Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1127,2,Mod(1,1127)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1127.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1127.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 161) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.61328 | −3.04376 | 4.82921 | 1.44516 | 7.95419 | 0 | −7.39352 | 6.26448 | −3.77661 | |||||||||||||||||||||||||||||||||||||||
1.2 | −1.76233 | 3.03433 | 1.10579 | −1.94522 | −5.34747 | 0 | 1.57589 | 6.20713 | 3.42812 | ||||||||||||||||||||||||||||||||||||||||
1.3 | −0.499048 | 1.22023 | −1.75095 | 0.0259569 | −0.608953 | 0 | 1.87191 | −1.51104 | −0.0129537 | ||||||||||||||||||||||||||||||||||||||||
1.4 | −0.134836 | −2.58533 | −1.98182 | −1.71441 | 0.348596 | 0 | 0.536894 | 3.68392 | 0.231165 | ||||||||||||||||||||||||||||||||||||||||
1.5 | 0.692701 | 0.603330 | −1.52016 | 2.66776 | 0.417927 | 0 | −2.43842 | −2.63599 | 1.84796 | ||||||||||||||||||||||||||||||||||||||||
1.6 | 2.14090 | −2.43874 | 2.58346 | −0.818530 | −5.22109 | 0 | 1.24912 | 2.94743 | −1.75239 | ||||||||||||||||||||||||||||||||||||||||
1.7 | 2.17588 | 0.209939 | 2.73447 | −3.66071 | 0.456804 | 0 | 1.59813 | −2.95593 | −7.96529 | ||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1127.2.a.l | 7 | |
7.b | odd | 2 | 1 | 1127.2.a.m | 7 | ||
7.c | even | 3 | 2 | 161.2.e.b | ✓ | 14 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
161.2.e.b | ✓ | 14 | 7.c | even | 3 | 2 | |
1127.2.a.l | 7 | 1.a | even | 1 | 1 | trivial | |
1127.2.a.m | 7 | 7.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|