Properties

Label 1127.2.a.l
Level 11271127
Weight 22
Character orbit 1127.a
Self dual yes
Analytic conductor 8.9998.999
Analytic rank 11
Dimension 77
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,2,Mod(1,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1127=7223 1127 = 7^{2} \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1127.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.999140307808.99914030780
Analytic rank: 11
Dimension: 77
Coefficient field: Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x710x5x4+25x3+x28x+1 x^{7} - 10x^{5} - x^{4} + 25x^{3} + x^{2} - 8x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 161)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β61,\beta_1,\ldots,\beta_{6} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2β6q3+(β6+β5+β3++1)q4+(β21)q5+(β6+β5+β4+1)q6+(β6β5+β1)q8++(2β6+β52β3++5)q99+O(q100) q - \beta_1 q^{2} - \beta_{6} q^{3} + (\beta_{6} + \beta_{5} + \beta_{3} + \cdots + 1) q^{4} + (\beta_{2} - 1) q^{5} + (\beta_{6} + \beta_{5} + \beta_{4} + \cdots - 1) q^{6} + ( - \beta_{6} - \beta_{5} + \cdots - \beta_1) q^{8}+ \cdots + (2 \beta_{6} + \beta_{5} - 2 \beta_{3} + \cdots + 5) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 7q3q3+6q44q52q63q8+12q98q1015q1218q133q15+8q1614q1729q1811q198q2010q227q23+24q24++46q99+O(q100) 7 q - 3 q^{3} + 6 q^{4} - 4 q^{5} - 2 q^{6} - 3 q^{8} + 12 q^{9} - 8 q^{10} - 15 q^{12} - 18 q^{13} - 3 q^{15} + 8 q^{16} - 14 q^{17} - 29 q^{18} - 11 q^{19} - 8 q^{20} - 10 q^{22} - 7 q^{23} + 24 q^{24}+ \cdots + 46 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x710x5x4+25x3+x28x+1 x^{7} - 10x^{5} - x^{4} + 25x^{3} + x^{2} - 8x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν52ν45ν3+9ν2+ν1 \nu^{5} - 2\nu^{4} - 5\nu^{3} + 9\nu^{2} + \nu - 1 Copy content Toggle raw display
β3\beta_{3}== ν52ν46ν3+10ν2+5ν4 \nu^{5} - 2\nu^{4} - 6\nu^{3} + 10\nu^{2} + 5\nu - 4 Copy content Toggle raw display
β4\beta_{4}== ν6ν57ν4+3ν3+10ν2+4ν2 \nu^{6} - \nu^{5} - 7\nu^{4} + 3\nu^{3} + 10\nu^{2} + 4\nu - 2 Copy content Toggle raw display
β5\beta_{5}== ν62ν56ν4+10ν3+6ν25ν2 \nu^{6} - 2\nu^{5} - 6\nu^{4} + 10\nu^{3} + 6\nu^{2} - 5\nu - 2 Copy content Toggle raw display
β6\beta_{6}== ν6+ν5+8ν44ν315ν2ν+3 -\nu^{6} + \nu^{5} + 8\nu^{4} - 4\nu^{3} - 15\nu^{2} - \nu + 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β6+β5+β3+β1+3 \beta_{6} + \beta_{5} + \beta_{3} + \beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== β6+β5+β2+5β1 \beta_{6} + \beta_{5} + \beta_{2} + 5\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 7β6+6β5+β4+5β3+β2+7β1+14 7\beta_{6} + 6\beta_{5} + \beta_{4} + 5\beta_{3} + \beta_{2} + 7\beta _1 + 14 Copy content Toggle raw display
ν5\nu^{5}== 10β6+8β5+2β4+β3+8β2+29β1+2 10\beta_{6} + 8\beta_{5} + 2\beta_{4} + \beta_{3} + 8\beta_{2} + 29\beta _1 + 2 Copy content Toggle raw display
ν6\nu^{6}== 46β6+37β5+10β4+26β3+12β2+49β1+72 46\beta_{6} + 37\beta_{5} + 10\beta_{4} + 26\beta_{3} + 12\beta_{2} + 49\beta _1 + 72 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.61328
1.76233
0.499048
0.134836
−0.692701
−2.14090
−2.17588
−2.61328 −3.04376 4.82921 1.44516 7.95419 0 −7.39352 6.26448 −3.77661
1.2 −1.76233 3.03433 1.10579 −1.94522 −5.34747 0 1.57589 6.20713 3.42812
1.3 −0.499048 1.22023 −1.75095 0.0259569 −0.608953 0 1.87191 −1.51104 −0.0129537
1.4 −0.134836 −2.58533 −1.98182 −1.71441 0.348596 0 0.536894 3.68392 0.231165
1.5 0.692701 0.603330 −1.52016 2.66776 0.417927 0 −2.43842 −2.63599 1.84796
1.6 2.14090 −2.43874 2.58346 −0.818530 −5.22109 0 1.24912 2.94743 −1.75239
1.7 2.17588 0.209939 2.73447 −3.66071 0.456804 0 1.59813 −2.95593 −7.96529
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
77 +1 +1
2323 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1127.2.a.l 7
7.b odd 2 1 1127.2.a.m 7
7.c even 3 2 161.2.e.b 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.2.e.b 14 7.c even 3 2
1127.2.a.l 7 1.a even 1 1 trivial
1127.2.a.m 7 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(1127))S_{2}^{\mathrm{new}}(\Gamma_0(1127)):

T2710T25+T24+25T23T228T21 T_{2}^{7} - 10T_{2}^{5} + T_{2}^{4} + 25T_{2}^{3} - T_{2}^{2} - 8T_{2} - 1 Copy content Toggle raw display
T37+3T3612T3535T34+32T33+67T3258T3+9 T_{3}^{7} + 3T_{3}^{6} - 12T_{3}^{5} - 35T_{3}^{4} + 32T_{3}^{3} + 67T_{3}^{2} - 58T_{3} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T710T5+1 T^{7} - 10 T^{5} + \cdots - 1 Copy content Toggle raw display
33 T7+3T6++9 T^{7} + 3 T^{6} + \cdots + 9 Copy content Toggle raw display
55 T7+4T6+1 T^{7} + 4 T^{6} + \cdots - 1 Copy content Toggle raw display
77 T7 T^{7} Copy content Toggle raw display
1111 T725T5++1 T^{7} - 25 T^{5} + \cdots + 1 Copy content Toggle raw display
1313 T7+18T6+183 T^{7} + 18 T^{6} + \cdots - 183 Copy content Toggle raw display
1717 T7+14T6+369 T^{7} + 14 T^{6} + \cdots - 369 Copy content Toggle raw display
1919 T7+11T6+7 T^{7} + 11 T^{6} + \cdots - 7 Copy content Toggle raw display
2323 (T+1)7 (T + 1)^{7} Copy content Toggle raw display
2929 T73T6+73159 T^{7} - 3 T^{6} + \cdots - 73159 Copy content Toggle raw display
3131 T7+6T6+34227 T^{7} + 6 T^{6} + \cdots - 34227 Copy content Toggle raw display
3737 T7+T6+46273 T^{7} + T^{6} + \cdots - 46273 Copy content Toggle raw display
4141 T7+9T6+19917 T^{7} + 9 T^{6} + \cdots - 19917 Copy content Toggle raw display
4343 T79T6+78303 T^{7} - 9 T^{6} + \cdots - 78303 Copy content Toggle raw display
4747 T712T6+28131 T^{7} - 12 T^{6} + \cdots - 28131 Copy content Toggle raw display
5353 T7+12T6++223 T^{7} + 12 T^{6} + \cdots + 223 Copy content Toggle raw display
5959 T77T6+6147 T^{7} - 7 T^{6} + \cdots - 6147 Copy content Toggle raw display
6161 T7+24T6+59067 T^{7} + 24 T^{6} + \cdots - 59067 Copy content Toggle raw display
6767 T7+12T6++6033 T^{7} + 12 T^{6} + \cdots + 6033 Copy content Toggle raw display
7171 T720T6+488617 T^{7} - 20 T^{6} + \cdots - 488617 Copy content Toggle raw display
7373 T7+33T6++2763 T^{7} + 33 T^{6} + \cdots + 2763 Copy content Toggle raw display
7979 T7+10T6++387809 T^{7} + 10 T^{6} + \cdots + 387809 Copy content Toggle raw display
8383 T7+25T6++911 T^{7} + 25 T^{6} + \cdots + 911 Copy content Toggle raw display
8989 T7+11T6+24873 T^{7} + 11 T^{6} + \cdots - 24873 Copy content Toggle raw display
9797 T7+51T6++805725 T^{7} + 51 T^{6} + \cdots + 805725 Copy content Toggle raw display
show more
show less