Properties

Label 1127.2.a.c.1.1
Level $1127$
Weight $2$
Character 1127.1
Self dual yes
Analytic conductor $8.999$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,2,Mod(1,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.99914030780\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 1127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61803 q^{2} -2.23607 q^{3} +0.618034 q^{4} +3.23607 q^{5} +3.61803 q^{6} +2.23607 q^{8} +2.00000 q^{9} -5.23607 q^{10} -0.763932 q^{11} -1.38197 q^{12} -3.00000 q^{13} -7.23607 q^{15} -4.85410 q^{16} -5.23607 q^{17} -3.23607 q^{18} +2.00000 q^{19} +2.00000 q^{20} +1.23607 q^{22} +1.00000 q^{23} -5.00000 q^{24} +5.47214 q^{25} +4.85410 q^{26} +2.23607 q^{27} -3.00000 q^{29} +11.7082 q^{30} +6.70820 q^{31} +3.38197 q^{32} +1.70820 q^{33} +8.47214 q^{34} +1.23607 q^{36} +3.23607 q^{37} -3.23607 q^{38} +6.70820 q^{39} +7.23607 q^{40} -5.47214 q^{41} -0.472136 q^{44} +6.47214 q^{45} -1.61803 q^{46} -2.23607 q^{47} +10.8541 q^{48} -8.85410 q^{50} +11.7082 q^{51} -1.85410 q^{52} -8.47214 q^{53} -3.61803 q^{54} -2.47214 q^{55} -4.47214 q^{57} +4.85410 q^{58} +2.47214 q^{59} -4.47214 q^{60} -10.9443 q^{61} -10.8541 q^{62} +4.23607 q^{64} -9.70820 q^{65} -2.76393 q^{66} -7.23607 q^{67} -3.23607 q^{68} -2.23607 q^{69} +7.76393 q^{71} +4.47214 q^{72} -15.4721 q^{73} -5.23607 q^{74} -12.2361 q^{75} +1.23607 q^{76} -10.8541 q^{78} +6.94427 q^{79} -15.7082 q^{80} -11.0000 q^{81} +8.85410 q^{82} +13.2361 q^{83} -16.9443 q^{85} +6.70820 q^{87} -1.70820 q^{88} +1.52786 q^{89} -10.4721 q^{90} +0.618034 q^{92} -15.0000 q^{93} +3.61803 q^{94} +6.47214 q^{95} -7.56231 q^{96} -4.29180 q^{97} -1.52786 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 2 q^{5} + 5 q^{6} + 4 q^{9} - 6 q^{10} - 6 q^{11} - 5 q^{12} - 6 q^{13} - 10 q^{15} - 3 q^{16} - 6 q^{17} - 2 q^{18} + 4 q^{19} + 4 q^{20} - 2 q^{22} + 2 q^{23} - 10 q^{24} + 2 q^{25}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61803 −1.14412 −0.572061 0.820211i \(-0.693856\pi\)
−0.572061 + 0.820211i \(0.693856\pi\)
\(3\) −2.23607 −1.29099 −0.645497 0.763763i \(-0.723350\pi\)
−0.645497 + 0.763763i \(0.723350\pi\)
\(4\) 0.618034 0.309017
\(5\) 3.23607 1.44721 0.723607 0.690212i \(-0.242483\pi\)
0.723607 + 0.690212i \(0.242483\pi\)
\(6\) 3.61803 1.47706
\(7\) 0 0
\(8\) 2.23607 0.790569
\(9\) 2.00000 0.666667
\(10\) −5.23607 −1.65579
\(11\) −0.763932 −0.230334 −0.115167 0.993346i \(-0.536740\pi\)
−0.115167 + 0.993346i \(0.536740\pi\)
\(12\) −1.38197 −0.398939
\(13\) −3.00000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) 0 0
\(15\) −7.23607 −1.86834
\(16\) −4.85410 −1.21353
\(17\) −5.23607 −1.26993 −0.634967 0.772540i \(-0.718986\pi\)
−0.634967 + 0.772540i \(0.718986\pi\)
\(18\) −3.23607 −0.762749
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 2.00000 0.447214
\(21\) 0 0
\(22\) 1.23607 0.263531
\(23\) 1.00000 0.208514
\(24\) −5.00000 −1.02062
\(25\) 5.47214 1.09443
\(26\) 4.85410 0.951968
\(27\) 2.23607 0.430331
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 11.7082 2.13762
\(31\) 6.70820 1.20483 0.602414 0.798183i \(-0.294205\pi\)
0.602414 + 0.798183i \(0.294205\pi\)
\(32\) 3.38197 0.597853
\(33\) 1.70820 0.297360
\(34\) 8.47214 1.45296
\(35\) 0 0
\(36\) 1.23607 0.206011
\(37\) 3.23607 0.532006 0.266003 0.963972i \(-0.414297\pi\)
0.266003 + 0.963972i \(0.414297\pi\)
\(38\) −3.23607 −0.524960
\(39\) 6.70820 1.07417
\(40\) 7.23607 1.14412
\(41\) −5.47214 −0.854604 −0.427302 0.904109i \(-0.640536\pi\)
−0.427302 + 0.904109i \(0.640536\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −0.472136 −0.0711772
\(45\) 6.47214 0.964809
\(46\) −1.61803 −0.238566
\(47\) −2.23607 −0.326164 −0.163082 0.986613i \(-0.552144\pi\)
−0.163082 + 0.986613i \(0.552144\pi\)
\(48\) 10.8541 1.56665
\(49\) 0 0
\(50\) −8.85410 −1.25216
\(51\) 11.7082 1.63948
\(52\) −1.85410 −0.257118
\(53\) −8.47214 −1.16374 −0.581869 0.813283i \(-0.697678\pi\)
−0.581869 + 0.813283i \(0.697678\pi\)
\(54\) −3.61803 −0.492352
\(55\) −2.47214 −0.333343
\(56\) 0 0
\(57\) −4.47214 −0.592349
\(58\) 4.85410 0.637375
\(59\) 2.47214 0.321845 0.160922 0.986967i \(-0.448553\pi\)
0.160922 + 0.986967i \(0.448553\pi\)
\(60\) −4.47214 −0.577350
\(61\) −10.9443 −1.40127 −0.700635 0.713520i \(-0.747100\pi\)
−0.700635 + 0.713520i \(0.747100\pi\)
\(62\) −10.8541 −1.37847
\(63\) 0 0
\(64\) 4.23607 0.529508
\(65\) −9.70820 −1.20415
\(66\) −2.76393 −0.340217
\(67\) −7.23607 −0.884026 −0.442013 0.897009i \(-0.645736\pi\)
−0.442013 + 0.897009i \(0.645736\pi\)
\(68\) −3.23607 −0.392431
\(69\) −2.23607 −0.269191
\(70\) 0 0
\(71\) 7.76393 0.921409 0.460705 0.887554i \(-0.347597\pi\)
0.460705 + 0.887554i \(0.347597\pi\)
\(72\) 4.47214 0.527046
\(73\) −15.4721 −1.81088 −0.905438 0.424478i \(-0.860458\pi\)
−0.905438 + 0.424478i \(0.860458\pi\)
\(74\) −5.23607 −0.608681
\(75\) −12.2361 −1.41290
\(76\) 1.23607 0.141787
\(77\) 0 0
\(78\) −10.8541 −1.22899
\(79\) 6.94427 0.781292 0.390646 0.920541i \(-0.372252\pi\)
0.390646 + 0.920541i \(0.372252\pi\)
\(80\) −15.7082 −1.75623
\(81\) −11.0000 −1.22222
\(82\) 8.85410 0.977772
\(83\) 13.2361 1.45285 0.726424 0.687247i \(-0.241181\pi\)
0.726424 + 0.687247i \(0.241181\pi\)
\(84\) 0 0
\(85\) −16.9443 −1.83786
\(86\) 0 0
\(87\) 6.70820 0.719195
\(88\) −1.70820 −0.182095
\(89\) 1.52786 0.161953 0.0809766 0.996716i \(-0.474196\pi\)
0.0809766 + 0.996716i \(0.474196\pi\)
\(90\) −10.4721 −1.10386
\(91\) 0 0
\(92\) 0.618034 0.0644345
\(93\) −15.0000 −1.55543
\(94\) 3.61803 0.373172
\(95\) 6.47214 0.664027
\(96\) −7.56231 −0.771825
\(97\) −4.29180 −0.435766 −0.217883 0.975975i \(-0.569915\pi\)
−0.217883 + 0.975975i \(0.569915\pi\)
\(98\) 0 0
\(99\) −1.52786 −0.153556
\(100\) 3.38197 0.338197
\(101\) 4.47214 0.444994 0.222497 0.974933i \(-0.428579\pi\)
0.222497 + 0.974933i \(0.428579\pi\)
\(102\) −18.9443 −1.87576
\(103\) −18.1803 −1.79136 −0.895681 0.444697i \(-0.853311\pi\)
−0.895681 + 0.444697i \(0.853311\pi\)
\(104\) −6.70820 −0.657794
\(105\) 0 0
\(106\) 13.7082 1.33146
\(107\) −13.4164 −1.29701 −0.648507 0.761209i \(-0.724606\pi\)
−0.648507 + 0.761209i \(0.724606\pi\)
\(108\) 1.38197 0.132980
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 4.00000 0.381385
\(111\) −7.23607 −0.686817
\(112\) 0 0
\(113\) 13.2361 1.24514 0.622572 0.782562i \(-0.286088\pi\)
0.622572 + 0.782562i \(0.286088\pi\)
\(114\) 7.23607 0.677720
\(115\) 3.23607 0.301765
\(116\) −1.85410 −0.172149
\(117\) −6.00000 −0.554700
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) −16.1803 −1.47706
\(121\) −10.4164 −0.946946
\(122\) 17.7082 1.60323
\(123\) 12.2361 1.10329
\(124\) 4.14590 0.372313
\(125\) 1.52786 0.136656
\(126\) 0 0
\(127\) −20.7082 −1.83756 −0.918778 0.394775i \(-0.870823\pi\)
−0.918778 + 0.394775i \(0.870823\pi\)
\(128\) −13.6180 −1.20368
\(129\) 0 0
\(130\) 15.7082 1.37770
\(131\) −5.29180 −0.462346 −0.231173 0.972913i \(-0.574256\pi\)
−0.231173 + 0.972913i \(0.574256\pi\)
\(132\) 1.05573 0.0918893
\(133\) 0 0
\(134\) 11.7082 1.01143
\(135\) 7.23607 0.622782
\(136\) −11.7082 −1.00397
\(137\) 13.8885 1.18658 0.593289 0.804989i \(-0.297829\pi\)
0.593289 + 0.804989i \(0.297829\pi\)
\(138\) 3.61803 0.307988
\(139\) −2.70820 −0.229707 −0.114853 0.993382i \(-0.536640\pi\)
−0.114853 + 0.993382i \(0.536640\pi\)
\(140\) 0 0
\(141\) 5.00000 0.421076
\(142\) −12.5623 −1.05421
\(143\) 2.29180 0.191650
\(144\) −9.70820 −0.809017
\(145\) −9.70820 −0.806222
\(146\) 25.0344 2.07187
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) −11.8885 −0.973947 −0.486974 0.873417i \(-0.661899\pi\)
−0.486974 + 0.873417i \(0.661899\pi\)
\(150\) 19.7984 1.61653
\(151\) −0.236068 −0.0192109 −0.00960547 0.999954i \(-0.503058\pi\)
−0.00960547 + 0.999954i \(0.503058\pi\)
\(152\) 4.47214 0.362738
\(153\) −10.4721 −0.846622
\(154\) 0 0
\(155\) 21.7082 1.74364
\(156\) 4.14590 0.331937
\(157\) −15.4164 −1.23036 −0.615182 0.788385i \(-0.710917\pi\)
−0.615182 + 0.788385i \(0.710917\pi\)
\(158\) −11.2361 −0.893894
\(159\) 18.9443 1.50238
\(160\) 10.9443 0.865221
\(161\) 0 0
\(162\) 17.7984 1.39837
\(163\) −10.2361 −0.801751 −0.400875 0.916133i \(-0.631294\pi\)
−0.400875 + 0.916133i \(0.631294\pi\)
\(164\) −3.38197 −0.264087
\(165\) 5.52786 0.430344
\(166\) −21.4164 −1.66224
\(167\) −10.4721 −0.810358 −0.405179 0.914237i \(-0.632791\pi\)
−0.405179 + 0.914237i \(0.632791\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 27.4164 2.10274
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) −5.05573 −0.384380 −0.192190 0.981358i \(-0.561559\pi\)
−0.192190 + 0.981358i \(0.561559\pi\)
\(174\) −10.8541 −0.822847
\(175\) 0 0
\(176\) 3.70820 0.279516
\(177\) −5.52786 −0.415500
\(178\) −2.47214 −0.185294
\(179\) −12.7082 −0.949856 −0.474928 0.880025i \(-0.657526\pi\)
−0.474928 + 0.880025i \(0.657526\pi\)
\(180\) 4.00000 0.298142
\(181\) 14.6525 1.08911 0.544555 0.838725i \(-0.316699\pi\)
0.544555 + 0.838725i \(0.316699\pi\)
\(182\) 0 0
\(183\) 24.4721 1.80903
\(184\) 2.23607 0.164845
\(185\) 10.4721 0.769927
\(186\) 24.2705 1.77960
\(187\) 4.00000 0.292509
\(188\) −1.38197 −0.100790
\(189\) 0 0
\(190\) −10.4721 −0.759729
\(191\) −3.81966 −0.276381 −0.138190 0.990406i \(-0.544129\pi\)
−0.138190 + 0.990406i \(0.544129\pi\)
\(192\) −9.47214 −0.683593
\(193\) −7.94427 −0.571841 −0.285921 0.958253i \(-0.592299\pi\)
−0.285921 + 0.958253i \(0.592299\pi\)
\(194\) 6.94427 0.498570
\(195\) 21.7082 1.55456
\(196\) 0 0
\(197\) 7.47214 0.532368 0.266184 0.963922i \(-0.414237\pi\)
0.266184 + 0.963922i \(0.414237\pi\)
\(198\) 2.47214 0.175687
\(199\) 25.7082 1.82241 0.911203 0.411957i \(-0.135155\pi\)
0.911203 + 0.411957i \(0.135155\pi\)
\(200\) 12.2361 0.865221
\(201\) 16.1803 1.14127
\(202\) −7.23607 −0.509128
\(203\) 0 0
\(204\) 7.23607 0.506626
\(205\) −17.7082 −1.23679
\(206\) 29.4164 2.04954
\(207\) 2.00000 0.139010
\(208\) 14.5623 1.00971
\(209\) −1.52786 −0.105685
\(210\) 0 0
\(211\) 3.41641 0.235195 0.117598 0.993061i \(-0.462481\pi\)
0.117598 + 0.993061i \(0.462481\pi\)
\(212\) −5.23607 −0.359615
\(213\) −17.3607 −1.18953
\(214\) 21.7082 1.48394
\(215\) 0 0
\(216\) 5.00000 0.340207
\(217\) 0 0
\(218\) 0 0
\(219\) 34.5967 2.33783
\(220\) −1.52786 −0.103009
\(221\) 15.7082 1.05665
\(222\) 11.7082 0.785803
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 0 0
\(225\) 10.9443 0.729618
\(226\) −21.4164 −1.42460
\(227\) −10.1803 −0.675693 −0.337846 0.941201i \(-0.609698\pi\)
−0.337846 + 0.941201i \(0.609698\pi\)
\(228\) −2.76393 −0.183046
\(229\) 12.0000 0.792982 0.396491 0.918039i \(-0.370228\pi\)
0.396491 + 0.918039i \(0.370228\pi\)
\(230\) −5.23607 −0.345256
\(231\) 0 0
\(232\) −6.70820 −0.440415
\(233\) −15.4721 −1.01361 −0.506807 0.862060i \(-0.669174\pi\)
−0.506807 + 0.862060i \(0.669174\pi\)
\(234\) 9.70820 0.634645
\(235\) −7.23607 −0.472029
\(236\) 1.52786 0.0994555
\(237\) −15.5279 −1.00864
\(238\) 0 0
\(239\) 18.2361 1.17959 0.589797 0.807552i \(-0.299208\pi\)
0.589797 + 0.807552i \(0.299208\pi\)
\(240\) 35.1246 2.26728
\(241\) −17.1246 −1.10309 −0.551547 0.834144i \(-0.685962\pi\)
−0.551547 + 0.834144i \(0.685962\pi\)
\(242\) 16.8541 1.08342
\(243\) 17.8885 1.14755
\(244\) −6.76393 −0.433016
\(245\) 0 0
\(246\) −19.7984 −1.26230
\(247\) −6.00000 −0.381771
\(248\) 15.0000 0.952501
\(249\) −29.5967 −1.87562
\(250\) −2.47214 −0.156352
\(251\) −15.7082 −0.991493 −0.495747 0.868467i \(-0.665105\pi\)
−0.495747 + 0.868467i \(0.665105\pi\)
\(252\) 0 0
\(253\) −0.763932 −0.0480280
\(254\) 33.5066 2.10239
\(255\) 37.8885 2.37267
\(256\) 13.5623 0.847644
\(257\) −1.47214 −0.0918293 −0.0459147 0.998945i \(-0.514620\pi\)
−0.0459147 + 0.998945i \(0.514620\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −6.00000 −0.372104
\(261\) −6.00000 −0.371391
\(262\) 8.56231 0.528981
\(263\) −14.9443 −0.921503 −0.460752 0.887529i \(-0.652420\pi\)
−0.460752 + 0.887529i \(0.652420\pi\)
\(264\) 3.81966 0.235084
\(265\) −27.4164 −1.68418
\(266\) 0 0
\(267\) −3.41641 −0.209081
\(268\) −4.47214 −0.273179
\(269\) −9.94427 −0.606313 −0.303156 0.952941i \(-0.598040\pi\)
−0.303156 + 0.952941i \(0.598040\pi\)
\(270\) −11.7082 −0.712539
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 25.4164 1.54110
\(273\) 0 0
\(274\) −22.4721 −1.35759
\(275\) −4.18034 −0.252084
\(276\) −1.38197 −0.0831846
\(277\) 6.52786 0.392221 0.196111 0.980582i \(-0.437169\pi\)
0.196111 + 0.980582i \(0.437169\pi\)
\(278\) 4.38197 0.262813
\(279\) 13.4164 0.803219
\(280\) 0 0
\(281\) −13.2361 −0.789598 −0.394799 0.918768i \(-0.629186\pi\)
−0.394799 + 0.918768i \(0.629186\pi\)
\(282\) −8.09017 −0.481763
\(283\) −14.2918 −0.849559 −0.424780 0.905297i \(-0.639648\pi\)
−0.424780 + 0.905297i \(0.639648\pi\)
\(284\) 4.79837 0.284731
\(285\) −14.4721 −0.857255
\(286\) −3.70820 −0.219271
\(287\) 0 0
\(288\) 6.76393 0.398569
\(289\) 10.4164 0.612730
\(290\) 15.7082 0.922417
\(291\) 9.59675 0.562571
\(292\) −9.56231 −0.559592
\(293\) 10.4721 0.611789 0.305894 0.952065i \(-0.401045\pi\)
0.305894 + 0.952065i \(0.401045\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 7.23607 0.420588
\(297\) −1.70820 −0.0991200
\(298\) 19.2361 1.11432
\(299\) −3.00000 −0.173494
\(300\) −7.56231 −0.436610
\(301\) 0 0
\(302\) 0.381966 0.0219797
\(303\) −10.0000 −0.574485
\(304\) −9.70820 −0.556804
\(305\) −35.4164 −2.02794
\(306\) 16.9443 0.968640
\(307\) −18.4721 −1.05426 −0.527130 0.849785i \(-0.676732\pi\)
−0.527130 + 0.849785i \(0.676732\pi\)
\(308\) 0 0
\(309\) 40.6525 2.31264
\(310\) −35.1246 −1.99494
\(311\) 9.18034 0.520569 0.260285 0.965532i \(-0.416184\pi\)
0.260285 + 0.965532i \(0.416184\pi\)
\(312\) 15.0000 0.849208
\(313\) 20.3607 1.15085 0.575427 0.817853i \(-0.304836\pi\)
0.575427 + 0.817853i \(0.304836\pi\)
\(314\) 24.9443 1.40769
\(315\) 0 0
\(316\) 4.29180 0.241432
\(317\) −1.41641 −0.0795534 −0.0397767 0.999209i \(-0.512665\pi\)
−0.0397767 + 0.999209i \(0.512665\pi\)
\(318\) −30.6525 −1.71891
\(319\) 2.29180 0.128316
\(320\) 13.7082 0.766312
\(321\) 30.0000 1.67444
\(322\) 0 0
\(323\) −10.4721 −0.582685
\(324\) −6.79837 −0.377687
\(325\) −16.4164 −0.910618
\(326\) 16.5623 0.917301
\(327\) 0 0
\(328\) −12.2361 −0.675624
\(329\) 0 0
\(330\) −8.94427 −0.492366
\(331\) 11.6525 0.640478 0.320239 0.947337i \(-0.396237\pi\)
0.320239 + 0.947337i \(0.396237\pi\)
\(332\) 8.18034 0.448954
\(333\) 6.47214 0.354671
\(334\) 16.9443 0.927149
\(335\) −23.4164 −1.27938
\(336\) 0 0
\(337\) −3.41641 −0.186104 −0.0930518 0.995661i \(-0.529662\pi\)
−0.0930518 + 0.995661i \(0.529662\pi\)
\(338\) 6.47214 0.352038
\(339\) −29.5967 −1.60747
\(340\) −10.4721 −0.567931
\(341\) −5.12461 −0.277513
\(342\) −6.47214 −0.349973
\(343\) 0 0
\(344\) 0 0
\(345\) −7.23607 −0.389577
\(346\) 8.18034 0.439778
\(347\) 25.8885 1.38977 0.694885 0.719121i \(-0.255455\pi\)
0.694885 + 0.719121i \(0.255455\pi\)
\(348\) 4.14590 0.222243
\(349\) 2.41641 0.129347 0.0646737 0.997906i \(-0.479399\pi\)
0.0646737 + 0.997906i \(0.479399\pi\)
\(350\) 0 0
\(351\) −6.70820 −0.358057
\(352\) −2.58359 −0.137706
\(353\) 35.3607 1.88206 0.941030 0.338324i \(-0.109860\pi\)
0.941030 + 0.338324i \(0.109860\pi\)
\(354\) 8.94427 0.475383
\(355\) 25.1246 1.33348
\(356\) 0.944272 0.0500463
\(357\) 0 0
\(358\) 20.5623 1.08675
\(359\) 15.8885 0.838565 0.419283 0.907856i \(-0.362282\pi\)
0.419283 + 0.907856i \(0.362282\pi\)
\(360\) 14.4721 0.762749
\(361\) −15.0000 −0.789474
\(362\) −23.7082 −1.24608
\(363\) 23.2918 1.22250
\(364\) 0 0
\(365\) −50.0689 −2.62073
\(366\) −39.5967 −2.06976
\(367\) −18.1803 −0.949006 −0.474503 0.880254i \(-0.657372\pi\)
−0.474503 + 0.880254i \(0.657372\pi\)
\(368\) −4.85410 −0.253038
\(369\) −10.9443 −0.569736
\(370\) −16.9443 −0.880891
\(371\) 0 0
\(372\) −9.27051 −0.480654
\(373\) −5.70820 −0.295560 −0.147780 0.989020i \(-0.547213\pi\)
−0.147780 + 0.989020i \(0.547213\pi\)
\(374\) −6.47214 −0.334666
\(375\) −3.41641 −0.176423
\(376\) −5.00000 −0.257855
\(377\) 9.00000 0.463524
\(378\) 0 0
\(379\) −20.3607 −1.04586 −0.522929 0.852376i \(-0.675161\pi\)
−0.522929 + 0.852376i \(0.675161\pi\)
\(380\) 4.00000 0.205196
\(381\) 46.3050 2.37227
\(382\) 6.18034 0.316214
\(383\) −24.9443 −1.27459 −0.637296 0.770619i \(-0.719947\pi\)
−0.637296 + 0.770619i \(0.719947\pi\)
\(384\) 30.4508 1.55394
\(385\) 0 0
\(386\) 12.8541 0.654257
\(387\) 0 0
\(388\) −2.65248 −0.134659
\(389\) 34.4721 1.74781 0.873903 0.486100i \(-0.161581\pi\)
0.873903 + 0.486100i \(0.161581\pi\)
\(390\) −35.1246 −1.77860
\(391\) −5.23607 −0.264799
\(392\) 0 0
\(393\) 11.8328 0.596887
\(394\) −12.0902 −0.609094
\(395\) 22.4721 1.13070
\(396\) −0.944272 −0.0474514
\(397\) −2.41641 −0.121276 −0.0606380 0.998160i \(-0.519314\pi\)
−0.0606380 + 0.998160i \(0.519314\pi\)
\(398\) −41.5967 −2.08506
\(399\) 0 0
\(400\) −26.5623 −1.32812
\(401\) 8.18034 0.408507 0.204253 0.978918i \(-0.434523\pi\)
0.204253 + 0.978918i \(0.434523\pi\)
\(402\) −26.1803 −1.30576
\(403\) −20.1246 −1.00248
\(404\) 2.76393 0.137511
\(405\) −35.5967 −1.76882
\(406\) 0 0
\(407\) −2.47214 −0.122539
\(408\) 26.1803 1.29612
\(409\) 23.3607 1.15511 0.577556 0.816351i \(-0.304007\pi\)
0.577556 + 0.816351i \(0.304007\pi\)
\(410\) 28.6525 1.41504
\(411\) −31.0557 −1.53187
\(412\) −11.2361 −0.553561
\(413\) 0 0
\(414\) −3.23607 −0.159044
\(415\) 42.8328 2.10258
\(416\) −10.1459 −0.497444
\(417\) 6.05573 0.296550
\(418\) 2.47214 0.120916
\(419\) 31.4164 1.53479 0.767396 0.641173i \(-0.221552\pi\)
0.767396 + 0.641173i \(0.221552\pi\)
\(420\) 0 0
\(421\) −23.7082 −1.15547 −0.577734 0.816225i \(-0.696063\pi\)
−0.577734 + 0.816225i \(0.696063\pi\)
\(422\) −5.52786 −0.269092
\(423\) −4.47214 −0.217443
\(424\) −18.9443 −0.920015
\(425\) −28.6525 −1.38985
\(426\) 28.0902 1.36097
\(427\) 0 0
\(428\) −8.29180 −0.400799
\(429\) −5.12461 −0.247419
\(430\) 0 0
\(431\) −26.4721 −1.27512 −0.637559 0.770402i \(-0.720056\pi\)
−0.637559 + 0.770402i \(0.720056\pi\)
\(432\) −10.8541 −0.522218
\(433\) −40.1803 −1.93094 −0.965472 0.260507i \(-0.916110\pi\)
−0.965472 + 0.260507i \(0.916110\pi\)
\(434\) 0 0
\(435\) 21.7082 1.04083
\(436\) 0 0
\(437\) 2.00000 0.0956730
\(438\) −55.9787 −2.67477
\(439\) 5.29180 0.252564 0.126282 0.991994i \(-0.459696\pi\)
0.126282 + 0.991994i \(0.459696\pi\)
\(440\) −5.52786 −0.263531
\(441\) 0 0
\(442\) −25.4164 −1.20894
\(443\) −2.12461 −0.100943 −0.0504717 0.998725i \(-0.516072\pi\)
−0.0504717 + 0.998725i \(0.516072\pi\)
\(444\) −4.47214 −0.212238
\(445\) 4.94427 0.234381
\(446\) 6.47214 0.306465
\(447\) 26.5836 1.25736
\(448\) 0 0
\(449\) 2.94427 0.138949 0.0694744 0.997584i \(-0.477868\pi\)
0.0694744 + 0.997584i \(0.477868\pi\)
\(450\) −17.7082 −0.834773
\(451\) 4.18034 0.196845
\(452\) 8.18034 0.384771
\(453\) 0.527864 0.0248012
\(454\) 16.4721 0.773076
\(455\) 0 0
\(456\) −10.0000 −0.468293
\(457\) 35.1246 1.64306 0.821530 0.570165i \(-0.193121\pi\)
0.821530 + 0.570165i \(0.193121\pi\)
\(458\) −19.4164 −0.907269
\(459\) −11.7082 −0.546492
\(460\) 2.00000 0.0932505
\(461\) −7.47214 −0.348012 −0.174006 0.984745i \(-0.555671\pi\)
−0.174006 + 0.984745i \(0.555671\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 14.5623 0.676038
\(465\) −48.5410 −2.25104
\(466\) 25.0344 1.15970
\(467\) 30.9443 1.43193 0.715965 0.698136i \(-0.245987\pi\)
0.715965 + 0.698136i \(0.245987\pi\)
\(468\) −3.70820 −0.171412
\(469\) 0 0
\(470\) 11.7082 0.540059
\(471\) 34.4721 1.58839
\(472\) 5.52786 0.254441
\(473\) 0 0
\(474\) 25.1246 1.15401
\(475\) 10.9443 0.502158
\(476\) 0 0
\(477\) −16.9443 −0.775825
\(478\) −29.5066 −1.34960
\(479\) 17.5967 0.804016 0.402008 0.915636i \(-0.368312\pi\)
0.402008 + 0.915636i \(0.368312\pi\)
\(480\) −24.4721 −1.11700
\(481\) −9.70820 −0.442656
\(482\) 27.7082 1.26207
\(483\) 0 0
\(484\) −6.43769 −0.292622
\(485\) −13.8885 −0.630646
\(486\) −28.9443 −1.31294
\(487\) −1.29180 −0.0585369 −0.0292684 0.999572i \(-0.509318\pi\)
−0.0292684 + 0.999572i \(0.509318\pi\)
\(488\) −24.4721 −1.10780
\(489\) 22.8885 1.03506
\(490\) 0 0
\(491\) 39.6525 1.78949 0.894746 0.446576i \(-0.147357\pi\)
0.894746 + 0.446576i \(0.147357\pi\)
\(492\) 7.56231 0.340935
\(493\) 15.7082 0.707462
\(494\) 9.70820 0.436793
\(495\) −4.94427 −0.222228
\(496\) −32.5623 −1.46209
\(497\) 0 0
\(498\) 47.8885 2.14594
\(499\) 32.7082 1.46422 0.732110 0.681186i \(-0.238536\pi\)
0.732110 + 0.681186i \(0.238536\pi\)
\(500\) 0.944272 0.0422291
\(501\) 23.4164 1.04617
\(502\) 25.4164 1.13439
\(503\) 9.05573 0.403775 0.201887 0.979409i \(-0.435292\pi\)
0.201887 + 0.979409i \(0.435292\pi\)
\(504\) 0 0
\(505\) 14.4721 0.644002
\(506\) 1.23607 0.0549499
\(507\) 8.94427 0.397229
\(508\) −12.7984 −0.567836
\(509\) −34.3050 −1.52054 −0.760270 0.649607i \(-0.774933\pi\)
−0.760270 + 0.649607i \(0.774933\pi\)
\(510\) −61.3050 −2.71463
\(511\) 0 0
\(512\) 5.29180 0.233867
\(513\) 4.47214 0.197450
\(514\) 2.38197 0.105064
\(515\) −58.8328 −2.59248
\(516\) 0 0
\(517\) 1.70820 0.0751267
\(518\) 0 0
\(519\) 11.3050 0.496232
\(520\) −21.7082 −0.951968
\(521\) −4.58359 −0.200811 −0.100405 0.994947i \(-0.532014\pi\)
−0.100405 + 0.994947i \(0.532014\pi\)
\(522\) 9.70820 0.424917
\(523\) −0.875388 −0.0382781 −0.0191390 0.999817i \(-0.506093\pi\)
−0.0191390 + 0.999817i \(0.506093\pi\)
\(524\) −3.27051 −0.142873
\(525\) 0 0
\(526\) 24.1803 1.05431
\(527\) −35.1246 −1.53005
\(528\) −8.29180 −0.360854
\(529\) 1.00000 0.0434783
\(530\) 44.3607 1.92690
\(531\) 4.94427 0.214563
\(532\) 0 0
\(533\) 16.4164 0.711074
\(534\) 5.52786 0.239214
\(535\) −43.4164 −1.87705
\(536\) −16.1803 −0.698884
\(537\) 28.4164 1.22626
\(538\) 16.0902 0.693696
\(539\) 0 0
\(540\) 4.47214 0.192450
\(541\) −7.58359 −0.326044 −0.163022 0.986622i \(-0.552124\pi\)
−0.163022 + 0.986622i \(0.552124\pi\)
\(542\) 12.9443 0.556004
\(543\) −32.7639 −1.40603
\(544\) −17.7082 −0.759233
\(545\) 0 0
\(546\) 0 0
\(547\) 37.5410 1.60514 0.802569 0.596559i \(-0.203466\pi\)
0.802569 + 0.596559i \(0.203466\pi\)
\(548\) 8.58359 0.366673
\(549\) −21.8885 −0.934180
\(550\) 6.76393 0.288415
\(551\) −6.00000 −0.255609
\(552\) −5.00000 −0.212814
\(553\) 0 0
\(554\) −10.5623 −0.448749
\(555\) −23.4164 −0.993971
\(556\) −1.67376 −0.0709833
\(557\) 19.4164 0.822700 0.411350 0.911478i \(-0.365057\pi\)
0.411350 + 0.911478i \(0.365057\pi\)
\(558\) −21.7082 −0.918982
\(559\) 0 0
\(560\) 0 0
\(561\) −8.94427 −0.377627
\(562\) 21.4164 0.903397
\(563\) 15.0557 0.634523 0.317262 0.948338i \(-0.397237\pi\)
0.317262 + 0.948338i \(0.397237\pi\)
\(564\) 3.09017 0.130120
\(565\) 42.8328 1.80199
\(566\) 23.1246 0.972000
\(567\) 0 0
\(568\) 17.3607 0.728438
\(569\) 0.180340 0.00756024 0.00378012 0.999993i \(-0.498797\pi\)
0.00378012 + 0.999993i \(0.498797\pi\)
\(570\) 23.4164 0.980805
\(571\) −27.7082 −1.15955 −0.579776 0.814776i \(-0.696860\pi\)
−0.579776 + 0.814776i \(0.696860\pi\)
\(572\) 1.41641 0.0592230
\(573\) 8.54102 0.356806
\(574\) 0 0
\(575\) 5.47214 0.228204
\(576\) 8.47214 0.353006
\(577\) 12.8885 0.536557 0.268279 0.963341i \(-0.413545\pi\)
0.268279 + 0.963341i \(0.413545\pi\)
\(578\) −16.8541 −0.701038
\(579\) 17.7639 0.738244
\(580\) −6.00000 −0.249136
\(581\) 0 0
\(582\) −15.5279 −0.643651
\(583\) 6.47214 0.268048
\(584\) −34.5967 −1.43162
\(585\) −19.4164 −0.802770
\(586\) −16.9443 −0.699961
\(587\) 11.2918 0.466062 0.233031 0.972469i \(-0.425136\pi\)
0.233031 + 0.972469i \(0.425136\pi\)
\(588\) 0 0
\(589\) 13.4164 0.552813
\(590\) −12.9443 −0.532907
\(591\) −16.7082 −0.687284
\(592\) −15.7082 −0.645603
\(593\) −14.9443 −0.613688 −0.306844 0.951760i \(-0.599273\pi\)
−0.306844 + 0.951760i \(0.599273\pi\)
\(594\) 2.76393 0.113406
\(595\) 0 0
\(596\) −7.34752 −0.300966
\(597\) −57.4853 −2.35272
\(598\) 4.85410 0.198499
\(599\) −1.88854 −0.0771638 −0.0385819 0.999255i \(-0.512284\pi\)
−0.0385819 + 0.999255i \(0.512284\pi\)
\(600\) −27.3607 −1.11700
\(601\) −11.1115 −0.453246 −0.226623 0.973983i \(-0.572768\pi\)
−0.226623 + 0.973983i \(0.572768\pi\)
\(602\) 0 0
\(603\) −14.4721 −0.589351
\(604\) −0.145898 −0.00593651
\(605\) −33.7082 −1.37043
\(606\) 16.1803 0.657281
\(607\) −17.5279 −0.711434 −0.355717 0.934594i \(-0.615763\pi\)
−0.355717 + 0.934594i \(0.615763\pi\)
\(608\) 6.76393 0.274314
\(609\) 0 0
\(610\) 57.3050 2.32021
\(611\) 6.70820 0.271385
\(612\) −6.47214 −0.261621
\(613\) −7.70820 −0.311331 −0.155666 0.987810i \(-0.549752\pi\)
−0.155666 + 0.987810i \(0.549752\pi\)
\(614\) 29.8885 1.20620
\(615\) 39.5967 1.59669
\(616\) 0 0
\(617\) −16.4721 −0.663143 −0.331572 0.943430i \(-0.607579\pi\)
−0.331572 + 0.943430i \(0.607579\pi\)
\(618\) −65.7771 −2.64594
\(619\) 7.41641 0.298091 0.149045 0.988830i \(-0.452380\pi\)
0.149045 + 0.988830i \(0.452380\pi\)
\(620\) 13.4164 0.538816
\(621\) 2.23607 0.0897303
\(622\) −14.8541 −0.595595
\(623\) 0 0
\(624\) −32.5623 −1.30354
\(625\) −22.4164 −0.896656
\(626\) −32.9443 −1.31672
\(627\) 3.41641 0.136438
\(628\) −9.52786 −0.380203
\(629\) −16.9443 −0.675612
\(630\) 0 0
\(631\) −32.3607 −1.28826 −0.644129 0.764917i \(-0.722780\pi\)
−0.644129 + 0.764917i \(0.722780\pi\)
\(632\) 15.5279 0.617665
\(633\) −7.63932 −0.303636
\(634\) 2.29180 0.0910188
\(635\) −67.0132 −2.65934
\(636\) 11.7082 0.464260
\(637\) 0 0
\(638\) −3.70820 −0.146809
\(639\) 15.5279 0.614273
\(640\) −44.0689 −1.74198
\(641\) 45.3050 1.78944 0.894719 0.446629i \(-0.147376\pi\)
0.894719 + 0.446629i \(0.147376\pi\)
\(642\) −48.5410 −1.91576
\(643\) −19.5967 −0.772820 −0.386410 0.922327i \(-0.626285\pi\)
−0.386410 + 0.922327i \(0.626285\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 16.9443 0.666663
\(647\) 6.70820 0.263727 0.131863 0.991268i \(-0.457904\pi\)
0.131863 + 0.991268i \(0.457904\pi\)
\(648\) −24.5967 −0.966252
\(649\) −1.88854 −0.0741318
\(650\) 26.5623 1.04186
\(651\) 0 0
\(652\) −6.32624 −0.247755
\(653\) 24.3050 0.951126 0.475563 0.879682i \(-0.342244\pi\)
0.475563 + 0.879682i \(0.342244\pi\)
\(654\) 0 0
\(655\) −17.1246 −0.669114
\(656\) 26.5623 1.03708
\(657\) −30.9443 −1.20725
\(658\) 0 0
\(659\) 20.6525 0.804506 0.402253 0.915528i \(-0.368227\pi\)
0.402253 + 0.915528i \(0.368227\pi\)
\(660\) 3.41641 0.132983
\(661\) 5.05573 0.196645 0.0983225 0.995155i \(-0.468652\pi\)
0.0983225 + 0.995155i \(0.468652\pi\)
\(662\) −18.8541 −0.732785
\(663\) −35.1246 −1.36413
\(664\) 29.5967 1.14858
\(665\) 0 0
\(666\) −10.4721 −0.405787
\(667\) −3.00000 −0.116160
\(668\) −6.47214 −0.250414
\(669\) 8.94427 0.345806
\(670\) 37.8885 1.46376
\(671\) 8.36068 0.322760
\(672\) 0 0
\(673\) 3.00000 0.115642 0.0578208 0.998327i \(-0.481585\pi\)
0.0578208 + 0.998327i \(0.481585\pi\)
\(674\) 5.52786 0.212925
\(675\) 12.2361 0.470966
\(676\) −2.47214 −0.0950822
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 47.8885 1.83915
\(679\) 0 0
\(680\) −37.8885 −1.45296
\(681\) 22.7639 0.872316
\(682\) 8.29180 0.317509
\(683\) −22.5967 −0.864641 −0.432320 0.901720i \(-0.642305\pi\)
−0.432320 + 0.901720i \(0.642305\pi\)
\(684\) 2.47214 0.0945245
\(685\) 44.9443 1.71723
\(686\) 0 0
\(687\) −26.8328 −1.02374
\(688\) 0 0
\(689\) 25.4164 0.968288
\(690\) 11.7082 0.445724
\(691\) −24.9443 −0.948925 −0.474462 0.880276i \(-0.657358\pi\)
−0.474462 + 0.880276i \(0.657358\pi\)
\(692\) −3.12461 −0.118780
\(693\) 0 0
\(694\) −41.8885 −1.59007
\(695\) −8.76393 −0.332435
\(696\) 15.0000 0.568574
\(697\) 28.6525 1.08529
\(698\) −3.90983 −0.147989
\(699\) 34.5967 1.30857
\(700\) 0 0
\(701\) −26.1803 −0.988818 −0.494409 0.869229i \(-0.664615\pi\)
−0.494409 + 0.869229i \(0.664615\pi\)
\(702\) 10.8541 0.409662
\(703\) 6.47214 0.244101
\(704\) −3.23607 −0.121964
\(705\) 16.1803 0.609387
\(706\) −57.2148 −2.15331
\(707\) 0 0
\(708\) −3.41641 −0.128396
\(709\) 16.0689 0.603480 0.301740 0.953390i \(-0.402433\pi\)
0.301740 + 0.953390i \(0.402433\pi\)
\(710\) −40.6525 −1.52566
\(711\) 13.8885 0.520861
\(712\) 3.41641 0.128035
\(713\) 6.70820 0.251224
\(714\) 0 0
\(715\) 7.41641 0.277358
\(716\) −7.85410 −0.293522
\(717\) −40.7771 −1.52285
\(718\) −25.7082 −0.959422
\(719\) 20.9443 0.781090 0.390545 0.920584i \(-0.372287\pi\)
0.390545 + 0.920584i \(0.372287\pi\)
\(720\) −31.4164 −1.17082
\(721\) 0 0
\(722\) 24.2705 0.903255
\(723\) 38.2918 1.42409
\(724\) 9.05573 0.336553
\(725\) −16.4164 −0.609690
\(726\) −37.6869 −1.39869
\(727\) 14.2918 0.530053 0.265027 0.964241i \(-0.414619\pi\)
0.265027 + 0.964241i \(0.414619\pi\)
\(728\) 0 0
\(729\) −7.00000 −0.259259
\(730\) 81.0132 2.99843
\(731\) 0 0
\(732\) 15.1246 0.559022
\(733\) 26.7639 0.988548 0.494274 0.869306i \(-0.335434\pi\)
0.494274 + 0.869306i \(0.335434\pi\)
\(734\) 29.4164 1.08578
\(735\) 0 0
\(736\) 3.38197 0.124661
\(737\) 5.52786 0.203621
\(738\) 17.7082 0.651848
\(739\) 49.1803 1.80913 0.904564 0.426338i \(-0.140197\pi\)
0.904564 + 0.426338i \(0.140197\pi\)
\(740\) 6.47214 0.237920
\(741\) 13.4164 0.492864
\(742\) 0 0
\(743\) 0.875388 0.0321149 0.0160574 0.999871i \(-0.494889\pi\)
0.0160574 + 0.999871i \(0.494889\pi\)
\(744\) −33.5410 −1.22967
\(745\) −38.4721 −1.40951
\(746\) 9.23607 0.338156
\(747\) 26.4721 0.968565
\(748\) 2.47214 0.0903902
\(749\) 0 0
\(750\) 5.52786 0.201849
\(751\) −44.3607 −1.61874 −0.809372 0.587296i \(-0.800192\pi\)
−0.809372 + 0.587296i \(0.800192\pi\)
\(752\) 10.8541 0.395808
\(753\) 35.1246 1.28001
\(754\) −14.5623 −0.530328
\(755\) −0.763932 −0.0278023
\(756\) 0 0
\(757\) −47.5967 −1.72993 −0.864967 0.501829i \(-0.832661\pi\)
−0.864967 + 0.501829i \(0.832661\pi\)
\(758\) 32.9443 1.19659
\(759\) 1.70820 0.0620039
\(760\) 14.4721 0.524960
\(761\) 16.3050 0.591054 0.295527 0.955334i \(-0.404505\pi\)
0.295527 + 0.955334i \(0.404505\pi\)
\(762\) −74.9230 −2.71417
\(763\) 0 0
\(764\) −2.36068 −0.0854064
\(765\) −33.8885 −1.22524
\(766\) 40.3607 1.45829
\(767\) −7.41641 −0.267791
\(768\) −30.3262 −1.09430
\(769\) −17.1246 −0.617529 −0.308765 0.951138i \(-0.599916\pi\)
−0.308765 + 0.951138i \(0.599916\pi\)
\(770\) 0 0
\(771\) 3.29180 0.118551
\(772\) −4.90983 −0.176709
\(773\) 14.4721 0.520527 0.260263 0.965538i \(-0.416191\pi\)
0.260263 + 0.965538i \(0.416191\pi\)
\(774\) 0 0
\(775\) 36.7082 1.31860
\(776\) −9.59675 −0.344503
\(777\) 0 0
\(778\) −55.7771 −1.99971
\(779\) −10.9443 −0.392119
\(780\) 13.4164 0.480384
\(781\) −5.93112 −0.212232
\(782\) 8.47214 0.302963
\(783\) −6.70820 −0.239732
\(784\) 0 0
\(785\) −49.8885 −1.78060
\(786\) −19.1459 −0.682912
\(787\) −51.4164 −1.83280 −0.916399 0.400267i \(-0.868917\pi\)
−0.916399 + 0.400267i \(0.868917\pi\)
\(788\) 4.61803 0.164511
\(789\) 33.4164 1.18966
\(790\) −36.3607 −1.29365
\(791\) 0 0
\(792\) −3.41641 −0.121397
\(793\) 32.8328 1.16593
\(794\) 3.90983 0.138755
\(795\) 61.3050 2.17426
\(796\) 15.8885 0.563155
\(797\) −10.3607 −0.366994 −0.183497 0.983020i \(-0.558742\pi\)
−0.183497 + 0.983020i \(0.558742\pi\)
\(798\) 0 0
\(799\) 11.7082 0.414206
\(800\) 18.5066 0.654306
\(801\) 3.05573 0.107969
\(802\) −13.2361 −0.467382
\(803\) 11.8197 0.417107
\(804\) 10.0000 0.352673
\(805\) 0 0
\(806\) 32.5623 1.14696
\(807\) 22.2361 0.782747
\(808\) 10.0000 0.351799
\(809\) 47.8885 1.68367 0.841836 0.539734i \(-0.181475\pi\)
0.841836 + 0.539734i \(0.181475\pi\)
\(810\) 57.5967 2.02374
\(811\) 55.6525 1.95422 0.977111 0.212728i \(-0.0682350\pi\)
0.977111 + 0.212728i \(0.0682350\pi\)
\(812\) 0 0
\(813\) 17.8885 0.627379
\(814\) 4.00000 0.140200
\(815\) −33.1246 −1.16030
\(816\) −56.8328 −1.98955
\(817\) 0 0
\(818\) −37.7984 −1.32159
\(819\) 0 0
\(820\) −10.9443 −0.382191
\(821\) −21.0557 −0.734850 −0.367425 0.930053i \(-0.619761\pi\)
−0.367425 + 0.930053i \(0.619761\pi\)
\(822\) 50.2492 1.75264
\(823\) 27.5410 0.960020 0.480010 0.877263i \(-0.340633\pi\)
0.480010 + 0.877263i \(0.340633\pi\)
\(824\) −40.6525 −1.41620
\(825\) 9.34752 0.325439
\(826\) 0 0
\(827\) 10.4721 0.364152 0.182076 0.983284i \(-0.441718\pi\)
0.182076 + 0.983284i \(0.441718\pi\)
\(828\) 1.23607 0.0429563
\(829\) 40.2492 1.39791 0.698957 0.715164i \(-0.253648\pi\)
0.698957 + 0.715164i \(0.253648\pi\)
\(830\) −69.3050 −2.40561
\(831\) −14.5967 −0.506356
\(832\) −12.7082 −0.440578
\(833\) 0 0
\(834\) −9.79837 −0.339290
\(835\) −33.8885 −1.17276
\(836\) −0.944272 −0.0326583
\(837\) 15.0000 0.518476
\(838\) −50.8328 −1.75599
\(839\) 0.875388 0.0302218 0.0151109 0.999886i \(-0.495190\pi\)
0.0151109 + 0.999886i \(0.495190\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 38.3607 1.32200
\(843\) 29.5967 1.01937
\(844\) 2.11146 0.0726793
\(845\) −12.9443 −0.445296
\(846\) 7.23607 0.248781
\(847\) 0 0
\(848\) 41.1246 1.41222
\(849\) 31.9574 1.09678
\(850\) 46.3607 1.59016
\(851\) 3.23607 0.110931
\(852\) −10.7295 −0.367586
\(853\) 37.4164 1.28111 0.640557 0.767911i \(-0.278704\pi\)
0.640557 + 0.767911i \(0.278704\pi\)
\(854\) 0 0
\(855\) 12.9443 0.442685
\(856\) −30.0000 −1.02538
\(857\) 7.47214 0.255243 0.127622 0.991823i \(-0.459266\pi\)
0.127622 + 0.991823i \(0.459266\pi\)
\(858\) 8.29180 0.283077
\(859\) 3.29180 0.112315 0.0561573 0.998422i \(-0.482115\pi\)
0.0561573 + 0.998422i \(0.482115\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 42.8328 1.45889
\(863\) 45.5410 1.55023 0.775117 0.631818i \(-0.217691\pi\)
0.775117 + 0.631818i \(0.217691\pi\)
\(864\) 7.56231 0.257275
\(865\) −16.3607 −0.556280
\(866\) 65.0132 2.20924
\(867\) −23.2918 −0.791031
\(868\) 0 0
\(869\) −5.30495 −0.179958
\(870\) −35.1246 −1.19084
\(871\) 21.7082 0.735554
\(872\) 0 0
\(873\) −8.58359 −0.290511
\(874\) −3.23607 −0.109462
\(875\) 0 0
\(876\) 21.3820 0.722430
\(877\) −27.5279 −0.929550 −0.464775 0.885429i \(-0.653865\pi\)
−0.464775 + 0.885429i \(0.653865\pi\)
\(878\) −8.56231 −0.288964
\(879\) −23.4164 −0.789816
\(880\) 12.0000 0.404520
\(881\) −21.8197 −0.735123 −0.367562 0.929999i \(-0.619807\pi\)
−0.367562 + 0.929999i \(0.619807\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 9.70820 0.326522
\(885\) −17.8885 −0.601317
\(886\) 3.43769 0.115492
\(887\) 35.0689 1.17750 0.588749 0.808316i \(-0.299621\pi\)
0.588749 + 0.808316i \(0.299621\pi\)
\(888\) −16.1803 −0.542977
\(889\) 0 0
\(890\) −8.00000 −0.268161
\(891\) 8.40325 0.281520
\(892\) −2.47214 −0.0827732
\(893\) −4.47214 −0.149654
\(894\) −43.0132 −1.43858
\(895\) −41.1246 −1.37464
\(896\) 0 0
\(897\) 6.70820 0.223980
\(898\) −4.76393 −0.158974
\(899\) −20.1246 −0.671193
\(900\) 6.76393 0.225464
\(901\) 44.3607 1.47787
\(902\) −6.76393 −0.225214
\(903\) 0 0
\(904\) 29.5967 0.984373
\(905\) 47.4164 1.57617
\(906\) −0.854102 −0.0283756
\(907\) 40.2492 1.33645 0.668227 0.743958i \(-0.267054\pi\)
0.668227 + 0.743958i \(0.267054\pi\)
\(908\) −6.29180 −0.208801
\(909\) 8.94427 0.296663
\(910\) 0 0
\(911\) −31.3050 −1.03718 −0.518590 0.855023i \(-0.673543\pi\)
−0.518590 + 0.855023i \(0.673543\pi\)
\(912\) 21.7082 0.718830
\(913\) −10.1115 −0.334640
\(914\) −56.8328 −1.87986
\(915\) 79.1935 2.61806
\(916\) 7.41641 0.245045
\(917\) 0 0
\(918\) 18.9443 0.625254
\(919\) 0.875388 0.0288764 0.0144382 0.999896i \(-0.495404\pi\)
0.0144382 + 0.999896i \(0.495404\pi\)
\(920\) 7.23607 0.238566
\(921\) 41.3050 1.36104
\(922\) 12.0902 0.398169
\(923\) −23.2918 −0.766659
\(924\) 0 0
\(925\) 17.7082 0.582242
\(926\) 32.3607 1.06344
\(927\) −36.3607 −1.19424
\(928\) −10.1459 −0.333055
\(929\) 41.9443 1.37615 0.688073 0.725641i \(-0.258457\pi\)
0.688073 + 0.725641i \(0.258457\pi\)
\(930\) 78.5410 2.57546
\(931\) 0 0
\(932\) −9.56231 −0.313224
\(933\) −20.5279 −0.672052
\(934\) −50.0689 −1.63830
\(935\) 12.9443 0.423323
\(936\) −13.4164 −0.438529
\(937\) −11.8197 −0.386131 −0.193066 0.981186i \(-0.561843\pi\)
−0.193066 + 0.981186i \(0.561843\pi\)
\(938\) 0 0
\(939\) −45.5279 −1.48575
\(940\) −4.47214 −0.145865
\(941\) 24.6525 0.803648 0.401824 0.915717i \(-0.368376\pi\)
0.401824 + 0.915717i \(0.368376\pi\)
\(942\) −55.7771 −1.81732
\(943\) −5.47214 −0.178197
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 0 0
\(947\) −33.1803 −1.07822 −0.539108 0.842237i \(-0.681239\pi\)
−0.539108 + 0.842237i \(0.681239\pi\)
\(948\) −9.59675 −0.311688
\(949\) 46.4164 1.50674
\(950\) −17.7082 −0.574530
\(951\) 3.16718 0.102703
\(952\) 0 0
\(953\) 11.5279 0.373424 0.186712 0.982415i \(-0.440217\pi\)
0.186712 + 0.982415i \(0.440217\pi\)
\(954\) 27.4164 0.887639
\(955\) −12.3607 −0.399982
\(956\) 11.2705 0.364514
\(957\) −5.12461 −0.165655
\(958\) −28.4721 −0.919893
\(959\) 0 0
\(960\) −30.6525 −0.989304
\(961\) 14.0000 0.451613
\(962\) 15.7082 0.506453
\(963\) −26.8328 −0.864675
\(964\) −10.5836 −0.340875
\(965\) −25.7082 −0.827576
\(966\) 0 0
\(967\) −39.5410 −1.27155 −0.635777 0.771873i \(-0.719320\pi\)
−0.635777 + 0.771873i \(0.719320\pi\)
\(968\) −23.2918 −0.748627
\(969\) 23.4164 0.752243
\(970\) 22.4721 0.721537
\(971\) −7.52786 −0.241581 −0.120790 0.992678i \(-0.538543\pi\)
−0.120790 + 0.992678i \(0.538543\pi\)
\(972\) 11.0557 0.354613
\(973\) 0 0
\(974\) 2.09017 0.0669734
\(975\) 36.7082 1.17560
\(976\) 53.1246 1.70048
\(977\) −54.6525 −1.74849 −0.874244 0.485487i \(-0.838642\pi\)
−0.874244 + 0.485487i \(0.838642\pi\)
\(978\) −37.0344 −1.18423
\(979\) −1.16718 −0.0373034
\(980\) 0 0
\(981\) 0 0
\(982\) −64.1591 −2.04740
\(983\) 31.5279 1.00558 0.502791 0.864408i \(-0.332306\pi\)
0.502791 + 0.864408i \(0.332306\pi\)
\(984\) 27.3607 0.872227
\(985\) 24.1803 0.770450
\(986\) −25.4164 −0.809423
\(987\) 0 0
\(988\) −3.70820 −0.117974
\(989\) 0 0
\(990\) 8.00000 0.254257
\(991\) 24.0000 0.762385 0.381193 0.924496i \(-0.375513\pi\)
0.381193 + 0.924496i \(0.375513\pi\)
\(992\) 22.6869 0.720310
\(993\) −26.0557 −0.826854
\(994\) 0 0
\(995\) 83.1935 2.63741
\(996\) −18.2918 −0.579598
\(997\) 36.8328 1.16651 0.583253 0.812290i \(-0.301779\pi\)
0.583253 + 0.812290i \(0.301779\pi\)
\(998\) −52.9230 −1.67525
\(999\) 7.23607 0.228939
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.2.a.c.1.1 2
7.6 odd 2 23.2.a.a.1.1 2
21.20 even 2 207.2.a.d.1.2 2
28.27 even 2 368.2.a.h.1.1 2
35.13 even 4 575.2.b.d.24.4 4
35.27 even 4 575.2.b.d.24.1 4
35.34 odd 2 575.2.a.f.1.2 2
56.13 odd 2 1472.2.a.t.1.1 2
56.27 even 2 1472.2.a.s.1.2 2
77.76 even 2 2783.2.a.c.1.2 2
84.83 odd 2 3312.2.a.ba.1.2 2
91.90 odd 2 3887.2.a.i.1.2 2
105.104 even 2 5175.2.a.be.1.1 2
119.118 odd 2 6647.2.a.b.1.1 2
133.132 even 2 8303.2.a.e.1.2 2
140.139 even 2 9200.2.a.bt.1.2 2
161.6 odd 22 529.2.c.o.266.2 20
161.13 odd 22 529.2.c.o.399.2 20
161.20 even 22 529.2.c.n.170.2 20
161.27 odd 22 529.2.c.o.177.2 20
161.34 even 22 529.2.c.n.466.1 20
161.41 odd 22 529.2.c.o.255.1 20
161.48 odd 22 529.2.c.o.487.1 20
161.55 odd 22 529.2.c.o.334.1 20
161.62 odd 22 529.2.c.o.118.2 20
161.76 even 22 529.2.c.n.118.2 20
161.83 even 22 529.2.c.n.334.1 20
161.90 even 22 529.2.c.n.487.1 20
161.97 even 22 529.2.c.n.255.1 20
161.104 odd 22 529.2.c.o.466.1 20
161.111 even 22 529.2.c.n.177.2 20
161.118 odd 22 529.2.c.o.170.2 20
161.125 even 22 529.2.c.n.399.2 20
161.132 even 22 529.2.c.n.266.2 20
161.146 odd 22 529.2.c.o.501.2 20
161.153 even 22 529.2.c.n.501.2 20
161.160 even 2 529.2.a.a.1.1 2
483.482 odd 2 4761.2.a.w.1.2 2
644.643 odd 2 8464.2.a.bb.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.a.a.1.1 2 7.6 odd 2
207.2.a.d.1.2 2 21.20 even 2
368.2.a.h.1.1 2 28.27 even 2
529.2.a.a.1.1 2 161.160 even 2
529.2.c.n.118.2 20 161.76 even 22
529.2.c.n.170.2 20 161.20 even 22
529.2.c.n.177.2 20 161.111 even 22
529.2.c.n.255.1 20 161.97 even 22
529.2.c.n.266.2 20 161.132 even 22
529.2.c.n.334.1 20 161.83 even 22
529.2.c.n.399.2 20 161.125 even 22
529.2.c.n.466.1 20 161.34 even 22
529.2.c.n.487.1 20 161.90 even 22
529.2.c.n.501.2 20 161.153 even 22
529.2.c.o.118.2 20 161.62 odd 22
529.2.c.o.170.2 20 161.118 odd 22
529.2.c.o.177.2 20 161.27 odd 22
529.2.c.o.255.1 20 161.41 odd 22
529.2.c.o.266.2 20 161.6 odd 22
529.2.c.o.334.1 20 161.55 odd 22
529.2.c.o.399.2 20 161.13 odd 22
529.2.c.o.466.1 20 161.104 odd 22
529.2.c.o.487.1 20 161.48 odd 22
529.2.c.o.501.2 20 161.146 odd 22
575.2.a.f.1.2 2 35.34 odd 2
575.2.b.d.24.1 4 35.27 even 4
575.2.b.d.24.4 4 35.13 even 4
1127.2.a.c.1.1 2 1.1 even 1 trivial
1472.2.a.s.1.2 2 56.27 even 2
1472.2.a.t.1.1 2 56.13 odd 2
2783.2.a.c.1.2 2 77.76 even 2
3312.2.a.ba.1.2 2 84.83 odd 2
3887.2.a.i.1.2 2 91.90 odd 2
4761.2.a.w.1.2 2 483.482 odd 2
5175.2.a.be.1.1 2 105.104 even 2
6647.2.a.b.1.1 2 119.118 odd 2
8303.2.a.e.1.2 2 133.132 even 2
8464.2.a.bb.1.1 2 644.643 odd 2
9200.2.a.bt.1.2 2 140.139 even 2