L(s) = 1 | − 2.54·2-s + 3.34i·3-s + 4.49·4-s − 8.53i·6-s − 6.36·8-s − 8.20·9-s + 15.0i·12-s + 6.77i·13-s + 7.23·16-s + 20.9·18-s + 4.79·23-s − 21.3i·24-s − 5·25-s − 17.2i·26-s − 17.4i·27-s + ⋯ |
L(s) = 1 | − 1.80·2-s + 1.93i·3-s + 2.24·4-s − 3.48i·6-s − 2.25·8-s − 2.73·9-s + 4.34i·12-s + 1.87i·13-s + 1.80·16-s + 4.92·18-s + 1.00·23-s − 4.35i·24-s − 25-s − 3.38i·26-s − 3.34i·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.156 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.156 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2510334883\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2510334883\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 - 4.79T \) |
good | 2 | \( 1 + 2.54T + 2T^{2} \) |
| 3 | \( 1 - 3.34iT - 3T^{2} \) |
| 5 | \( 1 + 5T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 - 6.77iT - 13T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 29 | \( 1 + 6.70T + 29T^{2} \) |
| 31 | \( 1 - 10.1iT - 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + 0.987iT - 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 8.61iT - 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 4.26iT - 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 + 14.0T + 71T^{2} \) |
| 73 | \( 1 + 1.17iT - 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14195159101239665595191089962, −9.536248482732909854396453187064, −8.956888360528917366720892846612, −8.575275729840034868361088559003, −7.34015648628121494422311406722, −6.43849482232625393709164669968, −5.31377875159097420134897193662, −4.24759569664494539459509241107, −3.22294624526648296090049032042, −1.91991739721287333490679969570,
0.21556333019660758790878453055, 1.15468526990917564733860842361, 2.23488961508807332227161259283, 3.06906820930652488472601553333, 5.66957570581116654291420145557, 6.15470831196934065236023506876, 7.30230901421023206290924431347, 7.62537264241238050497832295304, 8.191206582225484632439265772284, 8.990749632574807053057190339079