Properties

Label 2-1127-1.1-c1-0-40
Degree $2$
Conductor $1127$
Sign $-1$
Analytic cond. $8.99914$
Root an. cond. $2.99985$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·2-s − 2.23·3-s + 0.618·4-s + 3.23·5-s + 3.61·6-s + 2.23·8-s + 2.00·9-s − 5.23·10-s − 0.763·11-s − 1.38·12-s − 3·13-s − 7.23·15-s − 4.85·16-s − 5.23·17-s − 3.23·18-s + 2·19-s + 2.00·20-s + 1.23·22-s + 23-s − 5.00·24-s + 5.47·25-s + 4.85·26-s + 2.23·27-s − 3·29-s + 11.7·30-s + 6.70·31-s + 3.38·32-s + ⋯
L(s)  = 1  − 1.14·2-s − 1.29·3-s + 0.309·4-s + 1.44·5-s + 1.47·6-s + 0.790·8-s + 0.666·9-s − 1.65·10-s − 0.230·11-s − 0.398·12-s − 0.832·13-s − 1.86·15-s − 1.21·16-s − 1.26·17-s − 0.762·18-s + 0.458·19-s + 0.447·20-s + 0.263·22-s + 0.208·23-s − 1.02·24-s + 1.09·25-s + 0.951·26-s + 0.430·27-s − 0.557·29-s + 2.13·30-s + 1.20·31-s + 0.597·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1127\)    =    \(7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(8.99914\)
Root analytic conductor: \(2.99985\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1127,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
23 \( 1 - T \)
good2 \( 1 + 1.61T + 2T^{2} \)
3 \( 1 + 2.23T + 3T^{2} \)
5 \( 1 - 3.23T + 5T^{2} \)
11 \( 1 + 0.763T + 11T^{2} \)
13 \( 1 + 3T + 13T^{2} \)
17 \( 1 + 5.23T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
29 \( 1 + 3T + 29T^{2} \)
31 \( 1 - 6.70T + 31T^{2} \)
37 \( 1 - 3.23T + 37T^{2} \)
41 \( 1 + 5.47T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 2.23T + 47T^{2} \)
53 \( 1 + 8.47T + 53T^{2} \)
59 \( 1 - 2.47T + 59T^{2} \)
61 \( 1 + 10.9T + 61T^{2} \)
67 \( 1 + 7.23T + 67T^{2} \)
71 \( 1 - 7.76T + 71T^{2} \)
73 \( 1 + 15.4T + 73T^{2} \)
79 \( 1 - 6.94T + 79T^{2} \)
83 \( 1 - 13.2T + 83T^{2} \)
89 \( 1 - 1.52T + 89T^{2} \)
97 \( 1 + 4.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.540160292717530504520209483437, −8.896073805332539415172836995671, −7.80318510025201343803382662436, −6.78748203020737630363524287330, −6.19006065606249903721036794227, −5.18432731114980008118481604090, −4.62622348481158235585086916903, −2.52669220302781237031827709058, −1.41011247276700253835474568164, 0, 1.41011247276700253835474568164, 2.52669220302781237031827709058, 4.62622348481158235585086916903, 5.18432731114980008118481604090, 6.19006065606249903721036794227, 6.78748203020737630363524287330, 7.80318510025201343803382662436, 8.896073805332539415172836995671, 9.540160292717530504520209483437

Graph of the $Z$-function along the critical line