Properties

Label 529.2.c.o.334.1
Level $529$
Weight $2$
Character 529.334
Analytic conductor $4.224$
Analytic rank $0$
Dimension $20$
Inner twists $10$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,2,Mod(118,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.118");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 529.c (of order \(11\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.22408626693\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: 20.0.54296067514572573056640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} + 2 x^{18} - 3 x^{17} + 5 x^{16} - 8 x^{15} + 13 x^{14} - 21 x^{13} + 34 x^{12} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 334.1
Root \(1.05959 - 1.22283i\) of defining polynomial
Character \(\chi\) \(=\) 529.334
Dual form 529.2.c.o.255.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36118 + 0.874775i) q^{2} +(-0.318226 + 2.21331i) q^{3} +(0.256741 - 0.562183i) q^{4} +(3.10498 - 0.911706i) q^{5} +(-1.50299 - 3.29108i) q^{6} +(0.809452 + 0.934158i) q^{7} +(-0.318226 - 2.21331i) q^{8} +(-1.91899 - 0.563465i) q^{9} +(-3.42890 + 3.95716i) q^{10} +(-0.642661 - 0.413013i) q^{11} +(1.16258 + 0.747147i) q^{12} +(-1.96458 + 2.26725i) q^{13} +(-1.91899 - 0.563465i) q^{14} +(1.02980 + 7.16242i) q^{15} +(3.17876 + 3.66849i) q^{16} +(2.17514 + 4.76289i) q^{17} +(3.10498 - 0.911706i) q^{18} +(-0.830830 + 1.81926i) q^{19} +(0.284630 - 1.97964i) q^{20} +(-2.32517 + 1.49429i) q^{21} +1.23607 q^{22} +5.00000 q^{24} +(4.60345 - 2.95846i) q^{25} +(0.690811 - 4.80469i) q^{26} +(-0.928896 + 2.03400i) q^{27} +(0.732987 - 0.215225i) q^{28} +(-1.24625 - 2.72890i) q^{29} +(-7.66724 - 8.84847i) q^{30} +(0.954677 + 6.63992i) q^{31} +(-3.24497 - 0.952810i) q^{32} +(1.11864 - 1.29097i) q^{33} +(-7.12721 - 4.58038i) q^{34} +(3.36501 + 2.16256i) q^{35} +(-0.809452 + 0.934158i) q^{36} +(-3.10498 - 0.911706i) q^{37} +(-0.460540 - 3.20313i) q^{38} +(-4.39294 - 5.06972i) q^{39} +(-3.00597 - 6.58216i) q^{40} +(-5.25048 + 1.54168i) q^{41} +(1.85779 - 4.06800i) q^{42} +(-0.397186 + 0.255256i) q^{44} -6.47214 q^{45} +2.23607 q^{47} +(-9.13105 + 5.86817i) q^{48} +(0.778766 - 5.41644i) q^{49} +(-3.67813 + 8.05397i) q^{50} +(-11.2339 + 3.29858i) q^{51} +(0.770222 + 1.68655i) q^{52} +(5.54807 + 6.40281i) q^{53} +(-0.514900 - 3.58121i) q^{54} +(-2.37200 - 0.696481i) q^{55} +(1.80999 - 2.08884i) q^{56} +(-3.76220 - 2.41782i) q^{57} +(4.08353 + 2.62433i) q^{58} +(1.61890 - 1.86832i) q^{59} +(4.29098 + 1.25995i) q^{60} +(-1.55753 - 10.8329i) q^{61} +(-7.10793 - 8.20298i) q^{62} +(-1.02696 - 2.24873i) q^{63} +(-4.06448 + 1.19344i) q^{64} +(-4.03293 + 8.83089i) q^{65} +(-0.393349 + 2.73580i) q^{66} +(-6.08737 + 3.91211i) q^{67} +3.23607 q^{68} -6.47214 q^{70} +(6.53144 - 4.19750i) q^{71} +(-0.636451 + 4.42662i) q^{72} +(6.42736 - 14.0739i) q^{73} +(5.02397 - 1.47517i) q^{74} +(5.08305 + 11.1303i) q^{75} +(0.809452 + 0.934158i) q^{76} +(-0.134384 - 0.934661i) q^{77} +(10.4144 + 3.05795i) q^{78} +(-4.54753 + 5.24813i) q^{79} +(13.2146 + 8.49250i) q^{80} +(-9.25379 - 5.94705i) q^{81} +(5.79820 - 6.69148i) q^{82} +(12.6999 + 3.72903i) q^{83} +(0.243103 + 1.69082i) q^{84} +(11.0961 + 12.8056i) q^{85} +(6.43647 - 1.88992i) q^{87} +(-0.709614 + 1.55384i) q^{88} +(0.217438 - 1.51231i) q^{89} +(8.80972 - 5.66166i) q^{90} -3.70820 q^{91} -15.0000 q^{93} +(-3.04368 + 1.95606i) q^{94} +(-0.921081 + 6.40626i) q^{95} +(3.14150 - 6.87892i) q^{96} +(-4.11795 + 1.20914i) q^{97} +(3.67813 + 8.05397i) q^{98} +(1.00054 + 1.15468i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{2} + q^{4} + 2 q^{5} + 5 q^{6} - 2 q^{7} - 4 q^{9} - 6 q^{10} + 6 q^{11} - 5 q^{12} - 6 q^{13} - 4 q^{14} + 10 q^{15} + 3 q^{16} - 6 q^{17} + 2 q^{18} + 4 q^{19} + 4 q^{20} + 10 q^{21} - 20 q^{22}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/529\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(e\left(\frac{10}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36118 + 0.874775i −0.962497 + 0.618559i −0.924688 0.380725i \(-0.875674\pi\)
−0.0378092 + 0.999285i \(0.512038\pi\)
\(3\) −0.318226 + 2.21331i −0.183728 + 1.27785i 0.664125 + 0.747622i \(0.268804\pi\)
−0.847852 + 0.530232i \(0.822105\pi\)
\(4\) 0.256741 0.562183i 0.128370 0.281092i
\(5\) 3.10498 0.911706i 1.38859 0.407727i 0.499840 0.866118i \(-0.333392\pi\)
0.888751 + 0.458390i \(0.151574\pi\)
\(6\) −1.50299 3.29108i −0.613591 1.34358i
\(7\) 0.809452 + 0.934158i 0.305944 + 0.353078i 0.887813 0.460204i \(-0.152224\pi\)
−0.581869 + 0.813283i \(0.697678\pi\)
\(8\) −0.318226 2.21331i −0.112510 0.782523i
\(9\) −1.91899 0.563465i −0.639662 0.187822i
\(10\) −3.42890 + 3.95716i −1.08431 + 1.25136i
\(11\) −0.642661 0.413013i −0.193769 0.124528i 0.440159 0.897920i \(-0.354922\pi\)
−0.633928 + 0.773392i \(0.718559\pi\)
\(12\) 1.16258 + 0.747147i 0.335609 + 0.215683i
\(13\) −1.96458 + 2.26725i −0.544877 + 0.628822i −0.959682 0.281089i \(-0.909304\pi\)
0.414805 + 0.909910i \(0.363850\pi\)
\(14\) −1.91899 0.563465i −0.512871 0.150592i
\(15\) 1.02980 + 7.16242i 0.265893 + 1.84933i
\(16\) 3.17876 + 3.66849i 0.794690 + 0.917121i
\(17\) 2.17514 + 4.76289i 0.527549 + 1.15517i 0.966501 + 0.256661i \(0.0826225\pi\)
−0.438952 + 0.898510i \(0.644650\pi\)
\(18\) 3.10498 0.911706i 0.731852 0.214891i
\(19\) −0.830830 + 1.81926i −0.190605 + 0.417368i −0.980674 0.195651i \(-0.937318\pi\)
0.790068 + 0.613019i \(0.210045\pi\)
\(20\) 0.284630 1.97964i 0.0636451 0.442662i
\(21\) −2.32517 + 1.49429i −0.507393 + 0.326082i
\(22\) 1.23607 0.263531
\(23\) 0 0
\(24\) 5.00000 1.02062
\(25\) 4.60345 2.95846i 0.920691 0.591692i
\(26\) 0.690811 4.80469i 0.135479 0.942278i
\(27\) −0.928896 + 2.03400i −0.178766 + 0.391443i
\(28\) 0.732987 0.215225i 0.138522 0.0406736i
\(29\) −1.24625 2.72890i −0.231422 0.506743i 0.757921 0.652346i \(-0.226215\pi\)
−0.989343 + 0.145603i \(0.953488\pi\)
\(30\) −7.66724 8.84847i −1.39984 1.61550i
\(31\) 0.954677 + 6.63992i 0.171465 + 1.19257i 0.875792 + 0.482689i \(0.160340\pi\)
−0.704327 + 0.709876i \(0.748751\pi\)
\(32\) −3.24497 0.952810i −0.573636 0.168435i
\(33\) 1.11864 1.29097i 0.194729 0.224730i
\(34\) −7.12721 4.58038i −1.22231 0.785529i
\(35\) 3.36501 + 2.16256i 0.568791 + 0.365540i
\(36\) −0.809452 + 0.934158i −0.134909 + 0.155693i
\(37\) −3.10498 0.911706i −0.510456 0.149883i 0.0163542 0.999866i \(-0.494794\pi\)
−0.526810 + 0.849983i \(0.676612\pi\)
\(38\) −0.460540 3.20313i −0.0747095 0.519616i
\(39\) −4.39294 5.06972i −0.703433 0.811805i
\(40\) −3.00597 6.58216i −0.475286 1.04073i
\(41\) −5.25048 + 1.54168i −0.819987 + 0.240770i −0.664710 0.747101i \(-0.731445\pi\)
−0.155276 + 0.987871i \(0.549627\pi\)
\(42\) 1.85779 4.06800i 0.286664 0.627706i
\(43\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(44\) −0.397186 + 0.255256i −0.0598780 + 0.0384813i
\(45\) −6.47214 −0.964809
\(46\) 0 0
\(47\) 2.23607 0.326164 0.163082 0.986613i \(-0.447856\pi\)
0.163082 + 0.986613i \(0.447856\pi\)
\(48\) −9.13105 + 5.86817i −1.31795 + 0.846997i
\(49\) 0.778766 5.41644i 0.111252 0.773777i
\(50\) −3.67813 + 8.05397i −0.520166 + 1.13900i
\(51\) −11.2339 + 3.29858i −1.57307 + 0.461894i
\(52\) 0.770222 + 1.68655i 0.106811 + 0.233882i
\(53\) 5.54807 + 6.40281i 0.762086 + 0.879494i 0.995681 0.0928399i \(-0.0295945\pi\)
−0.233595 + 0.972334i \(0.575049\pi\)
\(54\) −0.514900 3.58121i −0.0700690 0.487341i
\(55\) −2.37200 0.696481i −0.319840 0.0939135i
\(56\) 1.80999 2.08884i 0.241870 0.279133i
\(57\) −3.76220 2.41782i −0.498316 0.320248i
\(58\) 4.08353 + 2.62433i 0.536194 + 0.344591i
\(59\) 1.61890 1.86832i 0.210763 0.243234i −0.640518 0.767943i \(-0.721280\pi\)
0.851282 + 0.524709i \(0.175826\pi\)
\(60\) 4.29098 + 1.25995i 0.553964 + 0.162658i
\(61\) −1.55753 10.8329i −0.199422 1.38701i −0.805968 0.591959i \(-0.798355\pi\)
0.606546 0.795048i \(-0.292554\pi\)
\(62\) −7.10793 8.20298i −0.902707 1.04178i
\(63\) −1.02696 2.24873i −0.129385 0.283314i
\(64\) −4.06448 + 1.19344i −0.508060 + 0.149180i
\(65\) −4.03293 + 8.83089i −0.500224 + 1.09534i
\(66\) −0.393349 + 2.73580i −0.0484179 + 0.336754i
\(67\) −6.08737 + 3.91211i −0.743690 + 0.477941i −0.856805 0.515641i \(-0.827554\pi\)
0.113114 + 0.993582i \(0.463917\pi\)
\(68\) 3.23607 0.392431
\(69\) 0 0
\(70\) −6.47214 −0.773568
\(71\) 6.53144 4.19750i 0.775139 0.498151i −0.0922783 0.995733i \(-0.529415\pi\)
0.867417 + 0.497582i \(0.165779\pi\)
\(72\) −0.636451 + 4.42662i −0.0750065 + 0.521682i
\(73\) 6.42736 14.0739i 0.752265 1.64723i −0.00998608 0.999950i \(-0.503179\pi\)
0.762251 0.647281i \(-0.224094\pi\)
\(74\) 5.02397 1.47517i 0.584025 0.171485i
\(75\) 5.08305 + 11.1303i 0.586940 + 1.28522i
\(76\) 0.809452 + 0.934158i 0.0928506 + 0.107155i
\(77\) −0.134384 0.934661i −0.0153145 0.106514i
\(78\) 10.4144 + 3.05795i 1.17920 + 0.346245i
\(79\) −4.54753 + 5.24813i −0.511637 + 0.590461i −0.951517 0.307596i \(-0.900476\pi\)
0.439880 + 0.898057i \(0.355021\pi\)
\(80\) 13.2146 + 8.49250i 1.47744 + 0.949490i
\(81\) −9.25379 5.94705i −1.02820 0.660783i
\(82\) 5.79820 6.69148i 0.640304 0.738951i
\(83\) 12.6999 + 3.72903i 1.39400 + 0.409314i 0.890618 0.454752i \(-0.150272\pi\)
0.503378 + 0.864066i \(0.332090\pi\)
\(84\) 0.243103 + 1.69082i 0.0265247 + 0.184483i
\(85\) 11.0961 + 12.8056i 1.20355 + 1.38897i
\(86\) 0 0
\(87\) 6.43647 1.88992i 0.690063 0.202621i
\(88\) −0.709614 + 1.55384i −0.0756451 + 0.165640i
\(89\) 0.217438 1.51231i 0.0230484 0.160305i −0.975047 0.222000i \(-0.928742\pi\)
0.998095 + 0.0616951i \(0.0196506\pi\)
\(90\) 8.80972 5.66166i 0.928626 0.596792i
\(91\) −3.70820 −0.388725
\(92\) 0 0
\(93\) −15.0000 −1.55543
\(94\) −3.04368 + 1.95606i −0.313932 + 0.201752i
\(95\) −0.921081 + 6.40626i −0.0945009 + 0.657268i
\(96\) 3.14150 6.87892i 0.320628 0.702076i
\(97\) −4.11795 + 1.20914i −0.418114 + 0.122769i −0.484021 0.875056i \(-0.660824\pi\)
0.0659068 + 0.997826i \(0.479006\pi\)
\(98\) 3.67813 + 8.05397i 0.371547 + 0.813574i
\(99\) 1.00054 + 1.15468i 0.100558 + 0.116050i
\(100\) −0.481304 3.34754i −0.0481304 0.334754i
\(101\) 4.29098 + 1.25995i 0.426969 + 0.125369i 0.488155 0.872757i \(-0.337670\pi\)
−0.0611861 + 0.998126i \(0.519488\pi\)
\(102\) 12.4059 14.3171i 1.22836 1.41761i
\(103\) 15.2943 + 9.82903i 1.50699 + 0.968483i 0.993916 + 0.110139i \(0.0351295\pi\)
0.513073 + 0.858345i \(0.328507\pi\)
\(104\) 5.64330 + 3.62673i 0.553371 + 0.355630i
\(105\) −5.85725 + 6.75963i −0.571609 + 0.659672i
\(106\) −13.1529 3.86205i −1.27753 0.375115i
\(107\) 1.90935 + 13.2798i 0.184584 + 1.28381i 0.845753 + 0.533574i \(0.179152\pi\)
−0.661169 + 0.750237i \(0.729939\pi\)
\(108\) 0.904995 + 1.04442i 0.0870832 + 0.100499i
\(109\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(110\) 3.83797 1.12693i 0.365936 0.107449i
\(111\) 3.00597 6.58216i 0.285314 0.624751i
\(112\) −0.853889 + 5.93893i −0.0806849 + 0.561176i
\(113\) 11.1349 7.15596i 1.04748 0.673176i 0.100656 0.994921i \(-0.467906\pi\)
0.946826 + 0.321745i \(0.104269\pi\)
\(114\) 7.23607 0.677720
\(115\) 0 0
\(116\) −1.85410 −0.172149
\(117\) 5.04752 3.24384i 0.466643 0.299894i
\(118\) −0.569259 + 3.95929i −0.0524046 + 0.364482i
\(119\) −2.68862 + 5.88726i −0.246466 + 0.539684i
\(120\) 15.5249 4.55853i 1.41723 0.416135i
\(121\) −4.32713 9.47510i −0.393376 0.861373i
\(122\) 11.5964 + 13.3830i 1.04989 + 1.21164i
\(123\) −1.74137 12.1115i −0.157014 1.09206i
\(124\) 3.97796 + 1.16803i 0.357231 + 0.104893i
\(125\) 1.00054 1.15468i 0.0894909 0.103278i
\(126\) 3.36501 + 2.16256i 0.299779 + 0.192656i
\(127\) −17.4208 11.1957i −1.54585 0.993458i −0.986357 0.164623i \(-0.947359\pi\)
−0.559494 0.828834i \(-0.689004\pi\)
\(128\) 8.91792 10.2918i 0.788240 0.909677i
\(129\) 0 0
\(130\) −2.23551 15.5483i −0.196067 1.36368i
\(131\) −3.46539 3.99927i −0.302772 0.349418i 0.583892 0.811831i \(-0.301529\pi\)
−0.886665 + 0.462413i \(0.846984\pi\)
\(132\) −0.438565 0.960324i −0.0381722 0.0835855i
\(133\) −2.37200 + 0.696481i −0.205678 + 0.0603926i
\(134\) 4.86376 10.6502i 0.420165 0.920033i
\(135\) −1.02980 + 7.16242i −0.0886311 + 0.616443i
\(136\) 9.84957 6.32993i 0.844593 0.542787i
\(137\) 13.8885 1.18658 0.593289 0.804989i \(-0.297829\pi\)
0.593289 + 0.804989i \(0.297829\pi\)
\(138\) 0 0
\(139\) 2.70820 0.229707 0.114853 0.993382i \(-0.463360\pi\)
0.114853 + 0.993382i \(0.463360\pi\)
\(140\) 2.07969 1.33654i 0.175766 0.112958i
\(141\) −0.711574 + 4.94911i −0.0599254 + 0.416790i
\(142\) −5.21857 + 11.4271i −0.437933 + 0.958939i
\(143\) 2.19896 0.645674i 0.183886 0.0539939i
\(144\) −4.03293 8.83089i −0.336078 0.735908i
\(145\) −6.35752 7.33697i −0.527963 0.609302i
\(146\) 3.56277 + 24.7796i 0.294857 + 2.05078i
\(147\) 11.7404 + 3.44730i 0.968334 + 0.284328i
\(148\) −1.30972 + 1.51150i −0.107658 + 0.124244i
\(149\) −10.0013 6.42743i −0.819337 0.526556i 0.0625363 0.998043i \(-0.480081\pi\)
−0.881873 + 0.471487i \(0.843717\pi\)
\(150\) −16.6555 10.7038i −1.35991 0.873962i
\(151\) 0.154592 0.178408i 0.0125805 0.0145187i −0.749424 0.662090i \(-0.769670\pi\)
0.762005 + 0.647571i \(0.224215\pi\)
\(152\) 4.29098 + 1.25995i 0.348045 + 0.102195i
\(153\) −1.49034 10.3655i −0.120487 0.838005i
\(154\) 1.00054 + 1.15468i 0.0806257 + 0.0930470i
\(155\) 9.01791 + 19.7465i 0.724336 + 1.58608i
\(156\) −3.97796 + 1.16803i −0.318492 + 0.0935176i
\(157\) 6.40421 14.0233i 0.511111 1.11918i −0.461585 0.887096i \(-0.652719\pi\)
0.972696 0.232082i \(-0.0745537\pi\)
\(158\) 1.59906 11.1217i 0.127214 0.884795i
\(159\) −15.9369 + 10.2420i −1.26388 + 0.812247i
\(160\) −10.9443 −0.865221
\(161\) 0 0
\(162\) 17.7984 1.39837
\(163\) −8.61113 + 5.53404i −0.674476 + 0.433459i −0.832536 0.553970i \(-0.813112\pi\)
0.158061 + 0.987429i \(0.449476\pi\)
\(164\) −0.481304 + 3.34754i −0.0375835 + 0.261399i
\(165\) 2.29636 5.02832i 0.178771 0.391454i
\(166\) −20.5489 + 6.03370i −1.59490 + 0.468306i
\(167\) 4.35028 + 9.52579i 0.336635 + 0.737128i 0.999937 0.0112240i \(-0.00357280\pi\)
−0.663302 + 0.748352i \(0.730846\pi\)
\(168\) 4.04726 + 4.67079i 0.312253 + 0.360359i
\(169\) 0.569259 + 3.95929i 0.0437892 + 0.304560i
\(170\) −26.3059 7.72409i −2.01757 0.592411i
\(171\) 2.61944 3.02300i 0.200314 0.231174i
\(172\) 0 0
\(173\) 4.25315 + 2.73333i 0.323361 + 0.207811i 0.692243 0.721665i \(-0.256623\pi\)
−0.368882 + 0.929476i \(0.620259\pi\)
\(174\) −7.10793 + 8.20298i −0.538850 + 0.621867i
\(175\) 6.48995 + 1.90562i 0.490594 + 0.144051i
\(176\) −0.527732 3.67046i −0.0397793 0.276671i
\(177\) 3.61998 + 4.17768i 0.272094 + 0.314014i
\(178\) 1.02696 + 2.24873i 0.0769741 + 0.168550i
\(179\) 12.1934 3.58031i 0.911380 0.267605i 0.207758 0.978180i \(-0.433383\pi\)
0.703622 + 0.710575i \(0.251565\pi\)
\(180\) −1.66166 + 3.63853i −0.123853 + 0.271200i
\(181\) 2.08526 14.5033i 0.154997 1.07802i −0.752690 0.658375i \(-0.771244\pi\)
0.907686 0.419649i \(-0.137847\pi\)
\(182\) 5.04752 3.24384i 0.374147 0.240450i
\(183\) 24.4721 1.80903
\(184\) 0 0
\(185\) −10.4721 −0.769927
\(186\) 20.4177 13.1216i 1.49709 0.962124i
\(187\) 0.569259 3.95929i 0.0416284 0.289532i
\(188\) 0.574089 1.25708i 0.0418698 0.0916820i
\(189\) −2.65197 + 0.778690i −0.192903 + 0.0566413i
\(190\) −4.35028 9.52579i −0.315603 0.691073i
\(191\) 2.50135 + 2.88671i 0.180991 + 0.208875i 0.838994 0.544140i \(-0.183144\pi\)
−0.658003 + 0.753015i \(0.728599\pi\)
\(192\) −1.34803 9.37572i −0.0972854 0.676635i
\(193\) 7.62247 + 2.23816i 0.548678 + 0.161106i 0.544310 0.838884i \(-0.316792\pi\)
0.00436765 + 0.999990i \(0.498610\pi\)
\(194\) 4.54753 5.24813i 0.326494 0.376794i
\(195\) −18.2621 11.7363i −1.30778 0.840457i
\(196\) −2.84509 1.82843i −0.203221 0.130602i
\(197\) −4.89321 + 5.64706i −0.348627 + 0.402337i −0.902797 0.430067i \(-0.858490\pi\)
0.554171 + 0.832403i \(0.313036\pi\)
\(198\) −2.37200 0.696481i −0.168570 0.0494968i
\(199\) 3.65866 + 25.4465i 0.259355 + 1.80386i 0.537442 + 0.843301i \(0.319391\pi\)
−0.278086 + 0.960556i \(0.589700\pi\)
\(200\) −8.01292 9.24740i −0.566599 0.653890i
\(201\) −6.72156 14.7182i −0.474102 1.03814i
\(202\) −6.94296 + 2.03864i −0.488505 + 0.143438i
\(203\) 1.54044 3.37310i 0.108118 0.236745i
\(204\) −1.02980 + 7.16242i −0.0721004 + 0.501469i
\(205\) −14.8971 + 9.57378i −1.04046 + 0.668662i
\(206\) −29.4164 −2.04954
\(207\) 0 0
\(208\) −14.5623 −1.00971
\(209\) 1.28532 0.826026i 0.0889075 0.0571374i
\(210\) 2.05960 14.3248i 0.142126 0.988507i
\(211\) 1.41923 3.10767i 0.0977036 0.213941i −0.854469 0.519503i \(-0.826117\pi\)
0.952172 + 0.305562i \(0.0988443\pi\)
\(212\) 5.02397 1.47517i 0.345048 0.101315i
\(213\) 7.21189 + 15.7918i 0.494150 + 1.08204i
\(214\) −14.2159 16.4060i −0.971776 1.12149i
\(215\) 0 0
\(216\) 4.79746 + 1.40866i 0.326426 + 0.0958474i
\(217\) −5.42997 + 6.26652i −0.368610 + 0.425399i
\(218\) 0 0
\(219\) 29.1046 + 18.7044i 1.96671 + 1.26393i
\(220\) −1.00054 + 1.15468i −0.0674563 + 0.0778487i
\(221\) −15.0719 4.42551i −1.01385 0.297692i
\(222\) 1.66625 + 11.5890i 0.111831 + 0.777805i
\(223\) −2.61944 3.02300i −0.175411 0.202435i 0.661235 0.750178i \(-0.270032\pi\)
−0.836646 + 0.547743i \(0.815487\pi\)
\(224\) −1.73658 3.80257i −0.116030 0.254070i
\(225\) −10.5010 + 3.08336i −0.700063 + 0.205557i
\(226\) −8.89670 + 19.4810i −0.591800 + 1.29586i
\(227\) −1.44881 + 10.0767i −0.0961611 + 0.668815i 0.883541 + 0.468355i \(0.155153\pi\)
−0.979702 + 0.200461i \(0.935756\pi\)
\(228\) −2.32517 + 1.49429i −0.153988 + 0.0989621i
\(229\) −12.0000 −0.792982 −0.396491 0.918039i \(-0.629772\pi\)
−0.396491 + 0.918039i \(0.629772\pi\)
\(230\) 0 0
\(231\) 2.11146 0.138924
\(232\) −5.64330 + 3.62673i −0.370501 + 0.238106i
\(233\) 2.20191 15.3147i 0.144252 1.00330i −0.781159 0.624332i \(-0.785371\pi\)
0.925411 0.378964i \(-0.123720\pi\)
\(234\) −4.03293 + 8.83089i −0.263641 + 0.577294i
\(235\) 6.94296 2.03864i 0.452909 0.132986i
\(236\) −0.634698 1.38979i −0.0413153 0.0904679i
\(237\) −10.1686 11.7352i −0.660521 0.762282i
\(238\) −1.49034 10.3655i −0.0966044 0.671898i
\(239\) −17.4974 5.13769i −1.13181 0.332330i −0.338392 0.941005i \(-0.609883\pi\)
−0.793419 + 0.608675i \(0.791701\pi\)
\(240\) −23.0017 + 26.5454i −1.48476 + 1.71350i
\(241\) 14.4061 + 9.25826i 0.927981 + 0.596377i 0.914963 0.403538i \(-0.132220\pi\)
0.0130182 + 0.999915i \(0.495856\pi\)
\(242\) 14.1786 + 9.11202i 0.911433 + 0.585743i
\(243\) 11.7145 13.5193i 0.751486 0.867261i
\(244\) −6.48995 1.90562i −0.415476 0.121995i
\(245\) −2.52014 17.5280i −0.161006 1.11982i
\(246\) 12.9652 + 14.9626i 0.826630 + 0.953981i
\(247\) −2.49249 5.45779i −0.158593 0.347271i
\(248\) 14.3924 4.22599i 0.913918 0.268351i
\(249\) −12.2949 + 26.9221i −0.779160 + 1.70612i
\(250\) −0.351822 + 2.44697i −0.0222512 + 0.154760i
\(251\) 13.2146 8.49250i 0.834097 0.536042i −0.0524803 0.998622i \(-0.516713\pi\)
0.886577 + 0.462580i \(0.153076\pi\)
\(252\) −1.52786 −0.0962464
\(253\) 0 0
\(254\) 33.5066 2.10239
\(255\) −31.8739 + 20.4841i −1.99602 + 1.28276i
\(256\) −1.93012 + 13.4243i −0.120632 + 0.839016i
\(257\) 0.611547 1.33910i 0.0381473 0.0835309i −0.889599 0.456742i \(-0.849016\pi\)
0.927746 + 0.373211i \(0.121743\pi\)
\(258\) 0 0
\(259\) −1.66166 3.63853i −0.103251 0.226087i
\(260\) 3.92916 + 4.53450i 0.243676 + 0.281218i
\(261\) 0.853889 + 5.93893i 0.0528544 + 0.367610i
\(262\) 8.21547 + 2.41228i 0.507554 + 0.149031i
\(263\) 9.78642 11.2941i 0.603456 0.696426i −0.369022 0.929421i \(-0.620307\pi\)
0.972478 + 0.232995i \(0.0748526\pi\)
\(264\) −3.21330 2.06506i −0.197765 0.127096i
\(265\) 23.0641 + 14.8224i 1.41682 + 0.910535i
\(266\) 2.61944 3.02300i 0.160608 0.185352i
\(267\) 3.27802 + 0.962513i 0.200612 + 0.0589049i
\(268\) 0.636451 + 4.42662i 0.0388775 + 0.270399i
\(269\) −6.51211 7.51538i −0.397051 0.458221i 0.521659 0.853154i \(-0.325313\pi\)
−0.918710 + 0.394933i \(0.870768\pi\)
\(270\) −4.86376 10.6502i −0.295999 0.648148i
\(271\) −7.67594 + 2.25386i −0.466280 + 0.136912i −0.506429 0.862281i \(-0.669035\pi\)
0.0401490 + 0.999194i \(0.487217\pi\)
\(272\) −10.5584 + 23.1196i −0.640194 + 1.40183i
\(273\) 1.18005 8.20740i 0.0714196 0.496734i
\(274\) −18.9048 + 12.1494i −1.14208 + 0.733969i
\(275\) −4.18034 −0.252084
\(276\) 0 0
\(277\) 6.52786 0.392221 0.196111 0.980582i \(-0.437169\pi\)
0.196111 + 0.980582i \(0.437169\pi\)
\(278\) −3.68634 + 2.36907i −0.221092 + 0.142087i
\(279\) 1.90935 13.2798i 0.114310 0.795044i
\(280\) 3.71558 8.13600i 0.222049 0.486219i
\(281\) 12.6999 3.72903i 0.757613 0.222455i 0.119960 0.992779i \(-0.461723\pi\)
0.637653 + 0.770323i \(0.279905\pi\)
\(282\) −3.36078 7.35908i −0.200131 0.438227i
\(283\) −9.35914 10.8010i −0.556343 0.642054i 0.406006 0.913870i \(-0.366921\pi\)
−0.962349 + 0.271816i \(0.912376\pi\)
\(284\) −0.682880 4.74953i −0.0405215 0.281833i
\(285\) −13.8859 4.07727i −0.822530 0.241517i
\(286\) −2.42836 + 2.80247i −0.143592 + 0.165714i
\(287\) −5.69018 3.65686i −0.335881 0.215857i
\(288\) 5.69018 + 3.65686i 0.335297 + 0.215482i
\(289\) −6.82130 + 7.87220i −0.401253 + 0.463070i
\(290\) 15.0719 + 4.42551i 0.885053 + 0.259875i
\(291\) −1.36576 9.49907i −0.0800622 0.556845i
\(292\) −6.26198 7.22671i −0.366455 0.422911i
\(293\) −4.35028 9.52579i −0.254146 0.556503i 0.738956 0.673754i \(-0.235319\pi\)
−0.993102 + 0.117251i \(0.962592\pi\)
\(294\) −18.9964 + 5.57785i −1.10789 + 0.325307i
\(295\) 3.32332 7.27706i 0.193491 0.423687i
\(296\) −1.02980 + 7.16242i −0.0598559 + 0.416307i
\(297\) 1.43703 0.923525i 0.0833851 0.0535883i
\(298\) 19.2361 1.11432
\(299\) 0 0
\(300\) 7.56231 0.436610
\(301\) 0 0
\(302\) −0.0543594 + 0.378078i −0.00312803 + 0.0217560i
\(303\) −4.15415 + 9.09632i −0.238650 + 0.522570i
\(304\) −9.31495 + 2.73512i −0.534249 + 0.156870i
\(305\) −14.7125 32.2159i −0.842436 1.84468i
\(306\) 11.0961 + 12.8056i 0.634324 + 0.732049i
\(307\) −2.62886 18.2841i −0.150037 1.04353i −0.916153 0.400828i \(-0.868723\pi\)
0.766116 0.642702i \(-0.222187\pi\)
\(308\) −0.559953 0.164417i −0.0319063 0.00936852i
\(309\) −26.6217 + 30.7231i −1.51446 + 1.74778i
\(310\) −29.5487 18.9898i −1.67825 1.07855i
\(311\) −7.72299 4.96327i −0.437931 0.281441i 0.303041 0.952978i \(-0.401998\pi\)
−0.740971 + 0.671537i \(0.765635\pi\)
\(312\) −9.82291 + 11.3362i −0.556113 + 0.641788i
\(313\) 19.5359 + 5.73627i 1.10424 + 0.324233i 0.782534 0.622608i \(-0.213927\pi\)
0.321702 + 0.946841i \(0.395745\pi\)
\(314\) 3.54994 + 24.6904i 0.200335 + 1.39336i
\(315\) −5.23889 6.04600i −0.295178 0.340653i
\(316\) 1.78288 + 3.90396i 0.100295 + 0.219615i
\(317\) 1.35903 0.399048i 0.0763309 0.0224128i −0.243344 0.969940i \(-0.578244\pi\)
0.319675 + 0.947527i \(0.396426\pi\)
\(318\) 12.7335 27.8825i 0.714059 1.56357i
\(319\) −0.326157 + 2.26847i −0.0182613 + 0.127010i
\(320\) −11.5321 + 7.41121i −0.644663 + 0.414299i
\(321\) −30.0000 −1.67444
\(322\) 0 0
\(323\) −10.4721 −0.582685
\(324\) −5.71916 + 3.67548i −0.317731 + 0.204193i
\(325\) −2.33630 + 16.2493i −0.129595 + 0.901350i
\(326\) 6.88023 15.0656i 0.381061 0.834407i
\(327\) 0 0
\(328\) 5.08305 + 11.1303i 0.280664 + 0.614569i
\(329\) 1.80999 + 2.08884i 0.0997880 + 0.115162i
\(330\) 1.27290 + 8.85323i 0.0700710 + 0.487354i
\(331\) −11.1805 3.28288i −0.614534 0.180444i −0.0403715 0.999185i \(-0.512854\pi\)
−0.574163 + 0.818741i \(0.694672\pi\)
\(332\) 5.35698 6.18229i 0.294003 0.339297i
\(333\) 5.44471 + 3.49910i 0.298368 + 0.191750i
\(334\) −14.2544 9.16077i −0.779968 0.501255i
\(335\) −15.3345 + 17.6969i −0.837812 + 0.966887i
\(336\) −12.8729 3.77984i −0.702277 0.206207i
\(337\) 0.486206 + 3.38163i 0.0264853 + 0.184209i 0.998770 0.0495927i \(-0.0157923\pi\)
−0.972284 + 0.233802i \(0.924883\pi\)
\(338\) −4.23835 4.89131i −0.230536 0.266052i
\(339\) 12.2949 + 26.9221i 0.667769 + 1.46221i
\(340\) 10.0479 2.95034i 0.544926 0.160005i
\(341\) 2.12884 4.66151i 0.115283 0.252435i
\(342\) −0.921081 + 6.40626i −0.0498064 + 0.346411i
\(343\) 12.9691 8.33474i 0.700266 0.450034i
\(344\) 0 0
\(345\) 0 0
\(346\) −8.18034 −0.439778
\(347\) 21.7788 13.9964i 1.16915 0.751366i 0.195788 0.980646i \(-0.437273\pi\)
0.973361 + 0.229280i \(0.0736371\pi\)
\(348\) 0.590023 4.10370i 0.0316285 0.219981i
\(349\) −1.00381 + 2.19804i −0.0537328 + 0.117658i −0.934594 0.355716i \(-0.884237\pi\)
0.880861 + 0.473375i \(0.156964\pi\)
\(350\) −10.5010 + 3.08336i −0.561299 + 0.164812i
\(351\) −2.78669 6.10200i −0.148742 0.325701i
\(352\) 1.69189 + 1.95255i 0.0901782 + 0.104071i
\(353\) 5.03235 + 35.0008i 0.267845 + 1.86290i 0.468803 + 0.883303i \(0.344685\pi\)
−0.200958 + 0.979600i \(0.564406\pi\)
\(354\) −8.58197 2.51989i −0.456126 0.133931i
\(355\) 16.4531 18.9879i 0.873241 1.00777i
\(356\) −0.794372 0.510512i −0.0421016 0.0270571i
\(357\) −12.1747 7.82423i −0.644355 0.414102i
\(358\) −13.4654 + 15.5400i −0.711671 + 0.821312i
\(359\) −15.2449 4.47632i −0.804597 0.236251i −0.146526 0.989207i \(-0.546809\pi\)
−0.658071 + 0.752956i \(0.728627\pi\)
\(360\) 2.05960 + 14.3248i 0.108550 + 0.754985i
\(361\) 9.82291 + 11.3362i 0.516995 + 0.596644i
\(362\) 9.84874 + 21.5657i 0.517638 + 1.13347i
\(363\) 22.3483 6.56206i 1.17298 0.344419i
\(364\) −0.952046 + 2.08469i −0.0499008 + 0.109267i
\(365\) 7.12555 49.5593i 0.372968 2.59405i
\(366\) −33.3109 + 21.4076i −1.74119 + 1.11899i
\(367\) 18.1803 0.949006 0.474503 0.880254i \(-0.342628\pi\)
0.474503 + 0.880254i \(0.342628\pi\)
\(368\) 0 0
\(369\) 10.9443 0.569736
\(370\) 14.2544 9.16077i 0.741052 0.476245i
\(371\) −1.49034 + 10.3655i −0.0773746 + 0.538152i
\(372\) −3.85111 + 8.43275i −0.199671 + 0.437218i
\(373\) 5.47698 1.60819i 0.283587 0.0832688i −0.136846 0.990592i \(-0.543696\pi\)
0.420433 + 0.907324i \(0.361878\pi\)
\(374\) 2.68862 + 5.88726i 0.139025 + 0.304423i
\(375\) 2.23727 + 2.58195i 0.115532 + 0.133331i
\(376\) −0.711574 4.94911i −0.0366966 0.255231i
\(377\) 8.63544 + 2.53559i 0.444748 + 0.130590i
\(378\) 2.92863 3.37981i 0.150632 0.173839i
\(379\) −17.1285 11.0078i −0.879832 0.565433i 0.0209136 0.999781i \(-0.493343\pi\)
−0.900745 + 0.434348i \(0.856979\pi\)
\(380\) 3.36501 + 2.16256i 0.172622 + 0.110937i
\(381\) 30.3233 34.9949i 1.55351 1.79285i
\(382\) −5.92999 1.74120i −0.303405 0.0890877i
\(383\) −3.54994 24.6904i −0.181393 1.26162i −0.853472 0.521139i \(-0.825507\pi\)
0.672078 0.740480i \(-0.265402\pi\)
\(384\) 19.9411 + 23.0132i 1.01761 + 1.17439i
\(385\) −1.26940 2.77959i −0.0646944 0.141661i
\(386\) −12.3334 + 3.62142i −0.627755 + 0.184325i
\(387\) 0 0
\(388\) −0.377487 + 2.62548i −0.0191640 + 0.133288i
\(389\) 28.9998 18.6370i 1.47035 0.944936i 0.472369 0.881401i \(-0.343399\pi\)
0.997980 0.0635347i \(-0.0202374\pi\)
\(390\) 35.1246 1.77860
\(391\) 0 0
\(392\) −12.2361 −0.618015
\(393\) 9.95440 6.39730i 0.502133 0.322701i
\(394\) 1.72061 11.9671i 0.0866831 0.602894i
\(395\) −9.33526 + 20.4414i −0.469708 + 1.02852i
\(396\) 0.906022 0.266032i 0.0455293 0.0133686i
\(397\) 1.00381 + 2.19804i 0.0503799 + 0.110317i 0.933148 0.359492i \(-0.117050\pi\)
−0.882768 + 0.469809i \(0.844323\pi\)
\(398\) −27.2401 31.4367i −1.36542 1.57578i
\(399\) −0.786697 5.47160i −0.0393841 0.273923i
\(400\) 25.4863 + 7.48347i 1.27432 + 0.374173i
\(401\) −5.35698 + 6.18229i −0.267515 + 0.308729i −0.873574 0.486691i \(-0.838204\pi\)
0.606059 + 0.795419i \(0.292749\pi\)
\(402\) 22.0243 + 14.1542i 1.09847 + 0.705945i
\(403\) −16.9299 10.8802i −0.843338 0.541981i
\(404\) 1.80999 2.08884i 0.0900504 0.103924i
\(405\) −34.1548 10.0288i −1.69717 0.498333i
\(406\) 0.853889 + 5.93893i 0.0423778 + 0.294744i
\(407\) 1.61890 + 1.86832i 0.0802461 + 0.0926090i
\(408\) 10.8757 + 23.8145i 0.538428 + 1.17899i
\(409\) 22.4144 6.58146i 1.10832 0.325432i 0.324168 0.946000i \(-0.394916\pi\)
0.784153 + 0.620567i \(0.213098\pi\)
\(410\) 11.9027 26.0632i 0.587831 1.28717i
\(411\) −4.41969 + 30.7396i −0.218007 + 1.51627i
\(412\) 9.45238 6.07468i 0.465685 0.299278i
\(413\) 3.05573 0.150363
\(414\) 0 0
\(415\) 42.8328 2.10258
\(416\) 8.53527 5.48529i 0.418476 0.268938i
\(417\) −0.861820 + 5.99409i −0.0422035 + 0.293532i
\(418\) −1.02696 + 2.24873i −0.0502304 + 0.109989i
\(419\) 30.1438 8.85102i 1.47262 0.432401i 0.555672 0.831402i \(-0.312461\pi\)
0.916950 + 0.399001i \(0.130643\pi\)
\(420\) 2.29636 + 5.02832i 0.112051 + 0.245357i
\(421\) 15.5256 + 17.9175i 0.756670 + 0.873244i 0.995197 0.0978921i \(-0.0312100\pi\)
−0.238527 + 0.971136i \(0.576665\pi\)
\(422\) 0.786697 + 5.47160i 0.0382958 + 0.266353i
\(423\) −4.29098 1.25995i −0.208635 0.0612607i
\(424\) 12.4059 14.3171i 0.602482 0.695301i
\(425\) 24.1040 + 15.4907i 1.16922 + 0.751409i
\(426\) −23.6310 15.1867i −1.14492 0.735798i
\(427\) 8.85887 10.2237i 0.428711 0.494758i
\(428\) 7.95592 + 2.33607i 0.384564 + 0.112918i
\(429\) 0.729308 + 5.07245i 0.0352113 + 0.244900i
\(430\) 0 0
\(431\) −10.9969 24.0799i −0.529703 1.15989i −0.965633 0.259908i \(-0.916308\pi\)
0.435930 0.899980i \(-0.356419\pi\)
\(432\) −10.4144 + 3.05795i −0.501065 + 0.147126i
\(433\) 16.6915 36.5493i 0.802143 1.75645i 0.164106 0.986443i \(-0.447526\pi\)
0.638037 0.770006i \(-0.279747\pi\)
\(434\) 1.90935 13.2798i 0.0916519 0.637453i
\(435\) 18.2621 11.7363i 0.875601 0.562714i
\(436\) 0 0
\(437\) 0 0
\(438\) −55.9787 −2.67477
\(439\) −4.45174 + 2.86096i −0.212470 + 0.136546i −0.642548 0.766246i \(-0.722123\pi\)
0.430078 + 0.902792i \(0.358486\pi\)
\(440\) −0.786697 + 5.47160i −0.0375043 + 0.260848i
\(441\) −4.54641 + 9.95526i −0.216496 + 0.474060i
\(442\) 24.3869 7.16063i 1.15996 0.340596i
\(443\) −0.882596 1.93261i −0.0419334 0.0918213i 0.887506 0.460796i \(-0.152436\pi\)
−0.929439 + 0.368975i \(0.879709\pi\)
\(444\) −2.92863 3.37981i −0.138986 0.160399i
\(445\) −0.703643 4.89395i −0.0333559 0.231995i
\(446\) 6.20997 + 1.82341i 0.294051 + 0.0863410i
\(447\) 17.4086 20.0905i 0.823396 0.950250i
\(448\) −4.40486 2.83083i −0.208110 0.133744i
\(449\) 2.47688 + 1.59179i 0.116891 + 0.0751214i 0.597780 0.801660i \(-0.296050\pi\)
−0.480889 + 0.876782i \(0.659686\pi\)
\(450\) 11.5964 13.3830i 0.546660 0.630879i
\(451\) 4.01101 + 1.17774i 0.188871 + 0.0554575i
\(452\) −1.16418 8.09708i −0.0547586 0.380854i
\(453\) 0.345677 + 0.398933i 0.0162413 + 0.0187435i
\(454\) −6.84277 14.9836i −0.321147 0.703214i
\(455\) −11.5139 + 3.38079i −0.539781 + 0.158494i
\(456\) −4.15415 + 9.09632i −0.194536 + 0.425974i
\(457\) −4.99875 + 34.7671i −0.233832 + 1.62634i 0.447446 + 0.894311i \(0.352334\pi\)
−0.681278 + 0.732025i \(0.738575\pi\)
\(458\) 16.3341 10.4973i 0.763243 0.490507i
\(459\) −11.7082 −0.546492
\(460\) 0 0
\(461\) 7.47214 0.348012 0.174006 0.984745i \(-0.444329\pi\)
0.174006 + 0.984745i \(0.444329\pi\)
\(462\) −2.87407 + 1.84705i −0.133714 + 0.0859325i
\(463\) 2.84630 19.7964i 0.132279 0.920018i −0.810296 0.586021i \(-0.800693\pi\)
0.942574 0.333997i \(-0.108397\pi\)
\(464\) 6.04940 13.2463i 0.280836 0.614946i
\(465\) −46.5748 + 13.6756i −2.15985 + 0.634190i
\(466\) 10.3997 + 22.7721i 0.481756 + 1.05490i
\(467\) 20.2642 + 23.3861i 0.937715 + 1.08218i 0.996473 + 0.0839084i \(0.0267403\pi\)
−0.0587587 + 0.998272i \(0.518714\pi\)
\(468\) −0.527732 3.67046i −0.0243944 0.169667i
\(469\) −8.58197 2.51989i −0.396278 0.116358i
\(470\) −7.66724 + 8.84847i −0.353664 + 0.408149i
\(471\) 28.9998 + 18.6370i 1.33624 + 0.858750i
\(472\) −4.65034 2.98859i −0.214049 0.137561i
\(473\) 0 0
\(474\) 24.1069 + 7.07842i 1.10727 + 0.325123i
\(475\) 1.55753 + 10.8329i 0.0714645 + 0.497046i
\(476\) 2.61944 + 3.02300i 0.120062 + 0.138559i
\(477\) −7.03890 15.4131i −0.322289 0.705715i
\(478\) 28.3114 8.31296i 1.29493 0.380226i
\(479\) −7.30995 + 16.0066i −0.334000 + 0.731359i −0.999892 0.0146897i \(-0.995324\pi\)
0.665892 + 0.746048i \(0.268051\pi\)
\(480\) 3.48275 24.2230i 0.158965 1.10563i
\(481\) 8.16706 5.24865i 0.372386 0.239318i
\(482\) −27.7082 −1.26207
\(483\) 0 0
\(484\) −6.43769 −0.292622
\(485\) −11.6838 + 7.50871i −0.530533 + 0.340953i
\(486\) −4.11920 + 28.6497i −0.186851 + 1.29958i
\(487\) −0.536631 + 1.17506i −0.0243171 + 0.0532470i −0.921401 0.388614i \(-0.872954\pi\)
0.897084 + 0.441861i \(0.145681\pi\)
\(488\) −23.4808 + 6.89460i −1.06293 + 0.312104i
\(489\) −9.50824 20.8202i −0.429978 0.941520i
\(490\) 18.7634 + 21.6541i 0.847643 + 0.978232i
\(491\) −5.64314 39.2489i −0.254671 1.77128i −0.569366 0.822084i \(-0.692811\pi\)
0.314695 0.949193i \(-0.398098\pi\)
\(492\) −7.25598 2.13055i −0.327125 0.0960525i
\(493\) 10.2867 11.8715i 0.463289 0.534664i
\(494\) 8.16706 + 5.24865i 0.367453 + 0.236148i
\(495\) 4.15939 + 2.67308i 0.186951 + 0.120146i
\(496\) −21.3238 + 24.6089i −0.957466 + 1.10497i
\(497\) 9.20801 + 2.70372i 0.413036 + 0.121278i
\(498\) −6.81525 47.4011i −0.305399 2.12409i
\(499\) −21.4193 24.7192i −0.958860 1.10658i −0.994236 0.107210i \(-0.965808\pi\)
0.0353760 0.999374i \(-0.488737\pi\)
\(500\) −0.392265 0.858940i −0.0175426 0.0384130i
\(501\) −22.4679 + 6.59716i −1.00379 + 0.294740i
\(502\) −10.5584 + 23.1196i −0.471243 + 1.03188i
\(503\) 1.28876 8.96355i 0.0574632 0.399665i −0.940708 0.339217i \(-0.889838\pi\)
0.998171 0.0604482i \(-0.0192530\pi\)
\(504\) −4.65034 + 2.98859i −0.207142 + 0.133122i
\(505\) 14.4721 0.644002
\(506\) 0 0
\(507\) −8.94427 −0.397229
\(508\) −10.7667 + 6.91932i −0.477694 + 0.306995i
\(509\) −4.88210 + 33.9558i −0.216395 + 1.50506i 0.534797 + 0.844980i \(0.320388\pi\)
−0.751193 + 0.660083i \(0.770521\pi\)
\(510\) 25.4670 55.7649i 1.12770 2.46931i
\(511\) 18.3499 5.38803i 0.811753 0.238352i
\(512\) 2.19829 + 4.81359i 0.0971517 + 0.212733i
\(513\) −2.92863 3.37981i −0.129302 0.149222i
\(514\) 0.338989 + 2.35772i 0.0149522 + 0.103995i
\(515\) 56.4497 + 16.5751i 2.48747 + 0.730387i
\(516\) 0 0
\(517\) −1.43703 0.923525i −0.0632006 0.0406166i
\(518\) 5.44471 + 3.49910i 0.239227 + 0.153742i
\(519\) −7.40317 + 8.54371i −0.324963 + 0.375027i
\(520\) 20.8289 + 6.11591i 0.913406 + 0.268200i
\(521\) −0.652313 4.53694i −0.0285784 0.198767i 0.970530 0.240979i \(-0.0774685\pi\)
−0.999109 + 0.0422122i \(0.986559\pi\)
\(522\) −6.35752 7.33697i −0.278261 0.321130i
\(523\) 0.363649 + 0.796281i 0.0159013 + 0.0348189i 0.917416 0.397929i \(-0.130271\pi\)
−0.901515 + 0.432748i \(0.857544\pi\)
\(524\) −3.13803 + 0.921409i −0.137086 + 0.0402519i
\(525\) −6.28299 + 13.7578i −0.274212 + 0.600441i
\(526\) −3.44122 + 23.9342i −0.150044 + 1.04358i
\(527\) −29.5487 + 18.9898i −1.28716 + 0.827209i
\(528\) 8.29180 0.360854
\(529\) 0 0
\(530\) −44.3607 −1.92690
\(531\) −4.15939 + 2.67308i −0.180502 + 0.116002i
\(532\) −0.217438 + 1.51231i −0.00942712 + 0.0655671i
\(533\) 6.81962 14.9329i 0.295391 0.646815i
\(534\) −5.30395 + 1.55738i −0.229524 + 0.0673944i
\(535\) 18.0358 + 39.4930i 0.779757 + 1.70743i
\(536\) 10.5959 + 12.2283i 0.457672 + 0.528181i
\(537\) 4.04408 + 28.1272i 0.174515 + 1.21378i
\(538\) 15.4384 + 4.53312i 0.665597 + 0.195437i
\(539\) −2.73754 + 3.15929i −0.117914 + 0.136080i
\(540\) 3.76220 + 2.41782i 0.161899 + 0.104046i
\(541\) −6.37972 4.10000i −0.274286 0.176273i 0.396265 0.918136i \(-0.370306\pi\)
−0.670551 + 0.741863i \(0.733942\pi\)
\(542\) 8.47670 9.78263i 0.364105 0.420200i
\(543\) 31.4368 + 9.23067i 1.34908 + 0.396126i
\(544\) −2.52014 17.5280i −0.108050 0.751505i
\(545\) 0 0
\(546\) 5.57338 + 12.2040i 0.238519 + 0.522283i
\(547\) −36.0203 + 10.5765i −1.54012 + 0.452220i −0.938130 0.346285i \(-0.887443\pi\)
−0.601989 + 0.798504i \(0.705625\pi\)
\(548\) 3.56575 7.80791i 0.152321 0.333537i
\(549\) −3.11506 + 21.6658i −0.132948 + 0.924672i
\(550\) 5.69018 3.65686i 0.242630 0.155929i
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) −8.58359 −0.365011
\(554\) −8.88558 + 5.71041i −0.377512 + 0.242612i
\(555\) 3.33250 23.1781i 0.141457 0.983854i
\(556\) 0.695306 1.52251i 0.0294875 0.0645687i
\(557\) −18.6299 + 5.47023i −0.789374 + 0.231781i −0.651480 0.758666i \(-0.725852\pi\)
−0.137894 + 0.990447i \(0.544033\pi\)
\(558\) 9.01791 + 19.7465i 0.381759 + 0.835935i
\(559\) 0 0
\(560\) 2.76324 + 19.2188i 0.116768 + 0.812142i
\(561\) 8.58197 + 2.51989i 0.362331 + 0.106390i
\(562\) −14.0248 + 16.1854i −0.591599 + 0.682742i
\(563\) −12.6657 8.13974i −0.533795 0.343049i 0.245813 0.969317i \(-0.420945\pi\)
−0.779608 + 0.626268i \(0.784582\pi\)
\(564\) 2.59962 + 1.67067i 0.109464 + 0.0703480i
\(565\) 28.0495 32.3709i 1.18005 1.36185i
\(566\) 22.1879 + 6.51496i 0.932627 + 0.273844i
\(567\) −1.93502 13.4584i −0.0812632 0.565198i
\(568\) −11.3688 13.1203i −0.477025 0.550517i
\(569\) 0.0749159 + 0.164043i 0.00314064 + 0.00687704i 0.911196 0.411974i \(-0.135160\pi\)
−0.908055 + 0.418851i \(0.862433\pi\)
\(570\) 22.4679 6.59716i 0.941076 0.276325i
\(571\) −11.5104 + 25.2043i −0.481695 + 1.05477i 0.500298 + 0.865853i \(0.333224\pi\)
−0.981994 + 0.188913i \(0.939504\pi\)
\(572\) 0.201576 1.40199i 0.00842831 0.0586202i
\(573\) −7.18516 + 4.61762i −0.300164 + 0.192904i
\(574\) 10.9443 0.456805
\(575\) 0 0
\(576\) 8.47214 0.353006
\(577\) −10.8425 + 6.96807i −0.451381 + 0.290085i −0.746512 0.665372i \(-0.768273\pi\)
0.295131 + 0.955457i \(0.404637\pi\)
\(578\) 2.39859 16.6826i 0.0997681 0.693903i
\(579\) −7.37940 + 16.1586i −0.306678 + 0.671530i
\(580\) −5.75696 + 1.69040i −0.239045 + 0.0701898i
\(581\) 6.79647 + 14.8822i 0.281965 + 0.617418i
\(582\) 10.1686 + 11.7352i 0.421502 + 0.486439i
\(583\) −0.921081 6.40626i −0.0381473 0.265320i
\(584\) −33.1953 9.74703i −1.37363 0.403335i
\(585\) 12.7150 14.6739i 0.525702 0.606693i
\(586\) 14.2544 + 9.16077i 0.588845 + 0.378428i
\(587\) −9.49926 6.10481i −0.392077 0.251972i 0.329718 0.944079i \(-0.393046\pi\)
−0.721795 + 0.692107i \(0.756683\pi\)
\(588\) 4.95226 5.71521i 0.204228 0.235691i
\(589\) −12.8729 3.77984i −0.530421 0.155746i
\(590\) 1.84216 + 12.8125i 0.0758406 + 0.527483i
\(591\) −10.9415 12.6272i −0.450075 0.519414i
\(592\) −6.52542 14.2887i −0.268193 0.587261i
\(593\) −14.3389 + 4.21029i −0.588829 + 0.172896i −0.562556 0.826759i \(-0.690182\pi\)
−0.0262728 + 0.999655i \(0.508364\pi\)
\(594\) −1.14818 + 2.51416i −0.0471103 + 0.103157i
\(595\) −2.98068 + 20.7311i −0.122196 + 0.849892i
\(596\) −6.18113 + 3.97237i −0.253189 + 0.162715i
\(597\) −57.4853 −2.35272
\(598\) 0 0
\(599\) −1.88854 −0.0771638 −0.0385819 0.999255i \(-0.512284\pi\)
−0.0385819 + 0.999255i \(0.512284\pi\)
\(600\) 23.0173 14.7923i 0.939676 0.603893i
\(601\) −1.58133 + 10.9984i −0.0645036 + 0.448632i 0.931817 + 0.362928i \(0.118223\pi\)
−0.996321 + 0.0857040i \(0.972686\pi\)
\(602\) 0 0
\(603\) 13.8859 4.07727i 0.565478 0.166039i
\(604\) −0.0606082 0.132714i −0.00246611 0.00540004i
\(605\) −22.0742 25.4750i −0.897443 1.03570i
\(606\) −2.30270 16.0156i −0.0935409 0.650591i
\(607\) −16.8179 4.93817i −0.682616 0.200434i −0.0780025 0.996953i \(-0.524854\pi\)
−0.604613 + 0.796519i \(0.706672\pi\)
\(608\) 4.42943 5.11184i 0.179637 0.207312i
\(609\) 6.97550 + 4.48288i 0.282662 + 0.181656i
\(610\) 48.2080 + 30.9814i 1.95188 + 1.25440i
\(611\) −4.39294 + 5.06972i −0.177719 + 0.205099i
\(612\) −6.20997 1.82341i −0.251023 0.0737070i
\(613\) 1.09699 + 7.62975i 0.0443071 + 0.308163i 0.999909 + 0.0135013i \(0.00429772\pi\)
−0.955602 + 0.294661i \(0.904793\pi\)
\(614\) 19.5728 + 22.5883i 0.789895 + 0.911588i
\(615\) −16.4491 36.0185i −0.663291 1.45240i
\(616\) −2.02593 + 0.594866i −0.0816269 + 0.0239678i
\(617\) −6.84277 + 14.9836i −0.275480 + 0.603216i −0.995914 0.0903069i \(-0.971215\pi\)
0.720434 + 0.693523i \(0.243942\pi\)
\(618\) 9.36106 65.1076i 0.376557 2.61901i
\(619\) −6.23908 + 4.00961i −0.250770 + 0.161160i −0.659987 0.751277i \(-0.729438\pi\)
0.409217 + 0.912437i \(0.365802\pi\)
\(620\) 13.4164 0.538816
\(621\) 0 0
\(622\) 14.8541 0.595595
\(623\) 1.58874 1.02102i 0.0636517 0.0409065i
\(624\) 4.63410 32.2309i 0.185512 1.29027i
\(625\) −9.31211 + 20.3907i −0.372484 + 0.815627i
\(626\) −31.6098 + 9.28147i −1.26338 + 0.370962i
\(627\) 1.41923 + 3.10767i 0.0566785 + 0.124109i
\(628\) −6.23942 7.20068i −0.248980 0.287338i
\(629\) −2.41142 16.7718i −0.0961497 0.668736i
\(630\) 12.4199 + 3.64682i 0.494822 + 0.145293i
\(631\) 21.1917 24.4566i 0.843630 0.973601i −0.156271 0.987714i \(-0.549947\pi\)
0.999900 + 0.0141136i \(0.00449265\pi\)
\(632\) 13.0629 + 8.39500i 0.519613 + 0.333935i
\(633\) 6.42661 + 4.13013i 0.255435 + 0.164158i
\(634\) −1.50081 + 1.73202i −0.0596047 + 0.0687875i
\(635\) −64.2987 18.8798i −2.55161 0.749222i
\(636\) 1.66625 + 11.5890i 0.0660712 + 0.459535i
\(637\) 10.7505 + 12.4067i 0.425949 + 0.491571i
\(638\) −1.54044 3.37310i −0.0609867 0.133542i
\(639\) −14.8989 + 4.37470i −0.589390 + 0.173061i
\(640\) 18.3069 40.0865i 0.723643 1.58456i
\(641\) −6.44757 + 44.8438i −0.254664 + 1.77122i 0.314752 + 0.949174i \(0.398079\pi\)
−0.569415 + 0.822050i \(0.692830\pi\)
\(642\) 40.8353 26.2433i 1.61164 1.03574i
\(643\) 19.5967 0.772820 0.386410 0.922327i \(-0.373715\pi\)
0.386410 + 0.922327i \(0.373715\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 14.2544 9.16077i 0.560833 0.360425i
\(647\) 0.954677 6.63992i 0.0375322 0.261042i −0.962412 0.271593i \(-0.912449\pi\)
0.999944 + 0.0105510i \(0.00335854\pi\)
\(648\) −10.2179 + 22.3740i −0.401395 + 0.878933i
\(649\) −1.81204 + 0.532064i −0.0711290 + 0.0208853i
\(650\) −11.0344 24.1619i −0.432804 0.947709i
\(651\) −12.1418 14.0124i −0.475874 0.549188i
\(652\) 0.900318 + 6.26185i 0.0352592 + 0.245233i
\(653\) −23.3204 6.84750i −0.912599 0.267963i −0.208465 0.978030i \(-0.566847\pi\)
−0.704134 + 0.710067i \(0.748665\pi\)
\(654\) 0 0
\(655\) −14.4061 9.25826i −0.562894 0.361750i
\(656\) −22.3456 14.3607i −0.872450 0.560690i
\(657\) −20.2642 + 23.3861i −0.790581 + 0.912379i
\(658\) −4.29098 1.25995i −0.167280 0.0491178i
\(659\) −2.93915 20.4423i −0.114493 0.796318i −0.963456 0.267865i \(-0.913682\pi\)
0.848963 0.528452i \(-0.177227\pi\)
\(660\) −2.23727 2.58195i −0.0870857 0.100502i
\(661\) −2.10023 4.59885i −0.0816893 0.178875i 0.864380 0.502839i \(-0.167711\pi\)
−0.946069 + 0.323965i \(0.894984\pi\)
\(662\) 18.0904 5.31181i 0.703103 0.206450i
\(663\) 14.5913 31.9505i 0.566679 1.24085i
\(664\) 4.21206 29.2955i 0.163459 1.13689i
\(665\) −6.73003 + 4.32513i −0.260979 + 0.167721i
\(666\) −10.4721 −0.405787
\(667\) 0 0
\(668\) 6.47214 0.250414
\(669\) 7.52440 4.83564i 0.290910 0.186957i
\(670\) 5.39210 37.5029i 0.208315 1.44886i
\(671\) −3.47315 + 7.60514i −0.134080 + 0.293593i
\(672\) 8.96888 2.63350i 0.345982 0.101590i
\(673\) 1.24625 + 2.72890i 0.0480392 + 0.105191i 0.932130 0.362124i \(-0.117948\pi\)
−0.884091 + 0.467316i \(0.845221\pi\)
\(674\) −3.61998 4.17768i −0.139436 0.160918i
\(675\) 1.74137 + 12.1115i 0.0670255 + 0.466173i
\(676\) 2.37200 + 0.696481i 0.0912307 + 0.0267877i
\(677\) −11.7875 + 13.6035i −0.453030 + 0.522825i −0.935614 0.353025i \(-0.885153\pi\)
0.482584 + 0.875850i \(0.339698\pi\)
\(678\) −40.2864 25.8905i −1.54719 0.994319i
\(679\) −4.46281 2.86807i −0.171267 0.110067i
\(680\) 24.8117 28.6343i 0.951486 1.09807i
\(681\) −21.8418 6.41334i −0.836981 0.245760i
\(682\) 1.18005 + 8.20740i 0.0451863 + 0.314277i
\(683\) 14.7977 + 17.0775i 0.566219 + 0.653452i 0.964584 0.263775i \(-0.0849677\pi\)
−0.398365 + 0.917227i \(0.630422\pi\)
\(684\) −1.02696 2.24873i −0.0392669 0.0859825i
\(685\) 43.1237 12.6623i 1.64767 0.483800i
\(686\) −10.3622 + 22.6901i −0.395632 + 0.866312i
\(687\) 3.81871 26.5597i 0.145693 1.01332i
\(688\) 0 0
\(689\) −25.4164 −0.968288
\(690\) 0 0
\(691\) 24.9443 0.948925 0.474462 0.880276i \(-0.342642\pi\)
0.474462 + 0.880276i \(0.342642\pi\)
\(692\) 2.62859 1.68929i 0.0999240 0.0642173i
\(693\) −0.268768 + 1.86932i −0.0102096 + 0.0710096i
\(694\) −17.4011 + 38.1032i −0.660538 + 1.44638i
\(695\) 8.40893 2.46908i 0.318969 0.0936577i
\(696\) −6.23123 13.6445i −0.236194 0.517193i
\(697\) −18.7634 21.6541i −0.710714 0.820207i
\(698\) −0.556427 3.87003i −0.0210611 0.146483i
\(699\) 33.1953 + 9.74703i 1.25556 + 0.368667i
\(700\) 2.73754 3.15929i 0.103469 0.119410i
\(701\) −22.0243 14.1542i −0.831846 0.534595i 0.0540177 0.998540i \(-0.482797\pi\)
−0.885864 + 0.463945i \(0.846434\pi\)
\(702\) 9.13105 + 5.86817i 0.344629 + 0.221480i
\(703\) 4.23835 4.89131i 0.159852 0.184479i
\(704\) 3.10498 + 0.911706i 0.117024 + 0.0343612i
\(705\) 2.30270 + 16.0156i 0.0867248 + 0.603184i
\(706\) −37.4677 43.2400i −1.41012 1.62736i
\(707\) 2.29636 + 5.02832i 0.0863634 + 0.189110i
\(708\) 3.27802 0.962513i 0.123196 0.0361735i
\(709\) 6.67526 14.6168i 0.250694 0.548944i −0.741887 0.670525i \(-0.766069\pi\)
0.992582 + 0.121580i \(0.0387963\pi\)
\(710\) −5.78545 + 40.2387i −0.217124 + 1.51013i
\(711\) 11.6838 7.50871i 0.438176 0.281599i
\(712\) −3.41641 −0.128035
\(713\) 0 0
\(714\) 23.4164 0.876337
\(715\) 6.23908 4.00961i 0.233328 0.149951i
\(716\) 1.11776 7.77416i 0.0417725 0.290534i
\(717\) 16.9394 37.0921i 0.632614 1.38523i
\(718\) 24.6668 7.24284i 0.920558 0.270300i
\(719\) −8.70056 19.0516i −0.324476 0.710504i 0.675154 0.737676i \(-0.264077\pi\)
−0.999631 + 0.0271724i \(0.991350\pi\)
\(720\) −20.5734 23.7429i −0.766724 0.884847i
\(721\) 3.19812 + 22.2434i 0.119104 + 0.828388i
\(722\) −23.2874 6.83779i −0.866667 0.254476i
\(723\) −25.0758 + 28.9390i −0.932579 + 1.07625i
\(724\) −7.61816 4.89590i −0.283127 0.181955i
\(725\) −13.8104 8.87538i −0.512904 0.329623i
\(726\) −24.6797 + 28.4819i −0.915949 + 1.05706i
\(727\) 13.7129 + 4.02646i 0.508582 + 0.149333i 0.525949 0.850516i \(-0.323710\pi\)
−0.0173669 + 0.999849i \(0.505528\pi\)
\(728\) 1.18005 + 8.20740i 0.0437354 + 0.304186i
\(729\) 4.58403 + 5.29025i 0.169779 + 0.195935i
\(730\) 33.6541 + 73.6922i 1.24559 + 2.72747i
\(731\) 0 0
\(732\) 6.28299 13.7578i 0.232226 0.508504i
\(733\) 3.80890 26.4915i 0.140685 0.978486i −0.790115 0.612958i \(-0.789979\pi\)
0.930800 0.365528i \(-0.119112\pi\)
\(734\) −24.7467 + 15.9037i −0.913416 + 0.587017i
\(735\) 39.5967 1.46055
\(736\) 0 0
\(737\) 5.52786 0.203621
\(738\) −14.8971 + 9.57378i −0.548369 + 0.352416i
\(739\) −6.99909 + 48.6798i −0.257466 + 1.79071i 0.293265 + 0.956031i \(0.405258\pi\)
−0.550731 + 0.834683i \(0.685651\pi\)
\(740\) −2.68862 + 5.88726i −0.0988357 + 0.216420i
\(741\) 12.8729 3.77984i 0.472900 0.138856i
\(742\) −7.03890 15.4131i −0.258406 0.565831i
\(743\) −0.573257 0.661574i −0.0210308 0.0242708i 0.745137 0.666912i \(-0.232384\pi\)
−0.766168 + 0.642641i \(0.777839\pi\)
\(744\) 4.77338 + 33.1996i 0.175001 + 1.21716i
\(745\) −36.9137 10.8389i −1.35241 0.397105i
\(746\) −6.04834 + 6.98015i −0.221445 + 0.255562i
\(747\) −22.2698 14.3119i −0.814809 0.523646i
\(748\) −2.07969 1.33654i −0.0760411 0.0488687i
\(749\) −10.8599 + 12.5330i −0.396814 + 0.457947i
\(750\) −5.30395 1.55738i −0.193673 0.0568675i
\(751\) 6.31318 + 43.9092i 0.230371 + 1.60227i 0.696504 + 0.717553i \(0.254738\pi\)
−0.466133 + 0.884715i \(0.654353\pi\)
\(752\) 7.10793 + 8.20298i 0.259199 + 0.299132i
\(753\) 14.5913 + 31.9505i 0.531736 + 1.16434i
\(754\) −13.9724 + 4.10268i −0.508846 + 0.149411i
\(755\) 0.317349 0.694897i 0.0115495 0.0252899i
\(756\) −0.243103 + 1.69082i −0.00884156 + 0.0614944i
\(757\) −40.0409 + 25.7327i −1.45531 + 0.935273i −0.456347 + 0.889802i \(0.650842\pi\)
−0.998966 + 0.0454705i \(0.985521\pi\)
\(758\) 32.9443 1.19659
\(759\) 0 0
\(760\) 14.4721 0.524960
\(761\) −13.7166 + 8.81512i −0.497226 + 0.319548i −0.765106 0.643904i \(-0.777313\pi\)
0.267880 + 0.963452i \(0.413677\pi\)
\(762\) −10.6627 + 74.1604i −0.386267 + 2.68655i
\(763\) 0 0
\(764\) 2.26506 0.665080i 0.0819468 0.0240618i
\(765\) −14.0778 30.8261i −0.508984 1.11452i
\(766\) 26.4306 + 30.5026i 0.954977 + 1.10210i
\(767\) 1.05546 + 7.34092i 0.0381106 + 0.265065i
\(768\) −29.0978 8.54389i −1.04998 0.308301i
\(769\) −11.2142 + 12.9419i −0.404396 + 0.466698i −0.921020 0.389514i \(-0.872643\pi\)
0.516625 + 0.856212i \(0.327188\pi\)
\(770\) 4.15939 + 2.67308i 0.149894 + 0.0963309i
\(771\) 2.76924 + 1.77968i 0.0997316 + 0.0640936i
\(772\) 3.21525 3.71060i 0.115720 0.133547i
\(773\) 13.8859 + 4.07727i 0.499442 + 0.146649i 0.521744 0.853102i \(-0.325282\pi\)
−0.0223026 + 0.999751i \(0.507100\pi\)
\(774\) 0 0
\(775\) 24.0388 + 27.7422i 0.863498 + 0.996530i
\(776\) 3.98663 + 8.72951i 0.143112 + 0.313371i
\(777\) 8.58197 2.51989i 0.307876 0.0904006i
\(778\) −23.1706 + 50.7366i −0.830708 + 1.81900i
\(779\) 1.55753 10.8329i 0.0558044 0.388128i
\(780\) −11.2866 + 7.25346i −0.404125 + 0.259715i
\(781\) −5.93112 −0.212232
\(782\) 0 0
\(783\) 6.70820 0.239732
\(784\) 22.3456 14.3607i 0.798058 0.512881i
\(785\) 7.09988 49.3808i 0.253406 1.76247i
\(786\) −7.95349 + 17.4157i −0.283692 + 0.621198i
\(787\) −49.3337 + 14.4857i −1.75856 + 0.516359i −0.992046 0.125874i \(-0.959826\pi\)
−0.766510 + 0.642233i \(0.778008\pi\)
\(788\) 1.91840 + 4.20071i 0.0683402 + 0.149644i
\(789\) 21.8831 + 25.2544i 0.779059 + 0.899082i
\(790\) −5.17466 35.9906i −0.184106 1.28049i
\(791\) 15.6980 + 4.60934i 0.558155 + 0.163889i
\(792\) 2.23727 2.58195i 0.0794980 0.0917456i
\(793\) 27.6207 + 17.7508i 0.980841 + 0.630348i
\(794\) −3.28916 2.11381i −0.116728 0.0750164i
\(795\) −40.1462 + 46.3312i −1.42384 + 1.64320i
\(796\) 15.2449 + 4.47632i 0.540343 + 0.158659i
\(797\) −1.47448 10.2552i −0.0522287 0.363259i −0.999129 0.0417309i \(-0.986713\pi\)
0.946900 0.321528i \(-0.104196\pi\)
\(798\) 5.85725 + 6.75963i 0.207344 + 0.239288i
\(799\) 4.86376 + 10.6502i 0.172068 + 0.376775i
\(800\) −17.7569 + 5.21391i −0.627802 + 0.184339i
\(801\) −1.26940 + 2.77959i −0.0448519 + 0.0982119i
\(802\) 1.88369 13.1013i 0.0665154 0.462625i
\(803\) −9.94333 + 6.39019i −0.350893 + 0.225505i
\(804\) −10.0000 −0.352673
\(805\) 0 0
\(806\) 32.5623 1.14696
\(807\) 18.7062 12.0217i 0.658488 0.423185i
\(808\) 1.42315 9.89821i 0.0500662 0.348218i
\(809\) 19.8936 43.5610i 0.699422 1.53152i −0.141248 0.989974i \(-0.545111\pi\)
0.840670 0.541547i \(-0.182161\pi\)
\(810\) 55.2637 16.2269i 1.94177 0.570154i
\(811\) −23.1189 50.6233i −0.811813 1.77762i −0.599411 0.800441i \(-0.704599\pi\)
−0.212402 0.977182i \(-0.568129\pi\)
\(812\) −1.50081 1.73202i −0.0526680 0.0607821i
\(813\) −2.54581 17.7065i −0.0892853 0.620993i
\(814\) −3.83797 1.12693i −0.134521 0.0394989i
\(815\) −21.6920 + 25.0339i −0.759838 + 0.876900i
\(816\) −47.8108 30.7261i −1.67371 1.07563i
\(817\) 0 0
\(818\) −24.7527 + 28.5661i −0.865457 + 0.998790i
\(819\) 7.11599 + 2.08944i 0.248653 + 0.0730111i
\(820\) 1.55753 + 10.8329i 0.0543914 + 0.378300i
\(821\) 13.7886 + 15.9129i 0.481224 + 0.555363i 0.943499 0.331374i \(-0.107512\pi\)
−0.462275 + 0.886737i \(0.652967\pi\)
\(822\) −20.8743 45.7083i −0.728074 1.59426i
\(823\) −26.4254 + 7.75920i −0.921132 + 0.270469i −0.707720 0.706493i \(-0.750276\pi\)
−0.213412 + 0.976962i \(0.568458\pi\)
\(824\) 16.8876 36.9788i 0.588309 1.28822i
\(825\) 1.33029 9.25238i 0.0463148 0.322127i
\(826\) −4.15939 + 2.67308i −0.144724 + 0.0930082i
\(827\) 10.4721 0.364152 0.182076 0.983284i \(-0.441718\pi\)
0.182076 + 0.983284i \(0.441718\pi\)
\(828\) 0 0
\(829\) −40.2492 −1.39791 −0.698957 0.715164i \(-0.746352\pi\)
−0.698957 + 0.715164i \(0.746352\pi\)
\(830\) −58.3030 + 37.4691i −2.02373 + 1.30057i
\(831\) −2.07733 + 14.4482i −0.0720619 + 0.501202i
\(832\) 5.27918 11.5598i 0.183023 0.400764i
\(833\) 27.4918 8.07234i 0.952536 0.279690i
\(834\) −4.07039 8.91291i −0.140946 0.308629i
\(835\) 22.1923 + 25.6113i 0.767995 + 0.886314i
\(836\) −0.134384 0.934661i −0.00464776 0.0323259i
\(837\) −14.3924 4.22599i −0.497474 0.146072i
\(838\) −33.2884 + 38.4169i −1.14993 + 1.32709i
\(839\) −0.736423 0.473271i −0.0254242 0.0163391i 0.527867 0.849327i \(-0.322992\pi\)
−0.553291 + 0.832988i \(0.686628\pi\)
\(840\) 16.8251 + 10.8128i 0.580520 + 0.373078i
\(841\) 13.0972 15.1150i 0.451628 0.521207i
\(842\) −36.8068 10.8075i −1.26845 0.372449i
\(843\) 4.21206 + 29.2955i 0.145071 + 1.00899i
\(844\) −1.38271 1.59573i −0.0475948 0.0549274i
\(845\) 5.37724 + 11.7745i 0.184983 + 0.405056i
\(846\) 6.94296 2.03864i 0.238704 0.0700897i
\(847\) 5.34863 11.7119i 0.183781 0.402424i
\(848\) −5.85264 + 40.7060i −0.200981 + 1.39785i
\(849\) 26.8843 17.2775i 0.922667 0.592962i
\(850\) −46.3607 −1.59016
\(851\) 0 0
\(852\) 10.7295 0.367586
\(853\) −31.4767 + 20.2288i −1.07774 + 0.692622i −0.954035 0.299697i \(-0.903115\pi\)
−0.123707 + 0.992319i \(0.539478\pi\)
\(854\) −3.11506 + 21.6658i −0.106595 + 0.741387i
\(855\) 5.37724 11.7745i 0.183898 0.402680i
\(856\) 28.7848 8.45198i 0.983844 0.288883i
\(857\) −3.10404 6.79689i −0.106032 0.232177i 0.849178 0.528107i \(-0.177098\pi\)
−0.955210 + 0.295929i \(0.904371\pi\)
\(858\) −5.42997 6.26652i −0.185376 0.213936i
\(859\) 0.468471 + 3.25829i 0.0159840 + 0.111171i 0.996251 0.0865045i \(-0.0275697\pi\)
−0.980267 + 0.197676i \(0.936661\pi\)
\(860\) 0 0
\(861\) 9.90451 11.4304i 0.337545 0.389548i
\(862\) 36.0333 + 23.1572i 1.22730 + 0.788736i
\(863\) 38.3115 + 24.6213i 1.30414 + 0.838120i 0.993656 0.112459i \(-0.0358726\pi\)
0.310484 + 0.950579i \(0.399509\pi\)
\(864\) 4.95226 5.71521i 0.168479 0.194435i
\(865\) 15.6980 + 4.60934i 0.533747 + 0.156722i
\(866\) 9.25234 + 64.3514i 0.314407 + 2.18675i
\(867\) −15.2529 17.6028i −0.518015 0.597821i
\(868\) 2.12884 + 4.66151i 0.0722576 + 0.158222i
\(869\) 5.09006 1.49458i 0.172669 0.0507001i
\(870\) −14.5913 + 31.9505i −0.494691 + 1.08322i
\(871\) 3.08940 21.4872i 0.104680 0.728068i
\(872\) 0 0
\(873\) 8.58359 0.290511
\(874\) 0 0
\(875\) 1.88854 0.0638444
\(876\) 17.9877 11.5600i 0.607747 0.390575i
\(877\) 3.91762 27.2477i 0.132289 0.920088i −0.810272 0.586054i \(-0.800681\pi\)
0.942561 0.334035i \(-0.108410\pi\)
\(878\) 3.55691 7.78855i 0.120040 0.262851i
\(879\) 22.4679 6.59716i 0.757823 0.222517i
\(880\) −4.98498 10.9156i −0.168044 0.367964i
\(881\) −14.2888 16.4902i −0.481403 0.555569i 0.462145 0.886804i \(-0.347080\pi\)
−0.943548 + 0.331236i \(0.892535\pi\)
\(882\) −2.52014 17.5280i −0.0848575 0.590197i
\(883\) −3.83797 1.12693i −0.129158 0.0379242i 0.216515 0.976279i \(-0.430531\pi\)
−0.345673 + 0.938355i \(0.612349\pi\)
\(884\) −6.35752 + 7.33697i −0.213827 + 0.246769i
\(885\) 15.0488 + 9.67128i 0.505860 + 0.325096i
\(886\) 2.89197 + 1.85856i 0.0971577 + 0.0624395i
\(887\) 22.9652 26.5033i 0.771097 0.889894i −0.225336 0.974281i \(-0.572348\pi\)
0.996433 + 0.0843876i \(0.0268934\pi\)
\(888\) −15.5249 4.55853i −0.520982 0.152974i
\(889\) −3.64280 25.3362i −0.122175 0.849749i
\(890\) 5.23889 + 6.04600i 0.175608 + 0.202662i
\(891\) 3.49084 + 7.64387i 0.116947 + 0.256079i
\(892\) −2.37200 + 0.696481i −0.0794203 + 0.0233199i
\(893\) −1.85779 + 4.06800i −0.0621687 + 0.136130i
\(894\) −6.12141 + 42.5753i −0.204731 + 1.42393i
\(895\) 34.5962 22.2336i 1.15642 0.743189i
\(896\) 16.8328 0.562345
\(897\) 0 0
\(898\) −4.76393 −0.158974
\(899\) 16.9299 10.8802i 0.564644 0.362875i
\(900\) −0.962608 + 6.69508i −0.0320869 + 0.223169i
\(901\) −18.4281 + 40.3519i −0.613929 + 1.34432i
\(902\) −6.48995 + 1.90562i −0.216092 + 0.0634502i
\(903\) 0 0
\(904\) −19.3817 22.3677i −0.644627 0.743940i
\(905\) −6.74806 46.9338i −0.224313 1.56013i
\(906\) −0.819505 0.240628i −0.0272262 0.00799434i
\(907\) −26.3576 + 30.4183i −0.875191 + 1.01002i 0.124650 + 0.992201i \(0.460219\pi\)
−0.999841 + 0.0178234i \(0.994326\pi\)
\(908\) 5.29300 + 3.40160i 0.175654 + 0.112886i
\(909\) −7.52440 4.83564i −0.249569 0.160388i
\(910\) 12.7150 14.6739i 0.421500 0.486436i
\(911\) 30.0369 + 8.81962i 0.995166 + 0.292207i 0.738471 0.674285i \(-0.235548\pi\)
0.256695 + 0.966492i \(0.417366\pi\)
\(912\) −3.08940 21.4872i −0.102300 0.711514i
\(913\) −6.62160 7.64173i −0.219143 0.252904i
\(914\) −23.6092 51.6969i −0.780923 1.70998i
\(915\) 75.9856 22.3114i 2.51201 0.737592i
\(916\) −3.08089 + 6.74620i −0.101795 + 0.222901i
\(917\) 0.930884 6.47444i 0.0307405 0.213805i
\(918\) 15.9369 10.2420i 0.525997 0.338038i
\(919\) 0.875388 0.0288764 0.0144382 0.999896i \(-0.495404\pi\)
0.0144382 + 0.999896i \(0.495404\pi\)
\(920\) 0 0
\(921\) 41.3050 1.36104
\(922\) −10.1709 + 6.53644i −0.334961 + 0.215266i
\(923\) −3.31477 + 23.0547i −0.109107 + 0.758855i
\(924\) 0.542097 1.18703i 0.0178337 0.0390503i
\(925\) −16.9909 + 4.98898i −0.558657 + 0.164037i
\(926\) 13.4431 + 29.4363i 0.441768 + 0.967337i
\(927\) −23.8112 27.4796i −0.782062 0.902547i
\(928\) 1.44391 + 10.0426i 0.0473987 + 0.329665i
\(929\) 40.2452 + 11.8171i 1.32040 + 0.387705i 0.864638 0.502395i \(-0.167548\pi\)
0.455765 + 0.890100i \(0.349366\pi\)
\(930\) 51.4334 59.3573i 1.68657 1.94640i
\(931\) 9.20691 + 5.91692i 0.301744 + 0.193919i
\(932\) −8.04432 5.16977i −0.263501 0.169342i
\(933\) 13.4429 15.5139i 0.440101 0.507903i
\(934\) −48.0407 14.1060i −1.57194 0.461564i
\(935\) −1.84216 12.8125i −0.0602451 0.419014i
\(936\) −8.78588 10.1394i −0.287175 0.331418i
\(937\) 4.91006 + 10.7515i 0.160405 + 0.351238i 0.972720 0.231981i \(-0.0745206\pi\)
−0.812316 + 0.583218i \(0.801793\pi\)
\(938\) 13.8859 4.07727i 0.453391 0.133128i
\(939\) −18.9130 + 41.4136i −0.617201 + 1.35148i
\(940\) 0.636451 4.42662i 0.0207588 0.144380i
\(941\) −20.7390 + 13.3281i −0.676072 + 0.434485i −0.833110 0.553108i \(-0.813442\pi\)
0.157038 + 0.987593i \(0.449805\pi\)
\(942\) −55.7771 −1.81732
\(943\) 0 0
\(944\) 12.0000 0.390567
\(945\) −7.52440 + 4.83564i −0.244769 + 0.157303i
\(946\) 0 0
\(947\) −13.7836 + 30.1819i −0.447907 + 0.980780i 0.542172 + 0.840268i \(0.317602\pi\)
−0.990079 + 0.140512i \(0.955125\pi\)
\(948\) −9.20801 + 2.70372i −0.299062 + 0.0878126i
\(949\) 19.2821 + 42.2218i 0.625923 + 1.37058i
\(950\) −11.5964 13.3830i −0.376237 0.434201i
\(951\) 0.450737 + 3.13495i 0.0146162 + 0.101658i
\(952\) 13.8859 + 4.07727i 0.450045 + 0.132145i
\(953\) −7.54915 + 8.71218i −0.244541 + 0.282215i −0.864730 0.502237i \(-0.832510\pi\)
0.620189 + 0.784452i \(0.287056\pi\)
\(954\) 23.0641 + 14.8224i 0.746729 + 0.479894i
\(955\) 10.3985 + 6.68269i 0.336486 + 0.216247i
\(956\) −7.38061 + 8.51768i −0.238706 + 0.275482i
\(957\) −4.91703 1.44377i −0.158945 0.0466705i
\(958\) −4.05201 28.1823i −0.130914 0.910530i
\(959\) 11.2421 + 12.9741i 0.363027 + 0.418955i
\(960\) −12.7335 27.8825i −0.410972 0.899903i
\(961\) −13.4329 + 3.94426i −0.433319 + 0.127234i
\(962\) −6.52542 + 14.2887i −0.210388 + 0.460686i
\(963\) 3.81871 26.5597i 0.123056 0.855874i
\(964\) 8.90348 5.72192i 0.286762 0.184291i
\(965\) 25.7082 0.827576
\(966\) 0 0
\(967\) −39.5410 −1.27155 −0.635777 0.771873i \(-0.719320\pi\)
−0.635777 + 0.771873i \(0.719320\pi\)
\(968\) −19.5943 + 12.5925i −0.629785 + 0.404738i
\(969\) 3.33250 23.1781i 0.107055 0.744587i
\(970\) 9.33526 20.4414i 0.299737 0.656333i
\(971\) −7.22293 + 2.12084i −0.231795 + 0.0680611i −0.395567 0.918437i \(-0.629452\pi\)
0.163772 + 0.986498i \(0.447634\pi\)
\(972\) −4.59272 10.0566i −0.147311 0.322567i
\(973\) 2.19216 + 2.52989i 0.0702775 + 0.0811045i
\(974\) −0.297462 2.06890i −0.00953130 0.0662917i
\(975\) −35.2213 10.3419i −1.12798 0.331206i
\(976\) 34.7892 40.1489i 1.11358 1.28514i
\(977\) −45.9766 29.5474i −1.47092 0.945304i −0.997935 0.0642341i \(-0.979540\pi\)
−0.472987 0.881070i \(-0.656824\pi\)
\(978\) 31.1554 + 20.0223i 0.996238 + 0.640244i
\(979\) −0.764343 + 0.882099i −0.0244285 + 0.0281920i
\(980\) −10.5010 3.08336i −0.335441 0.0984942i
\(981\) 0 0
\(982\) 42.0152 + 48.4882i 1.34076 + 1.54732i
\(983\) −13.0971 28.6788i −0.417734 0.914710i −0.995160 0.0982671i \(-0.968670\pi\)
0.577426 0.816443i \(-0.304057\pi\)
\(984\) −26.2524 + 7.70839i −0.836895 + 0.245735i
\(985\) −10.0449 + 21.9952i −0.320056 + 0.700826i
\(986\) −3.61713 + 25.1577i −0.115193 + 0.801185i
\(987\) −5.19923 + 3.34134i −0.165493 + 0.106356i
\(988\) −3.70820 −0.117974
\(989\) 0 0
\(990\) −8.00000 −0.254257
\(991\) 20.1901 12.9754i 0.641359 0.412177i −0.179141 0.983824i \(-0.557332\pi\)
0.820500 + 0.571647i \(0.193695\pi\)
\(992\) 3.22869 22.4560i 0.102511 0.712979i
\(993\) 10.8239 23.7011i 0.343487 0.752132i
\(994\) −14.8989 + 4.37470i −0.472564 + 0.138757i
\(995\) 34.5598 + 75.6755i 1.09562 + 2.39907i
\(996\) 11.9786 + 13.8240i 0.379556 + 0.438031i
\(997\) 5.24186 + 36.4579i 0.166011 + 1.15463i 0.887028 + 0.461716i \(0.152766\pi\)
−0.721017 + 0.692918i \(0.756325\pi\)
\(998\) 50.7792 + 14.9101i 1.60739 + 0.471972i
\(999\) 4.73862 5.46866i 0.149923 0.173021i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.2.c.o.334.1 20
23.2 even 11 inner 529.2.c.o.255.1 20
23.3 even 11 inner 529.2.c.o.177.2 20
23.4 even 11 inner 529.2.c.o.399.2 20
23.5 odd 22 529.2.a.a.1.1 2
23.6 even 11 inner 529.2.c.o.501.2 20
23.7 odd 22 529.2.c.n.266.2 20
23.8 even 11 inner 529.2.c.o.170.2 20
23.9 even 11 inner 529.2.c.o.466.1 20
23.10 odd 22 529.2.c.n.487.1 20
23.11 odd 22 529.2.c.n.118.2 20
23.12 even 11 inner 529.2.c.o.118.2 20
23.13 even 11 inner 529.2.c.o.487.1 20
23.14 odd 22 529.2.c.n.466.1 20
23.15 odd 22 529.2.c.n.170.2 20
23.16 even 11 inner 529.2.c.o.266.2 20
23.17 odd 22 529.2.c.n.501.2 20
23.18 even 11 23.2.a.a.1.1 2
23.19 odd 22 529.2.c.n.399.2 20
23.20 odd 22 529.2.c.n.177.2 20
23.21 odd 22 529.2.c.n.255.1 20
23.22 odd 2 529.2.c.n.334.1 20
69.5 even 22 4761.2.a.w.1.2 2
69.41 odd 22 207.2.a.d.1.2 2
92.51 even 22 8464.2.a.bb.1.1 2
92.87 odd 22 368.2.a.h.1.1 2
115.18 odd 44 575.2.b.d.24.4 4
115.64 even 22 575.2.a.f.1.2 2
115.87 odd 44 575.2.b.d.24.1 4
161.41 odd 22 1127.2.a.c.1.1 2
184.133 even 22 1472.2.a.t.1.1 2
184.179 odd 22 1472.2.a.s.1.2 2
253.87 odd 22 2783.2.a.c.1.2 2
276.179 even 22 3312.2.a.ba.1.2 2
299.64 even 22 3887.2.a.i.1.2 2
345.179 odd 22 5175.2.a.be.1.1 2
391.271 even 22 6647.2.a.b.1.1 2
437.18 odd 22 8303.2.a.e.1.2 2
460.179 odd 22 9200.2.a.bt.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.a.a.1.1 2 23.18 even 11
207.2.a.d.1.2 2 69.41 odd 22
368.2.a.h.1.1 2 92.87 odd 22
529.2.a.a.1.1 2 23.5 odd 22
529.2.c.n.118.2 20 23.11 odd 22
529.2.c.n.170.2 20 23.15 odd 22
529.2.c.n.177.2 20 23.20 odd 22
529.2.c.n.255.1 20 23.21 odd 22
529.2.c.n.266.2 20 23.7 odd 22
529.2.c.n.334.1 20 23.22 odd 2
529.2.c.n.399.2 20 23.19 odd 22
529.2.c.n.466.1 20 23.14 odd 22
529.2.c.n.487.1 20 23.10 odd 22
529.2.c.n.501.2 20 23.17 odd 22
529.2.c.o.118.2 20 23.12 even 11 inner
529.2.c.o.170.2 20 23.8 even 11 inner
529.2.c.o.177.2 20 23.3 even 11 inner
529.2.c.o.255.1 20 23.2 even 11 inner
529.2.c.o.266.2 20 23.16 even 11 inner
529.2.c.o.334.1 20 1.1 even 1 trivial
529.2.c.o.399.2 20 23.4 even 11 inner
529.2.c.o.466.1 20 23.9 even 11 inner
529.2.c.o.487.1 20 23.13 even 11 inner
529.2.c.o.501.2 20 23.6 even 11 inner
575.2.a.f.1.2 2 115.64 even 22
575.2.b.d.24.1 4 115.87 odd 44
575.2.b.d.24.4 4 115.18 odd 44
1127.2.a.c.1.1 2 161.41 odd 22
1472.2.a.s.1.2 2 184.179 odd 22
1472.2.a.t.1.1 2 184.133 even 22
2783.2.a.c.1.2 2 253.87 odd 22
3312.2.a.ba.1.2 2 276.179 even 22
3887.2.a.i.1.2 2 299.64 even 22
4761.2.a.w.1.2 2 69.5 even 22
5175.2.a.be.1.1 2 345.179 odd 22
6647.2.a.b.1.1 2 391.271 even 22
8303.2.a.e.1.2 2 437.18 odd 22
8464.2.a.bb.1.1 2 92.51 even 22
9200.2.a.bt.1.2 2 460.179 odd 22