Properties

Label 4761.2.a.w
Level $4761$
Weight $2$
Character orbit 4761.a
Self dual yes
Analytic conductor $38.017$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4761,2,Mod(1,4761)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4761, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4761.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4761 = 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4761.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0167764023\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + (\beta - 1) q^{4} - 2 \beta q^{5} + (2 \beta - 2) q^{7} + ( - 2 \beta + 1) q^{8} + ( - 2 \beta - 2) q^{10} + (2 \beta - 4) q^{11} + 3 q^{13} + 2 q^{14} - 3 \beta q^{16} + (2 \beta + 2) q^{17} + \cdots + ( - 3 \beta - 4) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 2 q^{5} - 2 q^{7} - 6 q^{10} - 6 q^{11} + 6 q^{13} + 4 q^{14} - 3 q^{16} + 6 q^{17} + 4 q^{19} - 4 q^{20} + 2 q^{22} + 2 q^{25} + 3 q^{26} + 6 q^{28} + 6 q^{29} - 9 q^{32} + 8 q^{34}+ \cdots - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−0.618034 0 −1.61803 1.23607 0 −3.23607 2.23607 0 −0.763932
1.2 1.61803 0 0.618034 −3.23607 0 1.23607 −2.23607 0 −5.23607
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4761.2.a.w 2
3.b odd 2 1 529.2.a.a 2
12.b even 2 1 8464.2.a.bb 2
23.b odd 2 1 207.2.a.d 2
69.c even 2 1 23.2.a.a 2
69.g even 22 10 529.2.c.o 20
69.h odd 22 10 529.2.c.n 20
92.b even 2 1 3312.2.a.ba 2
115.c odd 2 1 5175.2.a.be 2
276.h odd 2 1 368.2.a.h 2
345.h even 2 1 575.2.a.f 2
345.l odd 4 2 575.2.b.d 4
483.c odd 2 1 1127.2.a.c 2
552.b even 2 1 1472.2.a.t 2
552.h odd 2 1 1472.2.a.s 2
759.h odd 2 1 2783.2.a.c 2
897.g even 2 1 3887.2.a.i 2
1173.b even 2 1 6647.2.a.b 2
1311.h odd 2 1 8303.2.a.e 2
1380.b odd 2 1 9200.2.a.bt 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.2.a.a 2 69.c even 2 1
207.2.a.d 2 23.b odd 2 1
368.2.a.h 2 276.h odd 2 1
529.2.a.a 2 3.b odd 2 1
529.2.c.n 20 69.h odd 22 10
529.2.c.o 20 69.g even 22 10
575.2.a.f 2 345.h even 2 1
575.2.b.d 4 345.l odd 4 2
1127.2.a.c 2 483.c odd 2 1
1472.2.a.s 2 552.h odd 2 1
1472.2.a.t 2 552.b even 2 1
2783.2.a.c 2 759.h odd 2 1
3312.2.a.ba 2 92.b even 2 1
3887.2.a.i 2 897.g even 2 1
4761.2.a.w 2 1.a even 1 1 trivial
5175.2.a.be 2 115.c odd 2 1
6647.2.a.b 2 1173.b even 2 1
8303.2.a.e 2 1311.h odd 2 1
8464.2.a.bb 2 12.b even 2 1
9200.2.a.bt 2 1380.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4761))\):

\( T_{2}^{2} - T_{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 2T_{5} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 4 \) Copy content Toggle raw display
$13$ \( (T - 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$19$ \( (T - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 45 \) Copy content Toggle raw display
$37$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$41$ \( T^{2} + 2T - 19 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 5 \) Copy content Toggle raw display
$53$ \( T^{2} + 8T - 4 \) Copy content Toggle raw display
$59$ \( T^{2} + 4T - 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 4T - 76 \) Copy content Toggle raw display
$67$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$71$ \( T^{2} + 20T + 95 \) Copy content Toggle raw display
$73$ \( T^{2} - 22T + 101 \) Copy content Toggle raw display
$79$ \( T^{2} - 4T - 76 \) Copy content Toggle raw display
$83$ \( T^{2} + 22T + 116 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T + 16 \) Copy content Toggle raw display
$97$ \( T^{2} + 22T + 76 \) Copy content Toggle raw display
show more
show less