Properties

Label 2-1127-161.160-c1-0-4
Degree $2$
Conductor $1127$
Sign $-0.156 + 0.987i$
Analytic cond. $8.99914$
Root an. cond. $2.99985$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.54·2-s + 3.34i·3-s + 4.49·4-s − 8.53i·6-s − 6.36·8-s − 8.20·9-s + 15.0i·12-s + 6.77i·13-s + 7.23·16-s + 20.9·18-s + 4.79·23-s − 21.3i·24-s − 5·25-s − 17.2i·26-s − 17.4i·27-s + ⋯
L(s)  = 1  − 1.80·2-s + 1.93i·3-s + 2.24·4-s − 3.48i·6-s − 2.25·8-s − 2.73·9-s + 4.34i·12-s + 1.87i·13-s + 1.80·16-s + 4.92·18-s + 1.00·23-s − 4.35i·24-s − 25-s − 3.38i·26-s − 3.34i·27-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.156 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.156 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1127\)    =    \(7^{2} \cdot 23\)
Sign: $-0.156 + 0.987i$
Analytic conductor: \(8.99914\)
Root analytic conductor: \(2.99985\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1127} (1126, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1127,\ (\ :1/2),\ -0.156 + 0.987i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2510334883\)
\(L(\frac12)\) \(\approx\) \(0.2510334883\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
23 \( 1 - 4.79T \)
good2 \( 1 + 2.54T + 2T^{2} \)
3 \( 1 - 3.34iT - 3T^{2} \)
5 \( 1 + 5T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 6.77iT - 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 19T^{2} \)
29 \( 1 + 6.70T + 29T^{2} \)
31 \( 1 - 10.1iT - 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 + 0.987iT - 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 8.61iT - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 4.26iT - 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 + 14.0T + 71T^{2} \)
73 \( 1 + 1.17iT - 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14195159101239665595191089962, −9.536248482732909854396453187064, −8.956888360528917366720892846612, −8.575275729840034868361088559003, −7.34015648628121494422311406722, −6.43849482232625393709164669968, −5.31377875159097420134897193662, −4.24759569664494539459509241107, −3.22294624526648296090049032042, −1.91991739721287333490679969570, 0.21556333019660758790878453055, 1.15468526990917564733860842361, 2.23488961508807332227161259283, 3.06906820930652488472601553333, 5.66957570581116654291420145557, 6.15470831196934065236023506876, 7.30230901421023206290924431347, 7.62537264241238050497832295304, 8.191206582225484632439265772284, 8.990749632574807053057190339079

Graph of the $Z$-function along the critical line