Properties

Label 2-1127-1.1-c1-0-29
Degree $2$
Conductor $1127$
Sign $-1$
Analytic cond. $8.99914$
Root an. cond. $2.99985$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.134·2-s − 2.58·3-s − 1.98·4-s − 1.71·5-s + 0.348·6-s + 0.536·8-s + 3.68·9-s + 0.231·10-s + 3.43·11-s + 5.12·12-s − 0.592·13-s + 4.43·15-s + 3.89·16-s + 0.811·17-s − 0.496·18-s − 1.38·19-s + 3.39·20-s − 0.463·22-s − 23-s − 1.38·24-s − 2.06·25-s + 0.0798·26-s − 1.76·27-s + 6.39·29-s − 0.597·30-s + 7.03·31-s − 1.59·32-s + ⋯
L(s)  = 1  − 0.0953·2-s − 1.49·3-s − 0.990·4-s − 0.766·5-s + 0.142·6-s + 0.189·8-s + 1.22·9-s + 0.0731·10-s + 1.03·11-s + 1.47·12-s − 0.164·13-s + 1.14·15-s + 0.972·16-s + 0.196·17-s − 0.117·18-s − 0.318·19-s + 0.759·20-s − 0.0987·22-s − 0.208·23-s − 0.283·24-s − 0.412·25-s + 0.0156·26-s − 0.340·27-s + 1.18·29-s − 0.109·30-s + 1.26·31-s − 0.282·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1127\)    =    \(7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(8.99914\)
Root analytic conductor: \(2.99985\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1127,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
23 \( 1 + T \)
good2 \( 1 + 0.134T + 2T^{2} \)
3 \( 1 + 2.58T + 3T^{2} \)
5 \( 1 + 1.71T + 5T^{2} \)
11 \( 1 - 3.43T + 11T^{2} \)
13 \( 1 + 0.592T + 13T^{2} \)
17 \( 1 - 0.811T + 17T^{2} \)
19 \( 1 + 1.38T + 19T^{2} \)
29 \( 1 - 6.39T + 29T^{2} \)
31 \( 1 - 7.03T + 31T^{2} \)
37 \( 1 - 10.3T + 37T^{2} \)
41 \( 1 + 7.45T + 41T^{2} \)
43 \( 1 + 8.85T + 43T^{2} \)
47 \( 1 + 10.5T + 47T^{2} \)
53 \( 1 + 11.8T + 53T^{2} \)
59 \( 1 + 0.998T + 59T^{2} \)
61 \( 1 + 7.86T + 61T^{2} \)
67 \( 1 - 3.79T + 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 - 0.224T + 73T^{2} \)
79 \( 1 + 7.18T + 79T^{2} \)
83 \( 1 + 4.71T + 83T^{2} \)
89 \( 1 - 8.59T + 89T^{2} \)
97 \( 1 + 8.38T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.667373652132272407503083914844, −8.498501737567128101633243800457, −7.87093153884400311122941323774, −6.62648062020478851624477710905, −6.10929169828156576902101610337, −4.87144124140411595962348644561, −4.49811659001842224459152397090, −3.42912668460487221769741071536, −1.19048916826252840745734959389, 0, 1.19048916826252840745734959389, 3.42912668460487221769741071536, 4.49811659001842224459152397090, 4.87144124140411595962348644561, 6.10929169828156576902101610337, 6.62648062020478851624477710905, 7.87093153884400311122941323774, 8.498501737567128101633243800457, 9.667373652132272407503083914844

Graph of the $Z$-function along the critical line