L(s) = 1 | − 0.134·2-s − 2.58·3-s − 1.98·4-s − 1.71·5-s + 0.348·6-s + 0.536·8-s + 3.68·9-s + 0.231·10-s + 3.43·11-s + 5.12·12-s − 0.592·13-s + 4.43·15-s + 3.89·16-s + 0.811·17-s − 0.496·18-s − 1.38·19-s + 3.39·20-s − 0.463·22-s − 23-s − 1.38·24-s − 2.06·25-s + 0.0798·26-s − 1.76·27-s + 6.39·29-s − 0.597·30-s + 7.03·31-s − 1.59·32-s + ⋯ |
L(s) = 1 | − 0.0953·2-s − 1.49·3-s − 0.990·4-s − 0.766·5-s + 0.142·6-s + 0.189·8-s + 1.22·9-s + 0.0731·10-s + 1.03·11-s + 1.47·12-s − 0.164·13-s + 1.14·15-s + 0.972·16-s + 0.196·17-s − 0.117·18-s − 0.318·19-s + 0.759·20-s − 0.0987·22-s − 0.208·23-s − 0.283·24-s − 0.412·25-s + 0.0156·26-s − 0.340·27-s + 1.18·29-s − 0.109·30-s + 1.26·31-s − 0.282·32-s + ⋯ |
Λ(s)=(=(1127s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1127s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1+T |
good | 2 | 1+0.134T+2T2 |
| 3 | 1+2.58T+3T2 |
| 5 | 1+1.71T+5T2 |
| 11 | 1−3.43T+11T2 |
| 13 | 1+0.592T+13T2 |
| 17 | 1−0.811T+17T2 |
| 19 | 1+1.38T+19T2 |
| 29 | 1−6.39T+29T2 |
| 31 | 1−7.03T+31T2 |
| 37 | 1−10.3T+37T2 |
| 41 | 1+7.45T+41T2 |
| 43 | 1+8.85T+43T2 |
| 47 | 1+10.5T+47T2 |
| 53 | 1+11.8T+53T2 |
| 59 | 1+0.998T+59T2 |
| 61 | 1+7.86T+61T2 |
| 67 | 1−3.79T+67T2 |
| 71 | 1−10.0T+71T2 |
| 73 | 1−0.224T+73T2 |
| 79 | 1+7.18T+79T2 |
| 83 | 1+4.71T+83T2 |
| 89 | 1−8.59T+89T2 |
| 97 | 1+8.38T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.667373652132272407503083914844, −8.498501737567128101633243800457, −7.87093153884400311122941323774, −6.62648062020478851624477710905, −6.10929169828156576902101610337, −4.87144124140411595962348644561, −4.49811659001842224459152397090, −3.42912668460487221769741071536, −1.19048916826252840745734959389, 0,
1.19048916826252840745734959389, 3.42912668460487221769741071536, 4.49811659001842224459152397090, 4.87144124140411595962348644561, 6.10929169828156576902101610337, 6.62648062020478851624477710905, 7.87093153884400311122941323774, 8.498501737567128101633243800457, 9.667373652132272407503083914844