Properties

Label 1127.2.a.l
Level $1127$
Weight $2$
Character orbit 1127.a
Self dual yes
Analytic conductor $8.999$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,2,Mod(1,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.99914030780\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 10x^{5} - x^{4} + 25x^{3} + x^{2} - 8x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{6} q^{3} + (\beta_{6} + \beta_{5} + \beta_{3} + \cdots + 1) q^{4} + (\beta_{2} - 1) q^{5} + (\beta_{6} + \beta_{5} + \beta_{4} + \cdots - 1) q^{6} + ( - \beta_{6} - \beta_{5} + \cdots - \beta_1) q^{8}+ \cdots + (2 \beta_{6} + \beta_{5} - 2 \beta_{3} + \cdots + 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 3 q^{3} + 6 q^{4} - 4 q^{5} - 2 q^{6} - 3 q^{8} + 12 q^{9} - 8 q^{10} - 15 q^{12} - 18 q^{13} - 3 q^{15} + 8 q^{16} - 14 q^{17} - 29 q^{18} - 11 q^{19} - 8 q^{20} - 10 q^{22} - 7 q^{23} + 24 q^{24}+ \cdots + 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 10x^{5} - x^{4} + 25x^{3} + x^{2} - 8x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{5} - 2\nu^{4} - 5\nu^{3} + 9\nu^{2} + \nu - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 2\nu^{4} - 6\nu^{3} + 10\nu^{2} + 5\nu - 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{6} - \nu^{5} - 7\nu^{4} + 3\nu^{3} + 10\nu^{2} + 4\nu - 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{6} - 2\nu^{5} - 6\nu^{4} + 10\nu^{3} + 6\nu^{2} - 5\nu - 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\nu^{6} + \nu^{5} + 8\nu^{4} - 4\nu^{3} - 15\nu^{2} - \nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{3} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{6} + 6\beta_{5} + \beta_{4} + 5\beta_{3} + \beta_{2} + 7\beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 10\beta_{6} + 8\beta_{5} + 2\beta_{4} + \beta_{3} + 8\beta_{2} + 29\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 46\beta_{6} + 37\beta_{5} + 10\beta_{4} + 26\beta_{3} + 12\beta_{2} + 49\beta _1 + 72 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.61328
1.76233
0.499048
0.134836
−0.692701
−2.14090
−2.17588
−2.61328 −3.04376 4.82921 1.44516 7.95419 0 −7.39352 6.26448 −3.77661
1.2 −1.76233 3.03433 1.10579 −1.94522 −5.34747 0 1.57589 6.20713 3.42812
1.3 −0.499048 1.22023 −1.75095 0.0259569 −0.608953 0 1.87191 −1.51104 −0.0129537
1.4 −0.134836 −2.58533 −1.98182 −1.71441 0.348596 0 0.536894 3.68392 0.231165
1.5 0.692701 0.603330 −1.52016 2.66776 0.417927 0 −2.43842 −2.63599 1.84796
1.6 2.14090 −2.43874 2.58346 −0.818530 −5.22109 0 1.24912 2.94743 −1.75239
1.7 2.17588 0.209939 2.73447 −3.66071 0.456804 0 1.59813 −2.95593 −7.96529
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1127.2.a.l 7
7.b odd 2 1 1127.2.a.m 7
7.c even 3 2 161.2.e.b 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.2.e.b 14 7.c even 3 2
1127.2.a.l 7 1.a even 1 1 trivial
1127.2.a.m 7 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1127))\):

\( T_{2}^{7} - 10T_{2}^{5} + T_{2}^{4} + 25T_{2}^{3} - T_{2}^{2} - 8T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{7} + 3T_{3}^{6} - 12T_{3}^{5} - 35T_{3}^{4} + 32T_{3}^{3} + 67T_{3}^{2} - 58T_{3} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 10 T^{5} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( T^{7} + 3 T^{6} + \cdots + 9 \) Copy content Toggle raw display
$5$ \( T^{7} + 4 T^{6} + \cdots - 1 \) Copy content Toggle raw display
$7$ \( T^{7} \) Copy content Toggle raw display
$11$ \( T^{7} - 25 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{7} + 18 T^{6} + \cdots - 183 \) Copy content Toggle raw display
$17$ \( T^{7} + 14 T^{6} + \cdots - 369 \) Copy content Toggle raw display
$19$ \( T^{7} + 11 T^{6} + \cdots - 7 \) Copy content Toggle raw display
$23$ \( (T + 1)^{7} \) Copy content Toggle raw display
$29$ \( T^{7} - 3 T^{6} + \cdots - 73159 \) Copy content Toggle raw display
$31$ \( T^{7} + 6 T^{6} + \cdots - 34227 \) Copy content Toggle raw display
$37$ \( T^{7} + T^{6} + \cdots - 46273 \) Copy content Toggle raw display
$41$ \( T^{7} + 9 T^{6} + \cdots - 19917 \) Copy content Toggle raw display
$43$ \( T^{7} - 9 T^{6} + \cdots - 78303 \) Copy content Toggle raw display
$47$ \( T^{7} - 12 T^{6} + \cdots - 28131 \) Copy content Toggle raw display
$53$ \( T^{7} + 12 T^{6} + \cdots + 223 \) Copy content Toggle raw display
$59$ \( T^{7} - 7 T^{6} + \cdots - 6147 \) Copy content Toggle raw display
$61$ \( T^{7} + 24 T^{6} + \cdots - 59067 \) Copy content Toggle raw display
$67$ \( T^{7} + 12 T^{6} + \cdots + 6033 \) Copy content Toggle raw display
$71$ \( T^{7} - 20 T^{6} + \cdots - 488617 \) Copy content Toggle raw display
$73$ \( T^{7} + 33 T^{6} + \cdots + 2763 \) Copy content Toggle raw display
$79$ \( T^{7} + 10 T^{6} + \cdots + 387809 \) Copy content Toggle raw display
$83$ \( T^{7} + 25 T^{6} + \cdots + 911 \) Copy content Toggle raw display
$89$ \( T^{7} + 11 T^{6} + \cdots - 24873 \) Copy content Toggle raw display
$97$ \( T^{7} + 51 T^{6} + \cdots + 805725 \) Copy content Toggle raw display
show more
show less