L(s) = 1 | + 2.14·2-s − 2.43·3-s + 2.58·4-s − 0.818·5-s − 5.22·6-s + 1.24·8-s + 2.94·9-s − 1.75·10-s + 0.116·11-s − 6.30·12-s + 0.869·13-s + 1.99·15-s − 2.49·16-s + 0.498·17-s + 6.31·18-s − 4.92·19-s − 2.11·20-s + 0.249·22-s − 23-s − 3.04·24-s − 4.33·25-s + 1.86·26-s + 0.128·27-s − 7.25·29-s + 4.27·30-s − 8.02·31-s − 7.83·32-s + ⋯ |
L(s) = 1 | + 1.51·2-s − 1.40·3-s + 1.29·4-s − 0.366·5-s − 2.13·6-s + 0.441·8-s + 0.982·9-s − 0.554·10-s + 0.0350·11-s − 1.81·12-s + 0.241·13-s + 0.515·15-s − 0.623·16-s + 0.121·17-s + 1.48·18-s − 1.13·19-s − 0.472·20-s + 0.0531·22-s − 0.208·23-s − 0.621·24-s − 0.866·25-s + 0.365·26-s + 0.0246·27-s − 1.34·29-s + 0.780·30-s − 1.44·31-s − 1.38·32-s + ⋯ |
Λ(s)=(=(1127s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1127s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1+T |
good | 2 | 1−2.14T+2T2 |
| 3 | 1+2.43T+3T2 |
| 5 | 1+0.818T+5T2 |
| 11 | 1−0.116T+11T2 |
| 13 | 1−0.869T+13T2 |
| 17 | 1−0.498T+17T2 |
| 19 | 1+4.92T+19T2 |
| 29 | 1+7.25T+29T2 |
| 31 | 1+8.02T+31T2 |
| 37 | 1+7.51T+37T2 |
| 41 | 1+6.61T+41T2 |
| 43 | 1−10.5T+43T2 |
| 47 | 1−1.36T+47T2 |
| 53 | 1+7.53T+53T2 |
| 59 | 1−10.0T+59T2 |
| 61 | 1−6.31T+61T2 |
| 67 | 1−5.05T+67T2 |
| 71 | 1−9.70T+71T2 |
| 73 | 1−8.78T+73T2 |
| 79 | 1+0.541T+79T2 |
| 83 | 1+3.81T+83T2 |
| 89 | 1+17.9T+89T2 |
| 97 | 1+16.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.641104038831044405818131199736, −8.490150394410519168707695652195, −7.23752296547079954049966966561, −6.55148268725148205705027740947, −5.68559972404170478623235329055, −5.29376329201043853464960404932, −4.21107902375552685857557457988, −3.61681780487672379605228489726, −2.03543401419923863021312601202, 0,
2.03543401419923863021312601202, 3.61681780487672379605228489726, 4.21107902375552685857557457988, 5.29376329201043853464960404932, 5.68559972404170478623235329055, 6.55148268725148205705027740947, 7.23752296547079954049966966561, 8.490150394410519168707695652195, 9.641104038831044405818131199736