694i)q8+(0.327068+0.945001i)q9+(0.6530770.513585i)q11+(3.122781.60990i)q16+(0.627639+1.81344i)q181.59435q22+(0.981929+0.189251i)q23+(0.928368+0.371662i)q25+(0.273100+0.0801894i)q29+(3.44985+0.664903i)q32+(2.25667+1.45027i)q36+(0.550294+1.58997i)q37+(0.544078+1.19136i)q43+(1.75188+1.37770i)q44+(1.705660.879330i)q46+(1.841250.540641i)q50+(0.01354320.284307i)q53+(0.5070750.203002i)q58+(2.11435+2.44009i)q64+(1.781530.713215i)q67+(0.1182390.822373i)q71+(3.214090.306908i)q72+(1.05601+3.05113i)q74+(0.0135432+0.284307i)q79+(0.7860530.618159i)q81+(0.592542+2.44249i)q86+(0.632425+2.60689i)q88+(1.114352.44009i)q92+(0.6989390.449181i)q99+O(q100)q+(1.50842 - 1.18624i) q^{2} +(0.632425 - 2.60689i) q^{4} +(-1.34125 - 2.93694i) q^{8} +(-0.327068 + 0.945001i) q^{9} +(-0.653077 - 0.513585i) q^{11} +(-3.12278 - 1.60990i) q^{16} +(0.627639 + 1.81344i) q^{18} -1.59435 q^{22} +(0.981929 + 0.189251i) q^{23} +(0.928368 + 0.371662i) q^{25} +(0.273100 + 0.0801894i) q^{29} +(-3.44985 + 0.664903i) q^{32} +(2.25667 + 1.45027i) q^{36} +(-0.550294 + 1.58997i) q^{37} +(-0.544078 + 1.19136i) q^{43} +(-1.75188 + 1.37770i) q^{44} +(1.70566 - 0.879330i) q^{46} +(1.84125 - 0.540641i) q^{50} +(-0.0135432 - 0.284307i) q^{53} +(0.507075 - 0.203002i) q^{58} +(-2.11435 + 2.44009i) q^{64} +(-1.78153 - 0.713215i) q^{67} +(-0.118239 - 0.822373i) q^{71} +(3.21409 - 0.306908i) q^{72} +(1.05601 + 3.05113i) q^{74} +(-0.0135432 + 0.284307i) q^{79} +(-0.786053 - 0.618159i) q^{81} +(0.592542 + 2.44249i) q^{86} +(-0.632425 + 2.60689i) q^{88} +(1.11435 - 2.44009i) q^{92} +(0.698939 - 0.449181i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+2q2+3q48q8+q9+2q116q16+2q188q22+q23+q254q295q32+16q36+2q374q435q44+2q46+18q50+2q53+4q99+O(q100) 20 q + 2 q^{2} + 3 q^{4} - 8 q^{8} + q^{9} + 2 q^{11} - 6 q^{16} + 2 q^{18} - 8 q^{22} + q^{23} + q^{25} - 4 q^{29} - 5 q^{32} + 16 q^{36} + 2 q^{37} - 4 q^{43} - 5 q^{44} + 2 q^{46} + 18 q^{50} + 2 q^{53}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1127Z)×\left(\mathbb{Z}/1127\mathbb{Z}\right)^\times.

nn 346346 442442
χ(n)\chi(n) e(16)e\left(\frac{1}{6}\right) e(811)e\left(\frac{8}{11}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.50842 1.18624i 1.50842 1.18624i 0.580057 0.814576i 0.303030π-0.303030\pi
0.928368 0.371662i 0.121212π-0.121212\pi
33 0 0 −0.580057 0.814576i 0.696970π-0.696970\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
44 0.632425 2.60689i 0.632425 2.60689i
55 0 0 −0.981929 0.189251i 0.939394π-0.939394\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
66 0 0
77 0 0
88 −1.34125 2.93694i −1.34125 2.93694i
99 −0.327068 + 0.945001i −0.327068 + 0.945001i
1010 0 0
1111 −0.653077 0.513585i −0.653077 0.513585i 0.235759 0.971812i 0.424242π-0.424242\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
1212 0 0
1313 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
1414 0 0
1515 0 0
1616 −3.12278 1.60990i −3.12278 1.60990i
1717 0 0 0.723734 0.690079i 0.242424π-0.242424\pi
−0.723734 + 0.690079i 0.757576π0.757576\pi
1818 0.627639 + 1.81344i 0.627639 + 1.81344i
1919 0 0 −0.723734 0.690079i 0.757576π-0.757576\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
2020 0 0
2121 0 0
2222 −1.59435 −1.59435
2323 0.981929 + 0.189251i 0.981929 + 0.189251i
2424 0 0
2525 0.928368 + 0.371662i 0.928368 + 0.371662i
2626 0 0
2727 0 0
2828 0 0
2929 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
3030 0 0
3131 0 0 −0.995472 0.0950560i 0.969697π-0.969697\pi
0.995472 + 0.0950560i 0.0303030π0.0303030\pi
3232 −3.44985 + 0.664903i −3.44985 + 0.664903i
3333 0 0
3434 0 0
3535 0 0
3636 2.25667 + 1.45027i 2.25667 + 1.45027i
3737 −0.550294 + 1.58997i −0.550294 + 1.58997i 0.235759 + 0.971812i 0.424242π0.424242\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
4242 0 0
4343 −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
4444 −1.75188 + 1.37770i −1.75188 + 1.37770i
4545 0 0
4646 1.70566 0.879330i 1.70566 0.879330i
4747 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4848 0 0
4949 0 0
5050 1.84125 0.540641i 1.84125 0.540641i
5151 0 0
5252 0 0
5353 −0.0135432 0.284307i −0.0135432 0.284307i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.981929 0.189251i 0.0606061π-0.0606061\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0.507075 0.203002i 0.507075 0.203002i
5959 0 0 0.888835 0.458227i 0.151515π-0.151515\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
6060 0 0
6161 0 0 0.580057 0.814576i 0.303030π-0.303030\pi
−0.580057 + 0.814576i 0.696970π0.696970\pi
6262 0 0
6363 0 0
6464 −2.11435 + 2.44009i −2.11435 + 2.44009i
6565 0 0
6666 0 0
6767 −1.78153 0.713215i −1.78153 0.713215i −0.995472 0.0950560i 0.969697π-0.969697\pi
−0.786053 0.618159i 0.787879π-0.787879\pi
6868 0 0
6969 0 0
7070 0 0
7171 −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i 0.909091π-0.909091\pi
0.841254 0.540641i 0.181818π-0.181818\pi
7272 3.21409 0.306908i 3.21409 0.306908i
7373 0 0 0.235759 0.971812i 0.424242π-0.424242\pi
−0.235759 + 0.971812i 0.575758π0.575758\pi
7474 1.05601 + 3.05113i 1.05601 + 3.05113i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 −0.0135432 + 0.284307i −0.0135432 + 0.284307i 0.981929 + 0.189251i 0.0606061π0.0606061\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
8080 0 0
8181 −0.786053 0.618159i −0.786053 0.618159i
8282 0 0
8383 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
8484 0 0
8585 0 0
8686 0.592542 + 2.44249i 0.592542 + 2.44249i
8787 0 0
8888 −0.632425 + 2.60689i −0.632425 + 2.60689i
8989 0 0 0.995472 0.0950560i 0.0303030π-0.0303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
9090 0 0
9191 0 0
9292 1.11435 2.44009i 1.11435 2.44009i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
9898 0 0
9999 0.698939 0.449181i 0.698939 0.449181i
100100 1.55601 2.18511i 1.55601 2.18511i
101101 0 0 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.981929 + 0.189251i 0.939394π0.939394\pi
102102 0 0
103103 0 0 0.928368 0.371662i 0.121212π-0.121212\pi
−0.928368 + 0.371662i 0.878788π0.878788\pi
104104 0 0
105105 0 0
106106 −0.357685 0.412791i −0.357685 0.412791i
107107 0.975950 1.37053i 0.975950 1.37053i 0.0475819 0.998867i 0.484848π-0.484848\pi
0.928368 0.371662i 0.121212π-0.121212\pi
108108 0 0
109109 −1.38884 + 1.32425i −1.38884 + 1.32425i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
110110 0 0
111111 0 0
112112 0 0
113113 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
114114 0 0
115115 0 0
116116 0.381761 0.661229i 0.381761 0.661229i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.0730196 0.300991i −0.0730196 0.300991i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 0.540641i 0.181818π-0.181818\pi
128128 −0.127639 + 2.67947i −0.127639 + 2.67947i
129129 0 0
130130 0 0
131131 0 0 −0.888835 0.458227i 0.848485π-0.848485\pi
0.888835 + 0.458227i 0.151515π0.151515\pi
132132 0 0
133133 0 0
134134 −3.53334 + 1.03748i −3.53334 + 1.03748i
135135 0 0
136136 0 0
137137 0.959493 1.66189i 0.959493 1.66189i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 0.690079i 0.242424π-0.242424\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 −1.15389 1.10023i −1.15389 1.10023i
143143 0 0
144144 2.54272 2.42448i 2.54272 2.42448i
145145 0 0
146146 0 0
147147 0 0
148148 3.79686 + 2.44009i 3.79686 + 2.44009i
149149 −1.21590 + 0.486774i −1.21590 + 0.486774i −0.888835 0.458227i 0.848485π-0.848485\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
150150 0 0
151151 0.252989 0.130425i 0.252989 0.130425i −0.327068 0.945001i 0.606061π-0.606061\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.235759 0.971812i 0.424242π-0.424242\pi
−0.235759 + 0.971812i 0.575758π0.575758\pi
158158 0.316827 + 0.444922i 0.316827 + 0.444922i
159159 0 0
160160 0 0
161161 0 0
162162 −1.91899 −1.91899
163163 0.223734 0.175946i 0.223734 0.175946i −0.500000 0.866025i 0.666667π-0.666667\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
168168 0 0
169169 0.415415 + 0.909632i 0.415415 + 0.909632i
170170 0 0
171171 0 0
172172 2.76167 + 2.17180i 2.76167 + 2.17180i
173173 0 0 0.928368 0.371662i 0.121212π-0.121212\pi
−0.928368 + 0.371662i 0.878788π0.878788\pi
174174 0 0
175175 0 0
176176 1.21259 + 2.65520i 1.21259 + 2.65520i
177177 0 0
178178 0 0
179179 0.428368 + 1.23769i 0.428368 + 1.23769i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 0 0
181181 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
182182 0 0
183183 0 0
184184 −0.761197 3.13770i −0.761197 3.13770i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −1.49547 0.770969i −1.49547 0.770969i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
192192 0 0
193193 0.815816 0.157236i 0.815816 0.157236i 0.235759 0.971812i 0.424242π-0.424242\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
194194 0 0
195195 0 0
196196 0 0
197197 −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
198198 0.521461 1.50666i 0.521461 1.50666i
199199 0 0 −0.995472 0.0950560i 0.969697π-0.969697\pi
0.995472 + 0.0950560i 0.0303030π0.0303030\pi
200200 −0.153628 3.22505i −0.153628 3.22505i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 −0.500000 + 0.866025i −0.500000 + 0.866025i
208208 0 0
209209 0 0
210210 0 0
211211 −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
212212 −0.749723 0.144497i −0.749723 0.144497i
213213 0 0
214214 −0.153628 3.22505i −0.153628 3.22505i
215215 0 0
216216 0 0
217217 0 0
218218 −0.524075 + 3.64502i −0.524075 + 3.64502i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
224224 0 0
225225 −0.654861 + 0.755750i −0.654861 + 0.755750i
226226 1.81899 + 1.73440i 1.81899 + 1.73440i
227227 0 0 −0.580057 0.814576i 0.696970π-0.696970\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
228228 0 0
229229 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0 0
231231 0 0
232232 −0.130785 0.909632i −0.130785 0.909632i
233233 −1.67489 + 0.159932i −1.67489 + 0.159932i −0.888835 0.458227i 0.848485π-0.848485\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
240240 0 0
241241 0 0 −0.786053 0.618159i 0.787879π-0.787879\pi
0.786053 + 0.618159i 0.212121π0.212121\pi
242242 −0.467192 0.367404i −0.467192 0.367404i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
252252 0 0
253253 −0.544078 0.627899i −0.544078 0.627899i
254254 −1.25667 2.17661i −1.25667 2.17661i
255255 0 0
256256 1.11312 + 1.56316i 1.11312 + 1.56316i
257257 0 0 −0.723734 0.690079i 0.757576π-0.757576\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
258258 0 0
259259 0 0
260260 0 0
261261 −0.165101 + 0.231852i −0.165101 + 0.231852i
262262 0 0
263263 1.70566 0.879330i 1.70566 0.879330i 0.723734 0.690079i 0.242424π-0.242424\pi
0.981929 0.189251i 0.0606061π-0.0606061\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −2.98596 + 4.19319i −2.98596 + 4.19319i
269269 0 0 −0.0475819 0.998867i 0.515152π-0.515152\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
270270 0 0
271271 0 0 −0.981929 0.189251i 0.939394π-0.939394\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
272272 0 0
273273 0 0
274274 −0.524075 3.64502i −0.524075 3.64502i
275275 −0.415415 0.719520i −0.415415 0.719520i
276276 0 0
277277 −0.841254 + 1.45709i −0.841254 + 1.45709i 0.0475819 + 0.998867i 0.484848π0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
278278 0 0
279279 0 0
280280 0 0
281281 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
282282 0 0
283283 0 0 −0.0475819 0.998867i 0.515152π-0.515152\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
284284 −2.21862 0.211852i −2.21862 0.211852i
285285 0 0
286286 0 0
287287 0 0
288288 0.500000 3.47758i 0.500000 3.47758i
289289 0.0475819 0.998867i 0.0475819 0.998867i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
294294 0 0
295295 0 0
296296 5.40773 0.516375i 5.40773 0.516375i
297297 0 0
298298 −1.25667 + 2.17661i −1.25667 + 2.17661i
299299 0 0
300300 0 0
301301 0 0
302302 0.226900 0.496841i 0.226900 0.496841i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.786053 0.618159i 0.787879π-0.787879\pi
0.786053 + 0.618159i 0.212121π0.212121\pi
312312 0 0
313313 0 0 0.327068 0.945001i 0.393939π-0.393939\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
314314 0 0
315315 0 0
316316 0.732593 + 0.215109i 0.732593 + 0.215109i
317317 1.65210 + 0.318417i 1.65210 + 0.318417i 0.928368 0.371662i 0.121212π-0.121212\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
318318 0 0
319319 −0.137171 0.192630i −0.137171 0.192630i
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 −2.10859 + 1.65822i −2.10859 + 1.65822i
325325 0 0
326326 0.128772 0.530804i 0.128772 0.530804i
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0.428368 1.23769i 0.428368 1.23769i −0.500000 0.866025i 0.666667π-0.666667\pi
0.928368 0.371662i 0.121212π-0.121212\pi
332332 0 0
333333 −1.32254 1.04006i −1.32254 1.04006i
334334 0 0
335335 0 0
336336 0 0
337337 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 00
−0.654861 + 0.755750i 0.727273π0.727273\pi
338338 1.70566 + 0.879330i 1.70566 + 0.879330i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 4.22871 4.22871
345345 0 0
346346 0 0
347347 1.56199 + 0.625325i 1.56199 + 0.625325i 0.981929 0.189251i 0.0606061π-0.0606061\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
348348 0 0
349349 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
350350 0 0
351351 0 0
352352 2.59450 + 1.33756i 2.59450 + 1.33756i
353353 0 0 −0.995472 0.0950560i 0.969697π-0.969697\pi
0.995472 + 0.0950560i 0.0303030π0.0303030\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 2.11435 + 1.35881i 2.11435 + 1.35881i
359359 0.428368 1.23769i 0.428368 1.23769i −0.500000 0.866025i 0.666667π-0.666667\pi
0.928368 0.371662i 0.121212π-0.121212\pi
360360 0 0
361361 0.0475819 + 0.998867i 0.0475819 + 0.998867i
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 −2.76167 2.17180i −2.76167 2.17180i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0.815816 + 0.157236i 0.815816 + 0.157236i 0.580057 0.814576i 0.303030π-0.303030\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i 0.909091π-0.909091\pi
1.00000 00
380380 0 0
381381 0 0
382382 −3.17036 + 0.611037i −3.17036 + 0.611037i
383383 0 0 0.580057 0.814576i 0.303030π-0.303030\pi
−0.580057 + 0.814576i 0.696970π0.696970\pi
384384 0 0
385385 0 0
386386 1.04408 1.20493i 1.04408 1.20493i
387387 −0.947890 0.903811i −0.947890 0.903811i
388388 0 0
389389 0.771316 + 0.308788i 0.771316 + 0.308788i 0.723734 0.690079i 0.242424π-0.242424\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 −2.50196 + 0.238908i −2.50196 + 0.238908i
395395 0 0
396396 −0.728939 2.10613i −0.728939 2.10613i
397397 0 0 −0.235759 0.971812i 0.575758π-0.575758\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
398398 0 0
399399 0 0
400400 −2.30075 2.65520i −2.30075 2.65520i
401401 0.0800569 1.68060i 0.0800569 1.68060i −0.500000 0.866025i 0.666667π-0.666667\pi
0.580057 0.814576i 0.303030π-0.303030\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 1.17597 0.755750i 1.17597 0.755750i
408408 0 0
409409 0 0 −0.327068 0.945001i 0.606061π-0.606061\pi
0.327068 + 0.945001i 0.393939π0.393939\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0.273100 + 1.89945i 0.273100 + 1.89945i
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
420420 0 0
421421 −1.10181 + 0.708089i −1.10181 + 0.708089i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
422422 −0.924814 + 1.29872i −0.924814 + 1.29872i
423423 0 0
424424 −0.816827 + 0.421104i −0.816827 + 0.421104i
425425 0 0
426426 0 0
427427 0 0
428428 −2.95561 3.41095i −2.95561 3.41095i
429429 0 0
430430 0 0
431431 −0.947890 + 0.903811i −0.947890 + 0.903811i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
432432 0 0
433433 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
434434 0 0
435435 0 0
436436 2.57385 + 4.45803i 2.57385 + 4.45803i
437437 0 0
438438 0 0
439439 0 0 0.786053 0.618159i 0.212121π-0.212121\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
440440 0 0
441441 0 0
442442 0 0
443443 0.195876 + 0.807410i 0.195876 + 0.807410i 0.981929 + 0.189251i 0.0606061π0.0606061\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
450450 −0.0913090 + 1.91681i −0.0913090 + 1.91681i
451451 0 0
452452 3.49743 + 0.333964i 3.49743 + 0.333964i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0.283341 0.0270558i 0.283341 0.0270558i 0.0475819 0.998867i 0.484848π-0.484848\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
464464 −0.723734 0.690079i −0.723734 0.690079i
465465 0 0
466466 −2.33673 + 2.22806i −2.33673 + 2.22806i
467467 0 0 −0.888835 0.458227i 0.848485π-0.848485\pi
0.888835 + 0.458227i 0.151515π0.151515\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0.967192 0.498622i 0.967192 0.498622i
474474 0 0
475475 0 0
476476 0 0
477477 0.273100 + 0.0801894i 0.273100 + 0.0801894i
478478 −3.17036 0.611037i −3.17036 0.611037i
479479 0 0 0.235759 0.971812i 0.424242π-0.424242\pi
−0.235759 + 0.971812i 0.575758π0.575758\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −0.830830 −0.830830
485485 0 0
486486 0 0
487487 −0.308779 + 1.27280i −0.308779 + 1.27280i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
488488 0 0
489489 0 0
490490 0 0
491491 −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 1.70566 + 0.879330i 1.70566 + 0.879330i 0.981929 + 0.189251i 0.0606061π0.0606061\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
504504 0 0
505505 0 0
506506 −1.56554 0.301733i −1.56554 0.301733i
507507 0 0
508508 −3.26167 1.30578i −3.26167 1.30578i
509509 0 0 0.995472 0.0950560i 0.0303030π-0.0303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
510510 0 0
511511 0 0
512512 0.959493 + 0.281733i 0.959493 + 0.281733i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.995472 0.0950560i 0.969697π-0.969697\pi
0.995472 + 0.0950560i 0.0303030π0.0303030\pi
522522 0.0259893 + 0.545582i 0.0259893 + 0.545582i
523523 0 0 −0.235759 0.971812i 0.575758π-0.575758\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
524524 0 0
525525 0 0
526526 1.52977 3.34973i 1.52977 3.34973i
527527 0 0
528528 0 0
529529 0.928368 + 0.371662i 0.928368 + 0.371662i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0.294810 + 6.18883i 0.294810 + 6.18883i
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −1.78153 + 0.713215i −1.78153 + 0.713215i −0.786053 + 0.618159i 0.787879π0.787879\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i 0.909091π-0.909091\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
548548 −3.72556 3.55232i −3.72556 3.55232i
549549 0 0
550550 −1.48014 0.592560i −1.48014 0.592560i
551551 0 0
552552 0 0
553553 0 0
554554 0.459493 + 3.19584i 0.459493 + 3.19584i
555555 0 0
556556 0 0
557557 −0.654136 1.89000i −0.654136 1.89000i −0.327068 0.945001i 0.606061π-0.606061\pi
−0.327068 0.945001i 0.606061π-0.606061\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0.0259893 0.545582i 0.0259893 0.545582i
563563 0 0 −0.786053 0.618159i 0.787879π-0.787879\pi
0.786053 + 0.618159i 0.212121π0.212121\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 −2.25667 + 1.45027i −2.25667 + 1.45027i
569569 0.396666 + 1.63508i 0.396666 + 1.63508i 0.723734 + 0.690079i 0.242424π0.242424\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
570570 0 0
571571 0.396666 1.63508i 0.396666 1.63508i −0.327068 0.945001i 0.606061π-0.606061\pi
0.723734 0.690079i 0.242424π-0.242424\pi
572572 0 0
573573 0 0
574574 0 0
575575 0.841254 + 0.540641i 0.841254 + 0.540641i
576576 −1.61435 2.79614i −1.61435 2.79614i
577577 0 0 −0.928368 0.371662i 0.878788π-0.878788\pi
0.928368 + 0.371662i 0.121212π0.121212\pi
578578 −1.11312 1.56316i −1.11312 1.56316i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 −0.137171 + 0.192630i −0.137171 + 0.192630i
584584 0 0
585585 0 0
586586 0 0
587587 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 4.27815 4.07921i 4.27815 4.07921i
593593 0 0 −0.981929 0.189251i 0.939394π-0.939394\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
594594 0 0
595595 0 0
596596 0.500000 + 3.47758i 0.500000 + 3.47758i
597597 0 0
598598 0 0
599599 0.959493 1.66189i 0.959493 1.66189i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 0.690079i 0.242424π-0.242424\pi
600600 0 0
601601 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
602602 0 0
603603 1.25667 1.45027i 1.25667 1.45027i
604604 −0.180007 0.741999i −0.180007 0.741999i
605605 0 0
606606 0 0
607607 0 0 0.327068 0.945001i 0.393939π-0.393939\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 1.91030 + 0.182411i 1.91030 + 0.182411i 0.981929 0.189251i 0.0606061π-0.0606061\pi
0.928368 + 0.371662i 0.121212π0.121212\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i 0.181818π-0.181818\pi
1.00000 00
618618 0 0
619619 0 0 −0.928368 0.371662i 0.878788π-0.878788\pi
0.928368 + 0.371662i 0.121212π0.121212\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.723734 + 0.690079i 0.723734 + 0.690079i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
632632 0.853157 0.341553i 0.853157 0.341553i
633633 0 0
634634 2.86979 1.47948i 2.86979 1.47948i
635635 0 0
636636 0 0
637637 0 0
638638 −0.435418 0.127850i −0.435418 0.127850i
639639 0.815816 + 0.157236i 0.815816 + 0.157236i
640640 0 0
641641 1.16011 + 1.62915i 1.16011 + 1.62915i 0.580057 + 0.814576i 0.303030π0.303030\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 −0.580057 0.814576i 0.696970π-0.696970\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
648648 −0.761197 + 3.13770i −0.761197 + 3.13770i
649649 0 0
650650 0 0
651651 0 0
652652 −0.317178 0.694523i −0.317178 0.694523i
653653 0.627639 1.81344i 0.627639 1.81344i 0.0475819 0.998867i 0.484848π-0.484848\pi
0.580057 0.814576i 0.303030π-0.303030\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
660660 0 0
661661 0 0 0.723734 0.690079i 0.242424π-0.242424\pi
−0.723734 + 0.690079i 0.757576π0.757576\pi
662662 −0.822032 2.37511i −0.822032 2.37511i
663663 0 0
664664 0 0
665665 0 0
666666 −3.22871 −3.22871
667667 0.252989 + 0.130425i 0.252989 + 0.130425i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 00
0.841254 + 0.540641i 0.181818π0.181818\pi
674674 1.41712 + 0.730574i 1.41712 + 0.730574i
675675 0 0
676676 2.63403 0.507668i 2.63403 0.507668i
677677 0 0 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.0475819 + 0.998867i 0.515152π0.515152\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0.0800569 + 1.68060i 0.0800569 + 1.68060i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 3.61702 2.84445i 3.61702 2.84445i
689689 0 0
690690 0 0
691691 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
692692 0 0
693693 0 0
694694 3.09792 0.909632i 3.09792 0.909632i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i 0.545455π-0.545455\pi
0.415415 0.909632i 0.363636π-0.363636\pi
702702 0 0
703703 0 0
704704 2.63403 0.507668i 2.63403 0.507668i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0.601300 + 0.573338i 0.601300 + 0.573338i 0.928368 0.371662i 0.121212π-0.121212\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
710710 0 0
711711 −0.264241 0.105786i −0.264241 0.105786i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 3.49743 0.333964i 3.49743 0.333964i
717717 0 0
718718 −0.822032 2.37511i −0.822032 2.37511i
719719 0 0 −0.235759 0.971812i 0.575758π-0.575758\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
720720 0 0
721721 0 0
722722 1.25667 + 1.45027i 1.25667 + 1.45027i
723723 0 0
724724 0 0
725725 0.223734 + 0.175946i 0.223734 + 0.175946i
726726 0 0
727727 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
728728 0 0
729729 0.841254 0.540641i 0.841254 0.540641i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.995472 0.0950560i 0.0303030π-0.0303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
734734 0 0
735735 0 0
736736 −3.51334 −3.51334
737737 0.797176 + 1.38075i 0.797176 + 1.38075i
738738 0 0
739739 −1.11312 1.56316i −1.11312 1.56316i −0.786053 0.618159i 0.787879π-0.787879\pi
−0.327068 0.945001i 0.606061π-0.606061\pi
740740 0 0
741741 0 0
742742 0 0
743743 −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i 0.727273π0.727273\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
744744 0 0
745745 0 0
746746 1.41712 0.730574i 1.41712 0.730574i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 −0.165101 + 0.231852i −0.165101 + 0.231852i −0.888835 0.458227i 0.848485π-0.848485\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i 0.909091π-0.909091\pi
0.841254 0.540641i 0.181818π-0.181818\pi
758758 −0.273100 0.473023i −0.273100 0.473023i
759759 0 0
760760 0 0
761761 0 0 0.786053 0.618159i 0.212121π-0.212121\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
762762 0 0
763763 0 0
764764 −2.95561 + 3.41095i −2.95561 + 3.41095i
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
770770 0 0
771771 0 0
772772 0.106046 2.22618i 0.106046 2.22618i
773773 0 0 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.981929 + 0.189251i 0.939394π0.939394\pi
774774 −2.50196 0.238908i −2.50196 0.238908i
775775 0 0
776776 0 0
777777 0 0
778778 1.52977 0.449181i 1.52977 0.449181i
779779 0 0
780780 0 0
781781 −0.345139 + 0.597799i −0.345139 + 0.597799i
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 −0.327068 0.945001i 0.606061π-0.606061\pi
0.327068 + 0.945001i 0.393939π0.393939\pi
788788 −2.54272 + 2.42448i −2.54272 + 2.42448i
789789 0 0
790790 0 0
791791 0 0
792792 −2.25667 1.45027i −2.25667 1.45027i
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
798798 0 0
799799 0 0
800800 −3.44985 0.664903i −3.44985 0.664903i
801801 0 0
802802 −1.87283 2.63003i −1.87283 2.63003i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −0.0671040 + 0.276606i −0.0671040 + 0.276606i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.928368 + 0.371662i 0.121212π0.121212\pi
810810 0 0
811811 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
812812 0 0
813813 0 0
814814 0.877362 2.53497i 0.877362 2.53497i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −0.738471 0.380708i −0.738471 0.380708i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
822822 0 0
823823 0.0930932 + 0.268975i 0.0930932 + 0.268975i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
828828 1.94142 + 1.85114i 1.94142 + 1.85114i
829829 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
840840 0 0
841841 −0.773100 0.496841i −0.773100 0.496841i
842842 −0.822032 + 2.37511i −0.822032 + 2.37511i
843843 0 0
844844 0.106046 + 2.22618i 0.106046 + 2.22618i
845845 0 0
846846 0 0
847847 0 0
848848 −0.415415 + 0.909632i −0.415415 + 0.909632i
849849 0 0
850850 0 0
851851 −0.841254 + 1.45709i −0.841254 + 1.45709i
852852 0 0
853853 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
854854 0 0
855855 0 0
856856 −5.33415 1.02807i −5.33415 1.02807i
857857 0 0 0.723734 0.690079i 0.242424π-0.242424\pi
−0.723734 + 0.690079i 0.757576π0.757576\pi
858858 0 0
859859 0 0 0.580057 0.814576i 0.303030π-0.303030\pi
−0.580057 + 0.814576i 0.696970π0.696970\pi
860860 0 0
861861 0 0
862862 −0.357685 + 2.48775i −0.357685 + 2.48775i
863863 0.771316 0.308788i 0.771316 0.308788i 0.0475819 0.998867i 0.484848π-0.484848\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0.154861 0.178719i 0.154861 0.178719i
870870 0 0
871871 0 0
872872 5.75202 + 2.30276i 5.75202 + 2.30276i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −0.827068 + 0.0789754i −0.827068 + 0.0789754i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
882882 0 0
883883 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
884884 0 0
885885 0 0
886886 1.25324 + 0.985562i 1.25324 + 0.985562i
887887 0 0 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.0475819 + 0.998867i 0.515152π0.515152\pi
888888 0 0
889889 0 0
890890 0 0
891891 0.195876 + 0.807410i 0.195876 + 0.807410i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 1.61435 + 2.79614i 1.61435 + 2.79614i
899899 0 0
900900 1.55601 + 2.18511i 1.55601 + 2.18511i
901901 0 0
902902 0 0
903903 0 0
904904 3.55742 2.28621i 3.55742 2.28621i
905905 0 0
906906 0 0
907907 1.70566 0.879330i 1.70566 0.879330i 0.723734 0.690079i 0.242424π-0.242424\pi
0.981929 0.189251i 0.0606061π-0.0606061\pi
908908 0 0
909909 0 0
910910 0 0
911911 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i 0.181818π0.181818\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
912912 0 0
913913 0 0
914914 0.395304 0.376921i 0.395304 0.376921i
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 −0.841254 1.45709i −0.841254 1.45709i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 0.998867i 0.484848π-0.484848\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −1.10181 + 1.27155i −1.10181 + 1.27155i
926926 0.868184 + 3.57870i 0.868184 + 3.57870i
927927 0 0
928928 −0.995472 0.0950560i −0.995472 0.0950560i
929929 0 0 0.327068 0.945001i 0.393939π-0.393939\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
930930 0 0
931931 0 0
932932 −0.642315 + 4.46740i −0.642315 + 4.46740i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 −0.928368 0.371662i 0.878788π-0.878788\pi
0.928368 + 0.371662i 0.121212π0.121212\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0.867451 1.89945i 0.867451 1.89945i
947947 1.21769 + 1.16106i 1.21769 + 1.16106i 0.981929 + 0.189251i 0.0606061π0.0606061\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 00
0.415415 + 0.909632i 0.363636π0.363636\pi
954954 0.507075 0.203002i 0.507075 0.203002i
955955 0 0
956956 −4.01161 + 2.06813i −4.01161 + 2.06813i
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.981929 + 0.189251i 0.981929 + 0.189251i
962962 0 0
963963 0.975950 + 1.37053i 0.975950 + 1.37053i
964964 0 0
965965 0 0
966966 0 0
967967 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
968968 −0.786053 + 0.618159i −0.786053 + 0.618159i
969969 0 0
970970 0 0
971971 0 0 −0.981929 0.189251i 0.939394π-0.939394\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
972972 0 0
973973 0 0
974974 1.04408 + 2.28621i 1.04408 + 2.28621i
975975 0 0
976976 0 0
977977 −1.57211 1.23632i −1.57211 1.23632i −0.786053 0.618159i 0.787879π-0.787879\pi
−0.786053 0.618159i 0.787879π-0.787879\pi
978978 0 0
979979 0 0
980980 0 0
981981 −0.797176 1.74557i −0.797176 1.74557i
982982 −3.27314 1.68742i −3.27314 1.68742i
983983 0 0 0.723734 0.690079i 0.242424π-0.242424\pi
−0.723734 + 0.690079i 0.757576π0.757576\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 −0.759713 + 1.06687i −0.759713 + 1.06687i
990990 0 0
991991 −1.78153 0.713215i −1.78153 0.713215i −0.995472 0.0950560i 0.969697π-0.969697\pi
−0.786053 0.618159i 0.787879π-0.787879\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 −0.995472 0.0950560i 0.969697π-0.969697\pi
0.995472 + 0.0950560i 0.0303030π0.0303030\pi
998998 3.61596 0.696919i 3.61596 0.696919i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.1.v.a.325.1 20
7.2 even 3 inner 1127.1.v.a.509.1 20
7.3 odd 6 161.1.l.a.118.1 10
7.4 even 3 161.1.l.a.118.1 10
7.5 odd 6 inner 1127.1.v.a.509.1 20
7.6 odd 2 CM 1127.1.v.a.325.1 20
21.11 odd 6 1449.1.bq.a.118.1 10
21.17 even 6 1449.1.bq.a.118.1 10
23.8 even 11 inner 1127.1.v.a.31.1 20
28.3 even 6 2576.1.cj.a.1889.1 10
28.11 odd 6 2576.1.cj.a.1889.1 10
161.3 odd 66 3703.1.l.c.2603.1 10
161.4 even 33 3703.1.l.b.3429.1 10
161.10 even 66 3703.1.b.b.1588.1 5
161.11 odd 66 3703.1.l.i.2617.1 10
161.17 even 66 3703.1.l.e.706.1 10
161.18 even 33 3703.1.l.c.2582.1 10
161.25 even 33 3703.1.l.b.1392.1 10
161.31 odd 66 161.1.l.a.146.1 yes 10
161.32 even 33 3703.1.l.a.2911.1 10
161.38 even 66 3703.1.l.f.3044.1 10
161.39 even 33 3703.1.l.h.699.1 10
161.45 even 6 3703.1.l.f.118.1 10
161.52 odd 66 3703.1.l.a.706.1 10
161.53 odd 66 3703.1.l.i.699.1 10
161.54 odd 66 inner 1127.1.v.a.215.1 20
161.59 odd 66 3703.1.b.c.1588.1 5
161.60 odd 66 3703.1.l.e.2911.1 10
161.66 even 66 3703.1.l.g.2603.1 10
161.67 odd 66 3703.1.l.d.1392.1 10
161.73 odd 66 3703.1.l.b.3429.1 10
161.74 odd 66 3703.1.l.g.2582.1 10
161.80 even 66 3703.1.l.i.2617.1 10
161.81 even 33 3703.1.l.h.2617.1 10
161.87 odd 66 3703.1.l.c.2582.1 10
161.88 odd 66 3703.1.l.d.3429.1 10
161.94 odd 66 3703.1.l.b.1392.1 10
161.95 even 33 3703.1.l.c.2603.1 10
161.100 even 33 inner 1127.1.v.a.215.1 20
161.101 odd 66 3703.1.l.a.2911.1 10
161.102 odd 66 3703.1.b.b.1588.1 5
161.108 odd 66 3703.1.l.h.699.1 10
161.109 odd 66 3703.1.l.e.706.1 10
161.122 even 66 3703.1.l.i.699.1 10
161.123 even 33 161.1.l.a.146.1 yes 10
161.129 even 66 3703.1.l.e.2911.1 10
161.130 odd 66 3703.1.l.f.3044.1 10
161.136 even 66 3703.1.l.d.1392.1 10
161.137 odd 6 3703.1.l.f.118.1 10
161.143 even 66 3703.1.l.g.2582.1 10
161.144 even 33 3703.1.l.a.706.1 10
161.146 odd 22 inner 1127.1.v.a.31.1 20
161.150 odd 66 3703.1.l.h.2617.1 10
161.151 even 33 3703.1.b.c.1588.1 5
161.157 even 66 3703.1.l.d.3429.1 10
161.158 odd 66 3703.1.l.g.2603.1 10
483.284 odd 66 1449.1.bq.a.307.1 10
483.353 even 66 1449.1.bq.a.307.1 10
644.31 even 66 2576.1.cj.a.2561.1 10
644.123 odd 66 2576.1.cj.a.2561.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.1.l.a.118.1 10 7.3 odd 6
161.1.l.a.118.1 10 7.4 even 3
161.1.l.a.146.1 yes 10 161.31 odd 66
161.1.l.a.146.1 yes 10 161.123 even 33
1127.1.v.a.31.1 20 23.8 even 11 inner
1127.1.v.a.31.1 20 161.146 odd 22 inner
1127.1.v.a.215.1 20 161.54 odd 66 inner
1127.1.v.a.215.1 20 161.100 even 33 inner
1127.1.v.a.325.1 20 1.1 even 1 trivial
1127.1.v.a.325.1 20 7.6 odd 2 CM
1127.1.v.a.509.1 20 7.2 even 3 inner
1127.1.v.a.509.1 20 7.5 odd 6 inner
1449.1.bq.a.118.1 10 21.11 odd 6
1449.1.bq.a.118.1 10 21.17 even 6
1449.1.bq.a.307.1 10 483.284 odd 66
1449.1.bq.a.307.1 10 483.353 even 66
2576.1.cj.a.1889.1 10 28.3 even 6
2576.1.cj.a.1889.1 10 28.11 odd 6
2576.1.cj.a.2561.1 10 644.31 even 66
2576.1.cj.a.2561.1 10 644.123 odd 66
3703.1.b.b.1588.1 5 161.10 even 66
3703.1.b.b.1588.1 5 161.102 odd 66
3703.1.b.c.1588.1 5 161.59 odd 66
3703.1.b.c.1588.1 5 161.151 even 33
3703.1.l.a.706.1 10 161.52 odd 66
3703.1.l.a.706.1 10 161.144 even 33
3703.1.l.a.2911.1 10 161.32 even 33
3703.1.l.a.2911.1 10 161.101 odd 66
3703.1.l.b.1392.1 10 161.25 even 33
3703.1.l.b.1392.1 10 161.94 odd 66
3703.1.l.b.3429.1 10 161.4 even 33
3703.1.l.b.3429.1 10 161.73 odd 66
3703.1.l.c.2582.1 10 161.18 even 33
3703.1.l.c.2582.1 10 161.87 odd 66
3703.1.l.c.2603.1 10 161.3 odd 66
3703.1.l.c.2603.1 10 161.95 even 33
3703.1.l.d.1392.1 10 161.67 odd 66
3703.1.l.d.1392.1 10 161.136 even 66
3703.1.l.d.3429.1 10 161.88 odd 66
3703.1.l.d.3429.1 10 161.157 even 66
3703.1.l.e.706.1 10 161.17 even 66
3703.1.l.e.706.1 10 161.109 odd 66
3703.1.l.e.2911.1 10 161.60 odd 66
3703.1.l.e.2911.1 10 161.129 even 66
3703.1.l.f.118.1 10 161.45 even 6
3703.1.l.f.118.1 10 161.137 odd 6
3703.1.l.f.3044.1 10 161.38 even 66
3703.1.l.f.3044.1 10 161.130 odd 66
3703.1.l.g.2582.1 10 161.74 odd 66
3703.1.l.g.2582.1 10 161.143 even 66
3703.1.l.g.2603.1 10 161.66 even 66
3703.1.l.g.2603.1 10 161.158 odd 66
3703.1.l.h.699.1 10 161.39 even 33
3703.1.l.h.699.1 10 161.108 odd 66
3703.1.l.h.2617.1 10 161.81 even 33
3703.1.l.h.2617.1 10 161.150 odd 66
3703.1.l.i.699.1 10 161.53 odd 66
3703.1.l.i.699.1 10 161.122 even 66
3703.1.l.i.2617.1 10 161.11 odd 66
3703.1.l.i.2617.1 10 161.80 even 66