Properties

Label 2-1127-1.1-c1-0-63
Degree $2$
Conductor $1127$
Sign $-1$
Analytic cond. $8.99914$
Root an. cond. $2.99985$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.14·2-s − 2.43·3-s + 2.58·4-s − 0.818·5-s − 5.22·6-s + 1.24·8-s + 2.94·9-s − 1.75·10-s + 0.116·11-s − 6.30·12-s + 0.869·13-s + 1.99·15-s − 2.49·16-s + 0.498·17-s + 6.31·18-s − 4.92·19-s − 2.11·20-s + 0.249·22-s − 23-s − 3.04·24-s − 4.33·25-s + 1.86·26-s + 0.128·27-s − 7.25·29-s + 4.27·30-s − 8.02·31-s − 7.83·32-s + ⋯
L(s)  = 1  + 1.51·2-s − 1.40·3-s + 1.29·4-s − 0.366·5-s − 2.13·6-s + 0.441·8-s + 0.982·9-s − 0.554·10-s + 0.0350·11-s − 1.81·12-s + 0.241·13-s + 0.515·15-s − 0.623·16-s + 0.121·17-s + 1.48·18-s − 1.13·19-s − 0.472·20-s + 0.0531·22-s − 0.208·23-s − 0.621·24-s − 0.866·25-s + 0.365·26-s + 0.0246·27-s − 1.34·29-s + 0.780·30-s − 1.44·31-s − 1.38·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1127\)    =    \(7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(8.99914\)
Root analytic conductor: \(2.99985\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1127,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
23 \( 1 + T \)
good2 \( 1 - 2.14T + 2T^{2} \)
3 \( 1 + 2.43T + 3T^{2} \)
5 \( 1 + 0.818T + 5T^{2} \)
11 \( 1 - 0.116T + 11T^{2} \)
13 \( 1 - 0.869T + 13T^{2} \)
17 \( 1 - 0.498T + 17T^{2} \)
19 \( 1 + 4.92T + 19T^{2} \)
29 \( 1 + 7.25T + 29T^{2} \)
31 \( 1 + 8.02T + 31T^{2} \)
37 \( 1 + 7.51T + 37T^{2} \)
41 \( 1 + 6.61T + 41T^{2} \)
43 \( 1 - 10.5T + 43T^{2} \)
47 \( 1 - 1.36T + 47T^{2} \)
53 \( 1 + 7.53T + 53T^{2} \)
59 \( 1 - 10.0T + 59T^{2} \)
61 \( 1 - 6.31T + 61T^{2} \)
67 \( 1 - 5.05T + 67T^{2} \)
71 \( 1 - 9.70T + 71T^{2} \)
73 \( 1 - 8.78T + 73T^{2} \)
79 \( 1 + 0.541T + 79T^{2} \)
83 \( 1 + 3.81T + 83T^{2} \)
89 \( 1 + 17.9T + 89T^{2} \)
97 \( 1 + 16.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.641104038831044405818131199736, −8.490150394410519168707695652195, −7.23752296547079954049966966561, −6.55148268725148205705027740947, −5.68559972404170478623235329055, −5.29376329201043853464960404932, −4.21107902375552685857557457988, −3.61681780487672379605228489726, −2.03543401419923863021312601202, 0, 2.03543401419923863021312601202, 3.61681780487672379605228489726, 4.21107902375552685857557457988, 5.29376329201043853464960404932, 5.68559972404170478623235329055, 6.55148268725148205705027740947, 7.23752296547079954049966966561, 8.490150394410519168707695652195, 9.641104038831044405818131199736

Graph of the $Z$-function along the critical line