Properties

Label 529.2.c.o
Level $529$
Weight $2$
Character orbit 529.c
Analytic conductor $4.224$
Analytic rank $0$
Dimension $20$
Inner twists $10$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,2,Mod(118,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.118");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 529.c (of order \(11\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.22408626693\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: 20.0.54296067514572573056640625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} + 2 x^{18} - 3 x^{17} + 5 x^{16} - 8 x^{15} + 13 x^{14} - 21 x^{13} + 34 x^{12} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{16} q^{2} + (\beta_{19} - 2 \beta_{18} + \beta_{17} + \cdots + 1) q^{3} + (\beta_{11} + \beta_{10}) q^{4} - 2 \beta_{8} q^{5} + (2 \beta_{13} + \beta_{12}) q^{6} + (2 \beta_{19} - 2 \beta_{18}) q^{7}+ \cdots + ( - 8 \beta_{19} + 4 \beta_{18}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{2} + q^{4} + 2 q^{5} + 5 q^{6} - 2 q^{7} - 4 q^{9} - 6 q^{10} + 6 q^{11} - 5 q^{12} - 6 q^{13} - 4 q^{14} + 10 q^{15} + 3 q^{16} - 6 q^{17} + 2 q^{18} + 4 q^{19} + 4 q^{20} + 10 q^{21} - 20 q^{22}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - x^{19} + 2 x^{18} - 3 x^{17} + 5 x^{16} - 8 x^{15} + 13 x^{14} - 21 x^{13} + 34 x^{12} + \cdots + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{11} + 55 ) / 89 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{12} + 144\nu ) / 89 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{13} - 144\nu^{2} ) / 89 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{13} + 233\nu^{2} ) / 89 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{14} + 233\nu^{3} ) / 89 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -2\nu^{14} - 377\nu^{3} ) / 89 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -2\nu^{15} - 377\nu^{4} ) / 89 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -3\nu^{15} - 610\nu^{4} ) / 89 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -3\nu^{16} - 610\nu^{5} ) / 89 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -5\nu^{16} - 987\nu^{5} ) / 89 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 5\nu^{17} + 987\nu^{6} ) / 89 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( -8\nu^{17} - 1597\nu^{6} ) / 89 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( -8\nu^{18} - 1597\nu^{7} ) / 89 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 13\nu^{18} + 2584\nu^{7} ) / 89 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 13\nu^{19} + 2584\nu^{8} ) / 89 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 21\nu^{19} + 4181\nu^{8} ) / 89 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 34 \nu^{19} - 34 \nu^{18} + 68 \nu^{17} - 102 \nu^{16} + 170 \nu^{15} - 272 \nu^{14} + 442 \nu^{13} + \cdots + 34 ) / 89 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 55 \nu^{19} + 55 \nu^{18} - 110 \nu^{17} + 165 \nu^{16} - 275 \nu^{15} + 440 \nu^{14} - 715 \nu^{13} + \cdots - 55 ) / 89 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + \beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + 2\beta_{6} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{9} + 3\beta_{8} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{11} - 5\beta_{10} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -5\beta_{13} - 8\beta_{12} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -8\beta_{15} - 13\beta_{14} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 13\beta_{17} - 21\beta_{16} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 21 \beta_{19} + 34 \beta_{18} + 21 \beta_{17} - 34 \beta_{16} + 21 \beta_{15} + 34 \beta_{14} + \cdots + 21 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 34\beta_{19} + 55\beta_{18} \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 89\beta_{2} - 55 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 89\beta_{3} - 144\beta_1 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( -144\beta_{5} - 233\beta_{4} \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( -233\beta_{7} - 377\beta_{6} \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 377\beta_{9} - 610\beta_{8} \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( -610\beta_{11} + 987\beta_{10} \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 987\beta_{13} + 1597\beta_{12} \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 1597\beta_{15} + 2584\beta_{14} \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( -2584\beta_{17} + 4181\beta_{16} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/529\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(\beta_{17}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
118.1
0.519923 + 0.334134i
−1.36118 0.874775i
0.256741 + 0.562183i
−0.672156 1.47182i
−0.592999 0.174120i
1.55249 + 0.455853i
1.05959 + 1.22283i
−0.404726 0.467079i
−0.592999 + 0.174120i
1.55249 0.455853i
1.05959 1.22283i
−0.404726 + 0.467079i
0.519923 0.334134i
−1.36118 + 0.874775i
0.230270 + 1.60156i
−0.0879554 0.611743i
0.230270 1.60156i
−0.0879554 + 0.611743i
0.256741 0.562183i
−0.672156 + 1.47182i
−0.0879554 0.611743i −0.928896 + 2.03400i 1.55249 0.455853i −0.809452 + 0.934158i 1.32599 + 0.389345i 2.72235 1.74955i −0.928896 2.03400i −1.30972 1.51150i 0.642661 + 0.413013i
118.2 0.230270 + 1.60156i 0.928896 2.03400i −0.592999 + 0.174120i 2.11917 2.44566i 3.47148 + 1.01932i −1.03985 + 0.668269i 0.928896 + 2.03400i −1.30972 1.51150i 4.40486 + 2.83083i
170.1 −0.592999 + 0.174120i 1.46431 + 1.68991i −1.36118 + 0.874775i −0.175911 1.22349i −1.16258 0.747147i 1.34431 2.94363i 1.46431 1.68991i −0.284630 + 1.97964i 0.317349 + 0.694897i
170.2 1.55249 0.455853i −1.46431 1.68991i 0.519923 0.334134i 0.460540 + 3.20313i −3.04368 1.95606i −0.513481 + 1.12437i −1.46431 + 1.68991i −0.284630 + 1.97964i 2.17514 + 4.76289i
177.1 −0.404726 + 0.467079i −1.88110 + 1.20891i 0.230270 + 1.60156i 0.513481 + 1.12437i 0.196674 1.36790i −3.10498 + 0.911706i −1.88110 1.20891i 0.830830 1.81926i −0.732987 0.215225i
177.2 1.05959 1.22283i 1.88110 1.20891i −0.0879554 0.611743i −1.34431 2.94363i 0.514900 3.58121i 1.18600 0.348241i 1.88110 + 1.20891i 0.830830 1.81926i −5.02397 1.47517i
255.1 −1.36118 0.874775i −0.318226 2.21331i 0.256741 + 0.562183i 3.10498 + 0.911706i −1.50299 + 3.29108i 0.809452 0.934158i −0.318226 + 2.21331i −1.91899 + 0.563465i −3.42890 3.95716i
255.2 0.519923 + 0.334134i 0.318226 + 2.21331i −0.672156 1.47182i −1.18600 0.348241i −0.574089 + 1.25708i −2.11917 + 2.44566i 0.318226 2.21331i −1.91899 + 0.563465i −0.500269 0.577341i
266.1 −0.404726 0.467079i −1.88110 1.20891i 0.230270 1.60156i 0.513481 1.12437i 0.196674 + 1.36790i −3.10498 0.911706i −1.88110 + 1.20891i 0.830830 + 1.81926i −0.732987 + 0.215225i
266.2 1.05959 + 1.22283i 1.88110 + 1.20891i −0.0879554 + 0.611743i −1.34431 + 2.94363i 0.514900 + 3.58121i 1.18600 + 0.348241i 1.88110 1.20891i 0.830830 + 1.81926i −5.02397 + 1.47517i
334.1 −1.36118 + 0.874775i −0.318226 + 2.21331i 0.256741 0.562183i 3.10498 0.911706i −1.50299 3.29108i 0.809452 + 0.934158i −0.318226 2.21331i −1.91899 0.563465i −3.42890 + 3.95716i
334.2 0.519923 0.334134i 0.318226 2.21331i −0.672156 + 1.47182i −1.18600 + 0.348241i −0.574089 1.25708i −2.11917 2.44566i 0.318226 + 2.21331i −1.91899 0.563465i −0.500269 + 0.577341i
399.1 −0.0879554 + 0.611743i −0.928896 2.03400i 1.55249 + 0.455853i −0.809452 0.934158i 1.32599 0.389345i 2.72235 + 1.74955i −0.928896 + 2.03400i −1.30972 + 1.51150i 0.642661 0.413013i
399.2 0.230270 1.60156i 0.928896 + 2.03400i −0.592999 0.174120i 2.11917 + 2.44566i 3.47148 1.01932i −1.03985 0.668269i 0.928896 2.03400i −1.30972 + 1.51150i 4.40486 2.83083i
466.1 −0.672156 + 1.47182i −2.14549 0.629973i −0.404726 0.467079i −2.72235 + 1.74955i 2.36931 2.73433i 0.175911 1.22349i −2.14549 + 0.629973i 1.68251 + 1.08128i −0.745170 5.18277i
466.2 0.256741 0.562183i 2.14549 + 0.629973i 1.05959 + 1.22283i 1.03985 0.668269i 0.904995 1.04442i −0.460540 + 3.20313i 2.14549 0.629973i 1.68251 + 1.08128i −0.108719 0.756156i
487.1 −0.672156 1.47182i −2.14549 + 0.629973i −0.404726 + 0.467079i −2.72235 1.74955i 2.36931 + 2.73433i 0.175911 + 1.22349i −2.14549 0.629973i 1.68251 1.08128i −0.745170 + 5.18277i
487.2 0.256741 + 0.562183i 2.14549 0.629973i 1.05959 1.22283i 1.03985 + 0.668269i 0.904995 + 1.04442i −0.460540 3.20313i 2.14549 + 0.629973i 1.68251 1.08128i −0.108719 + 0.756156i
501.1 −0.592999 0.174120i 1.46431 1.68991i −1.36118 0.874775i −0.175911 + 1.22349i −1.16258 + 0.747147i 1.34431 + 2.94363i 1.46431 + 1.68991i −0.284630 1.97964i 0.317349 0.694897i
501.2 1.55249 + 0.455853i −1.46431 + 1.68991i 0.519923 + 0.334134i 0.460540 3.20313i −3.04368 + 1.95606i −0.513481 1.12437i −1.46431 1.68991i −0.284630 1.97964i 2.17514 4.76289i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 118.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.c even 11 9 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 529.2.c.o 20
23.b odd 2 1 529.2.c.n 20
23.c even 11 1 23.2.a.a 2
23.c even 11 9 inner 529.2.c.o 20
23.d odd 22 1 529.2.a.a 2
23.d odd 22 9 529.2.c.n 20
69.g even 22 1 4761.2.a.w 2
69.h odd 22 1 207.2.a.d 2
92.g odd 22 1 368.2.a.h 2
92.h even 22 1 8464.2.a.bb 2
115.j even 22 1 575.2.a.f 2
115.k odd 44 2 575.2.b.d 4
161.l odd 22 1 1127.2.a.c 2
184.k odd 22 1 1472.2.a.s 2
184.p even 22 1 1472.2.a.t 2
253.k odd 22 1 2783.2.a.c 2
276.o even 22 1 3312.2.a.ba 2
299.p even 22 1 3887.2.a.i 2
345.p odd 22 1 5175.2.a.be 2
391.n even 22 1 6647.2.a.b 2
437.o odd 22 1 8303.2.a.e 2
460.n odd 22 1 9200.2.a.bt 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.2.a.a 2 23.c even 11 1
207.2.a.d 2 69.h odd 22 1
368.2.a.h 2 92.g odd 22 1
529.2.a.a 2 23.d odd 22 1
529.2.c.n 20 23.b odd 2 1
529.2.c.n 20 23.d odd 22 9
529.2.c.o 20 1.a even 1 1 trivial
529.2.c.o 20 23.c even 11 9 inner
575.2.a.f 2 115.j even 22 1
575.2.b.d 4 115.k odd 44 2
1127.2.a.c 2 161.l odd 22 1
1472.2.a.s 2 184.k odd 22 1
1472.2.a.t 2 184.p even 22 1
2783.2.a.c 2 253.k odd 22 1
3312.2.a.ba 2 276.o even 22 1
3887.2.a.i 2 299.p even 22 1
4761.2.a.w 2 69.g even 22 1
5175.2.a.be 2 345.p odd 22 1
6647.2.a.b 2 391.n even 22 1
8303.2.a.e 2 437.o odd 22 1
8464.2.a.bb 2 92.h even 22 1
9200.2.a.bt 2 460.n odd 22 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(529, [\chi])\):

\( T_{2}^{20} - T_{2}^{19} + 2 T_{2}^{18} - 3 T_{2}^{17} + 5 T_{2}^{16} - 8 T_{2}^{15} + 13 T_{2}^{14} + \cdots + 1 \) Copy content Toggle raw display
\( T_{5}^{20} - 2 T_{5}^{19} + 8 T_{5}^{18} - 24 T_{5}^{17} + 80 T_{5}^{16} - 256 T_{5}^{15} + \cdots + 1048576 \) Copy content Toggle raw display
\( T_{7}^{20} + 2 T_{7}^{19} + 8 T_{7}^{18} + 24 T_{7}^{17} + 80 T_{7}^{16} + 256 T_{7}^{15} + \cdots + 1048576 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} - T^{19} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{20} + 5 T^{18} + \cdots + 9765625 \) Copy content Toggle raw display
$5$ \( T^{20} - 2 T^{19} + \cdots + 1048576 \) Copy content Toggle raw display
$7$ \( T^{20} + 2 T^{19} + \cdots + 1048576 \) Copy content Toggle raw display
$11$ \( T^{20} - 6 T^{19} + \cdots + 1048576 \) Copy content Toggle raw display
$13$ \( (T^{10} + 3 T^{9} + \cdots + 59049)^{2} \) Copy content Toggle raw display
$17$ \( T^{20} + 6 T^{19} + \cdots + 1048576 \) Copy content Toggle raw display
$19$ \( (T^{10} - 2 T^{9} + \cdots + 1024)^{2} \) Copy content Toggle raw display
$23$ \( T^{20} \) Copy content Toggle raw display
$29$ \( (T^{10} - 3 T^{9} + \cdots + 59049)^{2} \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 34\!\cdots\!25 \) Copy content Toggle raw display
$37$ \( T^{20} + 2 T^{19} + \cdots + 1048576 \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 6131066257801 \) Copy content Toggle raw display
$43$ \( T^{20} \) Copy content Toggle raw display
$47$ \( (T^{2} - 5)^{10} \) Copy content Toggle raw display
$53$ \( T^{20} - 8 T^{19} + \cdots + 1048576 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 1099511627776 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 64\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 10240000000000 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 59\!\cdots\!25 \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 11\!\cdots\!01 \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 64\!\cdots\!76 \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 44\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 1099511627776 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 64\!\cdots\!76 \) Copy content Toggle raw display
show more
show less