Properties

Label 1127.1.v.a.509.1
Level 11271127
Weight 11
Character 1127.509
Analytic conductor 0.5620.562
Analytic rank 00
Dimension 2020
Projective image D11D_{11}
CM discriminant -7
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,1,Mod(31,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(66))
 
chi = DirichletCharacter(H, H._module([11, 18]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.31");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1127=7223 1127 = 7^{2} \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1127.v (of order 6666, degree 2020, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5624462692370.562446269237
Analytic rank: 00
Dimension: 2020
Coefficient field: Q(ζ33)\Q(\zeta_{33})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20x19+x17x16+x14x13+x11x10+x9x7+x6x4+x3x+1 x^{20} - x^{19} + x^{17} - x^{16} + x^{14} - x^{13} + x^{11} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 161)
Projective image: D11D_{11}
Projective field: Galois closure of Q[x]/(x11)\mathbb{Q}[x]/(x^{11} - \cdots)

Embedding invariants

Embedding label 509.1
Root 0.5800570.814576i0.580057 - 0.814576i of defining polynomial
Character χ\chi == 1127.509
Dual form 1127.1.v.a.31.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.781530.713215i)q2+(1.94142+1.85114i)q4+(1.341252.93694i)q8+(0.9819290.189251i)q9+(0.7713160.308788i)q11+(0.167171+3.50936i)q16+(1.884310.363170i)q181.59435q22+(0.3270680.945001i)q23+(0.786053+0.618159i)q25+(0.273100+0.0801894i)q29+(1.149103.32011i)q32+(2.25667+1.45027i)q36+(1.652100.318417i)q37+(0.544078+1.19136i)q43+(2.06906+0.828327i)q44+(0.0913090+1.91681i)q46+(1.841250.540641i)q50+(0.252989+0.130425i)q53+(0.4293420.337639i)q58+(2.11435+2.44009i)q64+(1.508421.18624i)q67+(0.1182390.822373i)q71+(1.872832.63003i)q72+(3.170360.611037i)q74+(0.2529890.130425i)q79+(0.9283680.371662i)q81+(1.818991.73440i)q86+(1.941421.85114i)q88+(1.114352.44009i)q92+(0.6989390.449181i)q99+O(q100)q+(-1.78153 - 0.713215i) q^{2} +(1.94142 + 1.85114i) q^{4} +(-1.34125 - 2.93694i) q^{8} +(0.981929 - 0.189251i) q^{9} +(0.771316 - 0.308788i) q^{11} +(0.167171 + 3.50936i) q^{16} +(-1.88431 - 0.363170i) q^{18} -1.59435 q^{22} +(-0.327068 - 0.945001i) q^{23} +(-0.786053 + 0.618159i) q^{25} +(0.273100 + 0.0801894i) q^{29} +(1.14910 - 3.32011i) q^{32} +(2.25667 + 1.45027i) q^{36} +(1.65210 - 0.318417i) q^{37} +(-0.544078 + 1.19136i) q^{43} +(2.06906 + 0.828327i) q^{44} +(-0.0913090 + 1.91681i) q^{46} +(1.84125 - 0.540641i) q^{50} +(0.252989 + 0.130425i) q^{53} +(-0.429342 - 0.337639i) q^{58} +(-2.11435 + 2.44009i) q^{64} +(1.50842 - 1.18624i) q^{67} +(-0.118239 - 0.822373i) q^{71} +(-1.87283 - 2.63003i) q^{72} +(-3.17036 - 0.611037i) q^{74} +(0.252989 - 0.130425i) q^{79} +(0.928368 - 0.371662i) q^{81} +(1.81899 - 1.73440i) q^{86} +(-1.94142 - 1.85114i) q^{88} +(1.11435 - 2.44009i) q^{92} +(0.698939 - 0.449181i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+2q2+3q48q8+q9+2q116q16+2q188q22+q23+q254q295q32+16q36+2q374q435q44+2q46+18q50+2q53+4q99+O(q100) 20 q + 2 q^{2} + 3 q^{4} - 8 q^{8} + q^{9} + 2 q^{11} - 6 q^{16} + 2 q^{18} - 8 q^{22} + q^{23} + q^{25} - 4 q^{29} - 5 q^{32} + 16 q^{36} + 2 q^{37} - 4 q^{43} - 5 q^{44} + 2 q^{46} + 18 q^{50} + 2 q^{53}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1127Z)×\left(\mathbb{Z}/1127\mathbb{Z}\right)^\times.

nn 346346 442442
χ(n)\chi(n) e(56)e\left(\frac{5}{6}\right) e(811)e\left(\frac{8}{11}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.78153 0.713215i −1.78153 0.713215i −0.995472 0.0950560i 0.969697π-0.969697\pi
−0.786053 0.618159i 0.787879π-0.787879\pi
33 0 0 0.995472 0.0950560i 0.0303030π-0.0303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
44 1.94142 + 1.85114i 1.94142 + 1.85114i
55 0 0 −0.327068 0.945001i 0.606061π-0.606061\pi
0.327068 + 0.945001i 0.393939π0.393939\pi
66 0 0
77 0 0
88 −1.34125 2.93694i −1.34125 2.93694i
99 0.981929 0.189251i 0.981929 0.189251i
1010 0 0
1111 0.771316 0.308788i 0.771316 0.308788i 0.0475819 0.998867i 0.484848π-0.484848\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
1212 0 0
1313 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
1414 0 0
1515 0 0
1616 0.167171 + 3.50936i 0.167171 + 3.50936i
1717 0 0 −0.235759 0.971812i 0.575758π-0.575758\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
1818 −1.88431 0.363170i −1.88431 0.363170i
1919 0 0 0.235759 0.971812i 0.424242π-0.424242\pi
−0.235759 + 0.971812i 0.575758π0.575758\pi
2020 0 0
2121 0 0
2222 −1.59435 −1.59435
2323 −0.327068 0.945001i −0.327068 0.945001i
2424 0 0
2525 −0.786053 + 0.618159i −0.786053 + 0.618159i
2626 0 0
2727 0 0
2828 0 0
2929 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
3030 0 0
3131 0 0 0.580057 0.814576i 0.303030π-0.303030\pi
−0.580057 + 0.814576i 0.696970π0.696970\pi
3232 1.14910 3.32011i 1.14910 3.32011i
3333 0 0
3434 0 0
3535 0 0
3636 2.25667 + 1.45027i 2.25667 + 1.45027i
3737 1.65210 0.318417i 1.65210 0.318417i 0.723734 0.690079i 0.242424π-0.242424\pi
0.928368 + 0.371662i 0.121212π0.121212\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
4242 0 0
4343 −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
4444 2.06906 + 0.828327i 2.06906 + 0.828327i
4545 0 0
4646 −0.0913090 + 1.91681i −0.0913090 + 1.91681i
4747 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4848 0 0
4949 0 0
5050 1.84125 0.540641i 1.84125 0.540641i
5151 0 0
5252 0 0
5353 0.252989 + 0.130425i 0.252989 + 0.130425i 0.580057 0.814576i 0.303030π-0.303030\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 −0.429342 0.337639i −0.429342 0.337639i
5959 0 0 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.0475819 + 0.998867i 0.515152π0.515152\pi
6060 0 0
6161 0 0 −0.995472 0.0950560i 0.969697π-0.969697\pi
0.995472 + 0.0950560i 0.0303030π0.0303030\pi
6262 0 0
6363 0 0
6464 −2.11435 + 2.44009i −2.11435 + 2.44009i
6565 0 0
6666 0 0
6767 1.50842 1.18624i 1.50842 1.18624i 0.580057 0.814576i 0.303030π-0.303030\pi
0.928368 0.371662i 0.121212π-0.121212\pi
6868 0 0
6969 0 0
7070 0 0
7171 −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i 0.909091π-0.909091\pi
0.841254 0.540641i 0.181818π-0.181818\pi
7272 −1.87283 2.63003i −1.87283 2.63003i
7373 0 0 −0.723734 0.690079i 0.757576π-0.757576\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
7474 −3.17036 0.611037i −3.17036 0.611037i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0.252989 0.130425i 0.252989 0.130425i −0.327068 0.945001i 0.606061π-0.606061\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
8080 0 0
8181 0.928368 0.371662i 0.928368 0.371662i
8282 0 0
8383 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
8484 0 0
8585 0 0
8686 1.81899 1.73440i 1.81899 1.73440i
8787 0 0
8888 −1.94142 1.85114i −1.94142 1.85114i
8989 0 0 −0.580057 0.814576i 0.696970π-0.696970\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
9090 0 0
9191 0 0
9292 1.11435 2.44009i 1.11435 2.44009i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
9898 0 0
9999 0.698939 0.449181i 0.698939 0.449181i
100100 −2.67036 0.254989i −2.67036 0.254989i
101101 0 0 0.327068 0.945001i 0.393939π-0.393939\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
102102 0 0
103103 0 0 −0.786053 0.618159i 0.787879π-0.787879\pi
0.786053 + 0.618159i 0.212121π0.212121\pi
104104 0 0
105105 0 0
106106 −0.357685 0.412791i −0.357685 0.412791i
107107 −1.67489 0.159932i −1.67489 0.159932i −0.786053 0.618159i 0.787879π-0.787879\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
108108 0 0
109109 −0.452418 1.86489i −0.452418 1.86489i −0.500000 0.866025i 0.666667π-0.666667\pi
0.0475819 0.998867i 0.484848π-0.484848\pi
110110 0 0
111111 0 0
112112 0 0
113113 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
114114 0 0
115115 0 0
116116 0.381761 + 0.661229i 0.381761 + 0.661229i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.224156 + 0.213732i −0.224156 + 0.213732i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 0.540641i 0.181818π-0.181818\pi
128128 2.38431 1.22920i 2.38431 1.22920i
129129 0 0
130130 0 0
131131 0 0 −0.0475819 0.998867i 0.515152π-0.515152\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
132132 0 0
133133 0 0
134134 −3.53334 + 1.03748i −3.53334 + 1.03748i
135135 0 0
136136 0 0
137137 0.959493 + 1.66189i 0.959493 + 1.66189i 0.723734 + 0.690079i 0.242424π0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 −0.375883 + 1.54941i −0.375883 + 1.54941i
143143 0 0
144144 0.828301 + 3.41430i 0.828301 + 3.41430i
145145 0 0
146146 0 0
147147 0 0
148148 3.79686 + 2.44009i 3.79686 + 2.44009i
149149 1.02951 + 0.809616i 1.02951 + 0.809616i 0.981929 0.189251i 0.0606061π-0.0606061\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
150150 0 0
151151 −0.0135432 + 0.284307i −0.0135432 + 0.284307i 0.981929 + 0.189251i 0.0606061π0.0606061\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 −0.723734 0.690079i 0.757576π-0.757576\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
158158 −0.543727 + 0.0519196i −0.543727 + 0.0519196i
159159 0 0
160160 0 0
161161 0 0
162162 −1.91899 −1.91899
163163 −0.264241 0.105786i −0.264241 0.105786i 0.235759 0.971812i 0.424242π-0.424242\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
168168 0 0
169169 0.415415 + 0.909632i 0.415415 + 0.909632i
170170 0 0
171171 0 0
172172 −3.26167 + 1.30578i −3.26167 + 1.30578i
173173 0 0 −0.786053 0.618159i 0.787879π-0.787879\pi
0.786053 + 0.618159i 0.212121π0.212121\pi
174174 0 0
175175 0 0
176176 1.21259 + 2.65520i 1.21259 + 2.65520i
177177 0 0
178178 0 0
179179 −1.28605 0.247866i −1.28605 0.247866i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
180180 0 0
181181 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
182182 0 0
183183 0 0
184184 −2.33673 + 2.22806i −2.33673 + 2.22806i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0.0800569 + 1.68060i 0.0800569 + 1.68060i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0 0
193193 −0.271738 + 0.785135i −0.271738 + 0.785135i 0.723734 + 0.690079i 0.242424π0.242424\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
194194 0 0
195195 0 0
196196 0 0
197197 −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
198198 −1.56554 + 0.301733i −1.56554 + 0.301733i
199199 0 0 0.580057 0.814576i 0.303030π-0.303030\pi
−0.580057 + 0.814576i 0.696970π0.696970\pi
200200 2.86979 + 1.47948i 2.86979 + 1.47948i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 −0.500000 0.866025i −0.500000 0.866025i
208208 0 0
209209 0 0
210210 0 0
211211 −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
212212 0.249723 + 0.721528i 0.249723 + 0.721528i
213213 0 0
214214 2.86979 + 1.47948i 2.86979 + 1.47948i
215215 0 0
216216 0 0
217217 0 0
218218 −0.524075 + 3.64502i −0.524075 + 3.64502i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
224224 0 0
225225 −0.654861 + 0.755750i −0.654861 + 0.755750i
226226 0.592542 2.44249i 0.592542 2.44249i
227227 0 0 0.995472 0.0950560i 0.0303030π-0.0303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
228228 0 0
229229 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 0 0
231231 0 0
232232 −0.130785 0.909632i −0.130785 0.909632i
233233 0.975950 + 1.37053i 0.975950 + 1.37053i 0.928368 + 0.371662i 0.121212π0.121212\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
240240 0 0
241241 0 0 0.928368 0.371662i 0.121212π-0.121212\pi
−0.928368 + 0.371662i 0.878788π0.878788\pi
242242 0.551777 0.220898i 0.551777 0.220898i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
252252 0 0
253253 −0.544078 0.627899i −0.544078 0.627899i
254254 −1.25667 + 2.17661i −1.25667 + 2.17661i
255255 0 0
256256 −1.91030 + 0.182411i −1.91030 + 0.182411i
257257 0 0 0.235759 0.971812i 0.424242π-0.424242\pi
−0.235759 + 0.971812i 0.575758π0.575758\pi
258258 0 0
259259 0 0
260260 0 0
261261 0.283341 + 0.0270558i 0.283341 + 0.0270558i
262262 0 0
263263 −0.0913090 + 1.91681i −0.0913090 + 1.91681i 0.235759 + 0.971812i 0.424242π0.424242\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 5.12438 + 0.489319i 5.12438 + 0.489319i
269269 0 0 −0.888835 0.458227i 0.848485π-0.848485\pi
0.888835 + 0.458227i 0.151515π0.151515\pi
270270 0 0
271271 0 0 −0.327068 0.945001i 0.606061π-0.606061\pi
0.327068 + 0.945001i 0.393939π0.393939\pi
272272 0 0
273273 0 0
274274 −0.524075 3.64502i −0.524075 3.64502i
275275 −0.415415 + 0.719520i −0.415415 + 0.719520i
276276 0 0
277277 −0.841254 1.45709i −0.841254 1.45709i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 0.998867i 0.484848π-0.484848\pi
278278 0 0
279279 0 0
280280 0 0
281281 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
282282 0 0
283283 0 0 −0.888835 0.458227i 0.848485π-0.848485\pi
0.888835 + 0.458227i 0.151515π0.151515\pi
284284 1.29278 1.81545i 1.29278 1.81545i
285285 0 0
286286 0 0
287287 0 0
288288 0.500000 3.47758i 0.500000 3.47758i
289289 −0.888835 + 0.458227i −0.888835 + 0.458227i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
294294 0 0
295295 0 0
296296 −3.15106 4.42504i −3.15106 4.42504i
297297 0 0
298298 −1.25667 2.17661i −1.25667 2.17661i
299299 0 0
300300 0 0
301301 0 0
302302 0.226900 0.496841i 0.226900 0.496841i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.928368 0.371662i 0.121212π-0.121212\pi
−0.928368 + 0.371662i 0.878788π0.878788\pi
312312 0 0
313313 0 0 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.981929 + 0.189251i 0.939394π0.939394\pi
314314 0 0
315315 0 0
316316 0.732593 + 0.215109i 0.732593 + 0.215109i
317317 −0.550294 1.58997i −0.550294 1.58997i −0.786053 0.618159i 0.787879π-0.787879\pi
0.235759 0.971812i 0.424242π-0.424242\pi
318318 0 0
319319 0.235408 0.0224787i 0.235408 0.0224787i
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 2.49035 + 0.996987i 2.49035 + 0.996987i
325325 0 0
326326 0.395304 + 0.376921i 0.395304 + 0.376921i
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −1.28605 + 0.247866i −1.28605 + 0.247866i −0.786053 0.618159i 0.787879π-0.787879\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
332332 0 0
333333 1.56199 0.625325i 1.56199 0.625325i
334334 0 0
335335 0 0
336336 0 0
337337 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 00
−0.654861 + 0.755750i 0.727273π0.727273\pi
338338 −0.0913090 1.91681i −0.0913090 1.91681i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 4.22871 4.22871
345345 0 0
346346 0 0
347347 −1.32254 + 1.04006i −1.32254 + 1.04006i −0.327068 + 0.945001i 0.606061π0.606061\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
348348 0 0
349349 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
350350 0 0
351351 0 0
352352 −0.138891 2.91568i −0.138891 2.91568i
353353 0 0 0.580057 0.814576i 0.303030π-0.303030\pi
−0.580057 + 0.814576i 0.696970π0.696970\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 2.11435 + 1.35881i 2.11435 + 1.35881i
359359 −1.28605 + 0.247866i −1.28605 + 0.247866i −0.786053 0.618159i 0.787879π-0.787879\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 0 0
361361 −0.888835 0.458227i −0.888835 0.458227i
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 3.26167 1.30578i 3.26167 1.30578i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 −0.271738 0.785135i −0.271738 0.785135i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.723734 0.690079i 0.242424π-0.242424\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i 0.909091π-0.909091\pi
1.00000 00
380380 0 0
381381 0 0
382382 1.05601 3.05113i 1.05601 3.05113i
383383 0 0 −0.995472 0.0950560i 0.969697π-0.969697\pi
0.995472 + 0.0950560i 0.0303030π0.0303030\pi
384384 0 0
385385 0 0
386386 1.04408 1.20493i 1.04408 1.20493i
387387 −0.308779 + 1.27280i −0.308779 + 1.27280i
388388 0 0
389389 −0.653077 + 0.513585i −0.653077 + 0.513585i −0.888835 0.458227i 0.848485π-0.848485\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 1.45788 + 2.04730i 1.45788 + 2.04730i
395395 0 0
396396 2.18843 + 0.421786i 2.18843 + 0.421786i
397397 0 0 0.723734 0.690079i 0.242424π-0.242424\pi
−0.723734 + 0.690079i 0.757576π0.757576\pi
398398 0 0
399399 0 0
400400 −2.30075 2.65520i −2.30075 2.65520i
401401 −1.49547 + 0.770969i −1.49547 + 0.770969i −0.995472 0.0950560i 0.969697π-0.969697\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 1.17597 0.755750i 1.17597 0.755750i
408408 0 0
409409 0 0 −0.981929 0.189251i 0.939394π-0.939394\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0.273100 + 1.89945i 0.273100 + 1.89945i
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
420420 0 0
421421 −1.10181 + 0.708089i −1.10181 + 0.708089i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
422422 1.58713 + 0.151553i 1.58713 + 0.151553i
423423 0 0
424424 0.0437271 0.917945i 0.0437271 0.917945i
425425 0 0
426426 0 0
427427 0 0
428428 −2.95561 3.41095i −2.95561 3.41095i
429429 0 0
430430 0 0
431431 −0.308779 1.27280i −0.308779 1.27280i −0.888835 0.458227i 0.848485π-0.848485\pi
0.580057 0.814576i 0.303030π-0.303030\pi
432432 0 0
433433 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
434434 0 0
435435 0 0
436436 2.57385 4.45803i 2.57385 4.45803i
437437 0 0
438438 0 0
439439 0 0 −0.928368 0.371662i 0.878788π-0.878788\pi
0.928368 + 0.371662i 0.121212π0.121212\pi
440440 0 0
441441 0 0
442442 0 0
443443 0.601300 0.573338i 0.601300 0.573338i −0.327068 0.945001i 0.606061π-0.606061\pi
0.928368 + 0.371662i 0.121212π0.121212\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
450450 1.70566 0.879330i 1.70566 0.879330i
451451 0 0
452452 −2.03794 + 2.86188i −2.03794 + 2.86188i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.165101 0.231852i −0.165101 0.231852i 0.723734 0.690079i 0.242424π-0.242424\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
464464 −0.235759 + 0.971812i −0.235759 + 0.971812i
465465 0 0
466466 −0.761197 3.13770i −0.761197 3.13770i
467467 0 0 −0.0475819 0.998867i 0.515152π-0.515152\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −0.0517765 + 1.08692i −0.0517765 + 1.08692i
474474 0 0
475475 0 0
476476 0 0
477477 0.273100 + 0.0801894i 0.273100 + 0.0801894i
478478 1.05601 + 3.05113i 1.05601 + 3.05113i
479479 0 0 −0.723734 0.690079i 0.757576π-0.757576\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −0.830830 −0.830830
485485 0 0
486486 0 0
487487 −0.947890 0.903811i −0.947890 0.903811i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
488488 0 0
489489 0 0
490490 0 0
491491 −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −0.0913090 1.91681i −0.0913090 1.91681i −0.327068 0.945001i 0.606061π-0.606061\pi
0.235759 0.971812i 0.424242π-0.424242\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
504504 0 0
505505 0 0
506506 0.521461 + 1.50666i 0.521461 + 1.50666i
507507 0 0
508508 2.76167 2.17180i 2.76167 2.17180i
509509 0 0 −0.580057 0.814576i 0.696970π-0.696970\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
510510 0 0
511511 0 0
512512 0.959493 + 0.281733i 0.959493 + 0.281733i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 0.580057 0.814576i 0.303030π-0.303030\pi
−0.580057 + 0.814576i 0.696970π0.696970\pi
522522 −0.485482 0.250283i −0.485482 0.250283i
523523 0 0 0.723734 0.690079i 0.242424π-0.242424\pi
−0.723734 + 0.690079i 0.757576π0.757576\pi
524524 0 0
525525 0 0
526526 1.52977 3.34973i 1.52977 3.34973i
527527 0 0
528528 0 0
529529 −0.786053 + 0.618159i −0.786053 + 0.618159i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 −5.50709 2.83910i −5.50709 2.83910i
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 1.50842 + 1.18624i 1.50842 + 1.18624i 0.928368 + 0.371662i 0.121212π0.121212\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i 0.909091π-0.909091\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
548548 −1.21361 + 5.00259i −1.21361 + 5.00259i
549549 0 0
550550 1.25324 0.985562i 1.25324 0.985562i
551551 0 0
552552 0 0
553553 0 0
554554 0.459493 + 3.19584i 0.459493 + 3.19584i
555555 0 0
556556 0 0
557557 1.96386 + 0.378502i 1.96386 + 0.378502i 0.981929 + 0.189251i 0.0606061π0.0606061\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 −0.485482 + 0.250283i −0.485482 + 0.250283i
563563 0 0 0.928368 0.371662i 0.121212π-0.121212\pi
−0.928368 + 0.371662i 0.878788π0.878788\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 −2.25667 + 1.45027i −2.25667 + 1.45027i
569569 1.21769 1.16106i 1.21769 1.16106i 0.235759 0.971812i 0.424242π-0.424242\pi
0.981929 0.189251i 0.0606061π-0.0606061\pi
570570 0 0
571571 1.21769 + 1.16106i 1.21769 + 1.16106i 0.981929 + 0.189251i 0.0606061π0.0606061\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
572572 0 0
573573 0 0
574574 0 0
575575 0.841254 + 0.540641i 0.841254 + 0.540641i
576576 −1.61435 + 2.79614i −1.61435 + 2.79614i
577577 0 0 0.786053 0.618159i 0.212121π-0.212121\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
578578 1.91030 0.182411i 1.91030 0.182411i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0.235408 + 0.0224787i 0.235408 + 0.0224787i
584584 0 0
585585 0 0
586586 0 0
587587 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 1.39362 + 5.74459i 1.39362 + 5.74459i
593593 0 0 −0.327068 0.945001i 0.606061π-0.606061\pi
0.327068 + 0.945001i 0.393939π0.393939\pi
594594 0 0
595595 0 0
596596 0.500000 + 3.47758i 0.500000 + 3.47758i
597597 0 0
598598 0 0
599599 0.959493 + 1.66189i 0.959493 + 1.66189i 0.723734 + 0.690079i 0.242424π0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
600600 0 0
601601 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
602602 0 0
603603 1.25667 1.45027i 1.25667 1.45027i
604604 −0.552586 + 0.526890i −0.552586 + 0.526890i
605605 0 0
606606 0 0
607607 0 0 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.981929 + 0.189251i 0.939394π0.939394\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −1.11312 + 1.56316i −1.11312 + 1.56316i −0.327068 + 0.945001i 0.606061π0.606061\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i 0.181818π-0.181818\pi
1.00000 00
618618 0 0
619619 0 0 0.786053 0.618159i 0.212121π-0.212121\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.235759 0.971812i 0.235759 0.971812i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
632632 −0.722372 0.568079i −0.722372 0.568079i
633633 0 0
634634 −0.153628 + 3.22505i −0.153628 + 3.22505i
635635 0 0
636636 0 0
637637 0 0
638638 −0.435418 0.127850i −0.435418 0.127850i
639639 −0.271738 0.785135i −0.271738 0.785135i
640640 0 0
641641 −1.99094 + 0.190112i −1.99094 + 0.190112i −0.995472 + 0.0950560i 0.969697π0.969697\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.995472 0.0950560i 0.0303030π-0.0303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
648648 −2.33673 2.22806i −2.33673 2.22806i
649649 0 0
650650 0 0
651651 0 0
652652 −0.317178 0.694523i −0.317178 0.694523i
653653 −1.88431 + 0.363170i −1.88431 + 0.363170i −0.995472 0.0950560i 0.969697π-0.969697\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
660660 0 0
661661 0 0 −0.235759 0.971812i 0.575758π-0.575758\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
662662 2.46792 + 0.475652i 2.46792 + 0.475652i
663663 0 0
664664 0 0
665665 0 0
666666 −3.22871 −3.22871
667667 −0.0135432 0.284307i −0.0135432 0.284307i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 00
0.841254 + 0.540641i 0.181818π0.181818\pi
674674 −0.0758623 1.59255i −0.0758623 1.59255i
675675 0 0
676676 −0.877362 + 2.53497i −0.877362 + 2.53497i
677677 0 0 0.888835 0.458227i 0.151515π-0.151515\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −1.49547 0.770969i −1.49547 0.770969i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 −4.27188 1.71020i −4.27188 1.71020i
689689 0 0
690690 0 0
691691 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 3.09792 0.909632i 3.09792 0.909632i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i 0.545455π-0.545455\pi
0.415415 0.909632i 0.363636π-0.363636\pi
702702 0 0
703703 0 0
704704 −0.877362 + 2.53497i −0.877362 + 2.53497i
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0.195876 0.807410i 0.195876 0.807410i −0.786053 0.618159i 0.787879π-0.787879\pi
0.981929 0.189251i 0.0606061π-0.0606061\pi
710710 0 0
711711 0.223734 0.175946i 0.223734 0.175946i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 −2.03794 2.86188i −2.03794 2.86188i
717717 0 0
718718 2.46792 + 0.475652i 2.46792 + 0.475652i
719719 0 0 0.723734 0.690079i 0.242424π-0.242424\pi
−0.723734 + 0.690079i 0.757576π0.757576\pi
720720 0 0
721721 0 0
722722 1.25667 + 1.45027i 1.25667 + 1.45027i
723723 0 0
724724 0 0
725725 −0.264241 + 0.105786i −0.264241 + 0.105786i
726726 0 0
727727 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
728728 0 0
729729 0.841254 0.540641i 0.841254 0.540641i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.580057 0.814576i 0.696970π-0.696970\pi
0.580057 + 0.814576i 0.303030π0.303030\pi
734734 0 0
735735 0 0
736736 −3.51334 −3.51334
737737 0.797176 1.38075i 0.797176 1.38075i
738738 0 0
739739 1.91030 0.182411i 1.91030 0.182411i 0.928368 0.371662i 0.121212π-0.121212\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
740740 0 0
741741 0 0
742742 0 0
743743 −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i 0.727273π0.727273\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
744744 0 0
745745 0 0
746746 −0.0758623 + 1.59255i −0.0758623 + 1.59255i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0.283341 + 0.0270558i 0.283341 + 0.0270558i 0.235759 0.971812i 0.424242π-0.424242\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i 0.909091π-0.909091\pi
0.841254 0.540641i 0.181818π-0.181818\pi
758758 −0.273100 + 0.473023i −0.273100 + 0.473023i
759759 0 0
760760 0 0
761761 0 0 −0.928368 0.371662i 0.878788π-0.878788\pi
0.928368 + 0.371662i 0.121212π0.121212\pi
762762 0 0
763763 0 0
764764 −2.95561 + 3.41095i −2.95561 + 3.41095i
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
770770 0 0
771771 0 0
772772 −1.98095 + 1.02125i −1.98095 + 1.02125i
773773 0 0 0.327068 0.945001i 0.393939π-0.393939\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
774774 1.45788 2.04730i 1.45788 2.04730i
775775 0 0
776776 0 0
777777 0 0
778778 1.52977 0.449181i 1.52977 0.449181i
779779 0 0
780780 0 0
781781 −0.345139 0.597799i −0.345139 0.597799i
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 −0.981929 0.189251i 0.939394π-0.939394\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
788788 −0.828301 3.41430i −0.828301 3.41430i
789789 0 0
790790 0 0
791791 0 0
792792 −2.25667 1.45027i −2.25667 1.45027i
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
798798 0 0
799799 0 0
800800 1.14910 + 3.32011i 1.14910 + 3.32011i
801801 0 0
802802 3.21409 0.306908i 3.21409 0.306908i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −0.205996 0.196417i −0.205996 0.196417i 0.580057 0.814576i 0.303030π-0.303030\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
810810 0 0
811811 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
812812 0 0
813813 0 0
814814 −2.63403 + 0.507668i −2.63403 + 0.507668i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0.0395325 + 0.829889i 0.0395325 + 0.829889i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
822822 0 0
823823 −0.279486 0.0538665i −0.279486 0.0538665i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
828828 0.632425 2.60689i 0.632425 2.60689i
829829 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
840840 0 0
841841 −0.773100 0.496841i −0.773100 0.496841i
842842 2.46792 0.475652i 2.46792 0.475652i
843843 0 0
844844 −1.98095 1.02125i −1.98095 1.02125i
845845 0 0
846846 0 0
847847 0 0
848848 −0.415415 + 0.909632i −0.415415 + 0.909632i
849849 0 0
850850 0 0
851851 −0.841254 1.45709i −0.841254 1.45709i
852852 0 0
853853 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
854854 0 0
855855 0 0
856856 1.77674 + 5.13355i 1.77674 + 5.13355i
857857 0 0 −0.235759 0.971812i 0.575758π-0.575758\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
858858 0 0
859859 0 0 −0.995472 0.0950560i 0.969697π-0.969697\pi
0.995472 + 0.0950560i 0.0303030π0.0303030\pi
860860 0 0
861861 0 0
862862 −0.357685 + 2.48775i −0.357685 + 2.48775i
863863 −0.653077 0.513585i −0.653077 0.513585i 0.235759 0.971812i 0.424242π-0.424242\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0.154861 0.178719i 0.154861 0.178719i
870870 0 0
871871 0 0
872872 −4.87026 + 3.83002i −4.87026 + 3.83002i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0.481929 + 0.676774i 0.481929 + 0.676774i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
882882 0 0
883883 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
884884 0 0
885885 0 0
886886 −1.48014 + 0.592560i −1.48014 + 0.592560i
887887 0 0 0.888835 0.458227i 0.151515π-0.151515\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
888888 0 0
889889 0 0
890890 0 0
891891 0.601300 0.573338i 0.601300 0.573338i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 1.61435 2.79614i 1.61435 2.79614i
899899 0 0
900900 −2.67036 + 0.254989i −2.67036 + 0.254989i
901901 0 0
902902 0 0
903903 0 0
904904 3.55742 2.28621i 3.55742 2.28621i
905905 0 0
906906 0 0
907907 −0.0913090 + 1.91681i −0.0913090 + 1.91681i 0.235759 + 0.971812i 0.424242π0.424242\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
908908 0 0
909909 0 0
910910 0 0
911911 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i 0.181818π0.181818\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
912912 0 0
913913 0 0
914914 0.128772 + 0.530804i 0.128772 + 0.530804i
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 −0.841254 + 1.45709i −0.841254 + 1.45709i 0.0475819 + 0.998867i 0.484848π0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −1.10181 + 1.27155i −1.10181 + 1.27155i
926926 2.66516 2.54122i 2.66516 2.54122i
927927 0 0
928928 0.580057 0.814576i 0.580057 0.814576i
929929 0 0 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.981929 + 0.189251i 0.939394π0.939394\pi
930930 0 0
931931 0 0
932932 −0.642315 + 4.46740i −0.642315 + 4.46740i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.786053 0.618159i 0.212121π-0.212121\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0.867451 1.89945i 0.867451 1.89945i
947947 0.396666 1.63508i 0.396666 1.63508i −0.327068 0.945001i 0.606061π-0.606061\pi
0.723734 0.690079i 0.242424π-0.242424\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 00
0.415415 + 0.909632i 0.363636π0.363636\pi
954954 −0.429342 0.337639i −0.429342 0.337639i
955955 0 0
956956 0.214753 4.50823i 0.214753 4.50823i
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.327068 0.945001i −0.327068 0.945001i
962962 0 0
963963 −1.67489 + 0.159932i −1.67489 + 0.159932i
964964 0 0
965965 0 0
966966 0 0
967967 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
968968 0.928368 + 0.371662i 0.928368 + 0.371662i
969969 0 0
970970 0 0
971971 0 0 −0.327068 0.945001i 0.606061π-0.606061\pi
0.327068 + 0.945001i 0.393939π0.393939\pi
972972 0 0
973973 0 0
974974 1.04408 + 2.28621i 1.04408 + 2.28621i
975975 0 0
976976 0 0
977977 1.85674 0.743325i 1.85674 0.743325i 0.928368 0.371662i 0.121212π-0.121212\pi
0.928368 0.371662i 0.121212π-0.121212\pi
978978 0 0
979979 0 0
980980 0 0
981981 −0.797176 1.74557i −0.797176 1.74557i
982982 0.175221 + 3.67834i 0.175221 + 3.67834i
983983 0 0 −0.235759 0.971812i 0.575758π-0.575758\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 1.30379 + 0.124497i 1.30379 + 0.124497i
990990 0 0
991991 1.50842 1.18624i 1.50842 1.18624i 0.580057 0.814576i 0.303030π-0.303030\pi
0.928368 0.371662i 0.121212π-0.121212\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 0.580057 0.814576i 0.303030π-0.303030\pi
−0.580057 + 0.814576i 0.696970π0.696970\pi
998998 −1.20443 + 3.47997i −1.20443 + 3.47997i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.1.v.a.509.1 20
7.2 even 3 161.1.l.a.118.1 10
7.3 odd 6 inner 1127.1.v.a.325.1 20
7.4 even 3 inner 1127.1.v.a.325.1 20
7.5 odd 6 161.1.l.a.118.1 10
7.6 odd 2 CM 1127.1.v.a.509.1 20
21.2 odd 6 1449.1.bq.a.118.1 10
21.5 even 6 1449.1.bq.a.118.1 10
23.8 even 11 inner 1127.1.v.a.215.1 20
28.19 even 6 2576.1.cj.a.1889.1 10
28.23 odd 6 2576.1.cj.a.1889.1 10
161.2 even 33 3703.1.l.b.1392.1 10
161.5 even 66 3703.1.l.g.2582.1 10
161.9 even 33 3703.1.l.a.2911.1 10
161.12 odd 66 3703.1.l.h.2617.1 10
161.16 even 33 3703.1.l.h.699.1 10
161.19 even 66 3703.1.l.d.3429.1 10
161.26 odd 66 3703.1.l.c.2603.1 10
161.30 odd 66 3703.1.l.i.699.1 10
161.31 odd 66 inner 1127.1.v.a.31.1 20
161.33 even 66 3703.1.b.b.1588.1 5
161.37 odd 66 3703.1.l.e.2911.1 10
161.40 even 66 3703.1.l.e.706.1 10
161.44 odd 66 3703.1.l.d.1392.1 10
161.51 odd 66 3703.1.l.g.2582.1 10
161.54 odd 66 161.1.l.a.146.1 yes 10
161.58 even 33 3703.1.l.h.2617.1 10
161.61 even 66 3703.1.l.f.3044.1 10
161.65 odd 66 3703.1.l.d.3429.1 10
161.68 even 6 3703.1.l.f.118.1 10
161.72 even 33 3703.1.l.c.2603.1 10
161.75 odd 66 3703.1.l.a.706.1 10
161.79 odd 66 3703.1.b.b.1588.1 5
161.82 odd 66 3703.1.b.c.1588.1 5
161.86 odd 66 3703.1.l.e.706.1 10
161.89 even 66 3703.1.l.g.2603.1 10
161.96 odd 66 3703.1.l.b.3429.1 10
161.100 even 33 161.1.l.a.146.1 yes 10
161.103 even 66 3703.1.l.i.2617.1 10
161.107 odd 66 3703.1.l.f.3044.1 10
161.110 odd 66 3703.1.l.c.2582.1 10
161.114 odd 6 3703.1.l.f.118.1 10
161.117 odd 66 3703.1.l.b.1392.1 10
161.121 even 33 3703.1.l.a.706.1 10
161.123 even 33 inner 1127.1.v.a.31.1 20
161.124 odd 66 3703.1.l.a.2911.1 10
161.128 even 33 3703.1.b.c.1588.1 5
161.131 odd 66 3703.1.l.h.699.1 10
161.135 odd 66 3703.1.l.g.2603.1 10
161.142 even 33 3703.1.l.b.3429.1 10
161.145 even 66 3703.1.l.i.699.1 10
161.146 odd 22 inner 1127.1.v.a.215.1 20
161.149 odd 66 3703.1.l.i.2617.1 10
161.152 even 66 3703.1.l.e.2911.1 10
161.156 even 33 3703.1.l.c.2582.1 10
161.159 even 66 3703.1.l.d.1392.1 10
483.215 even 66 1449.1.bq.a.307.1 10
483.422 odd 66 1449.1.bq.a.307.1 10
644.215 even 66 2576.1.cj.a.2561.1 10
644.583 odd 66 2576.1.cj.a.2561.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.1.l.a.118.1 10 7.2 even 3
161.1.l.a.118.1 10 7.5 odd 6
161.1.l.a.146.1 yes 10 161.54 odd 66
161.1.l.a.146.1 yes 10 161.100 even 33
1127.1.v.a.31.1 20 161.31 odd 66 inner
1127.1.v.a.31.1 20 161.123 even 33 inner
1127.1.v.a.215.1 20 23.8 even 11 inner
1127.1.v.a.215.1 20 161.146 odd 22 inner
1127.1.v.a.325.1 20 7.3 odd 6 inner
1127.1.v.a.325.1 20 7.4 even 3 inner
1127.1.v.a.509.1 20 1.1 even 1 trivial
1127.1.v.a.509.1 20 7.6 odd 2 CM
1449.1.bq.a.118.1 10 21.2 odd 6
1449.1.bq.a.118.1 10 21.5 even 6
1449.1.bq.a.307.1 10 483.215 even 66
1449.1.bq.a.307.1 10 483.422 odd 66
2576.1.cj.a.1889.1 10 28.19 even 6
2576.1.cj.a.1889.1 10 28.23 odd 6
2576.1.cj.a.2561.1 10 644.215 even 66
2576.1.cj.a.2561.1 10 644.583 odd 66
3703.1.b.b.1588.1 5 161.33 even 66
3703.1.b.b.1588.1 5 161.79 odd 66
3703.1.b.c.1588.1 5 161.82 odd 66
3703.1.b.c.1588.1 5 161.128 even 33
3703.1.l.a.706.1 10 161.75 odd 66
3703.1.l.a.706.1 10 161.121 even 33
3703.1.l.a.2911.1 10 161.9 even 33
3703.1.l.a.2911.1 10 161.124 odd 66
3703.1.l.b.1392.1 10 161.2 even 33
3703.1.l.b.1392.1 10 161.117 odd 66
3703.1.l.b.3429.1 10 161.96 odd 66
3703.1.l.b.3429.1 10 161.142 even 33
3703.1.l.c.2582.1 10 161.110 odd 66
3703.1.l.c.2582.1 10 161.156 even 33
3703.1.l.c.2603.1 10 161.26 odd 66
3703.1.l.c.2603.1 10 161.72 even 33
3703.1.l.d.1392.1 10 161.44 odd 66
3703.1.l.d.1392.1 10 161.159 even 66
3703.1.l.d.3429.1 10 161.19 even 66
3703.1.l.d.3429.1 10 161.65 odd 66
3703.1.l.e.706.1 10 161.40 even 66
3703.1.l.e.706.1 10 161.86 odd 66
3703.1.l.e.2911.1 10 161.37 odd 66
3703.1.l.e.2911.1 10 161.152 even 66
3703.1.l.f.118.1 10 161.68 even 6
3703.1.l.f.118.1 10 161.114 odd 6
3703.1.l.f.3044.1 10 161.61 even 66
3703.1.l.f.3044.1 10 161.107 odd 66
3703.1.l.g.2582.1 10 161.5 even 66
3703.1.l.g.2582.1 10 161.51 odd 66
3703.1.l.g.2603.1 10 161.89 even 66
3703.1.l.g.2603.1 10 161.135 odd 66
3703.1.l.h.699.1 10 161.16 even 33
3703.1.l.h.699.1 10 161.131 odd 66
3703.1.l.h.2617.1 10 161.12 odd 66
3703.1.l.h.2617.1 10 161.58 even 33
3703.1.l.i.699.1 10 161.30 odd 66
3703.1.l.i.699.1 10 161.145 even 66
3703.1.l.i.2617.1 10 161.103 even 66
3703.1.l.i.2617.1 10 161.149 odd 66