L(s) = 1 | − 2-s − 6·5-s − 4·7-s + 8-s + 6·10-s − 6·11-s + 4·13-s + 4·14-s − 16-s + 4·19-s + 6·22-s + 17·25-s − 4·26-s + 9·29-s + 31-s + 24·35-s − 8·37-s − 4·38-s − 6·40-s + 10·43-s − 6·47-s + 9·49-s − 17·50-s − 3·53-s + 36·55-s − 4·56-s − 9·58-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 2.68·5-s − 1.51·7-s + 0.353·8-s + 1.89·10-s − 1.80·11-s + 1.10·13-s + 1.06·14-s − 1/4·16-s + 0.917·19-s + 1.27·22-s + 17/5·25-s − 0.784·26-s + 1.67·29-s + 0.179·31-s + 4.05·35-s − 1.31·37-s − 0.648·38-s − 0.948·40-s + 1.52·43-s − 0.875·47-s + 9/7·49-s − 2.40·50-s − 0.412·53-s + 4.85·55-s − 0.534·56-s − 1.18·58-s + ⋯ |
Λ(s)=(=(1285956s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1285956s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1285956
= 22⋅38⋅72
|
Sign: |
1
|
Analytic conductor: |
81.9936 |
Root analytic conductor: |
3.00915 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1285956, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.3484194328 |
L(21) |
≈ |
0.3484194328 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | | 1 |
| 7 | C2 | 1+4T+pT2 |
good | 5 | C2 | (1+3T+pT2)2 |
| 11 | C2 | (1+3T+pT2)2 |
| 13 | C22 | 1−4T+3T2−4pT3+p2T4 |
| 17 | C22 | 1−pT2+p2T4 |
| 19 | C22 | 1−4T−3T2−4pT3+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C22 | 1−9T+52T2−9pT3+p2T4 |
| 31 | C22 | 1−T−30T2−pT3+p2T4 |
| 37 | C22 | 1+8T+27T2+8pT3+p2T4 |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C22 | 1−10T+57T2−10pT3+p2T4 |
| 47 | C22 | 1+6T−11T2+6pT3+p2T4 |
| 53 | C22 | 1+3T−44T2+3pT3+p2T4 |
| 59 | C22 | 1−3T−50T2−3pT3+p2T4 |
| 61 | C22 | 1−10T+39T2−10pT3+p2T4 |
| 67 | C22 | 1−10T+33T2−10pT3+p2T4 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C22 | 1+2T−69T2+2pT3+p2T4 |
| 79 | C22 | 1−T−78T2−pT3+p2T4 |
| 83 | C22 | 1+9T−2T2+9pT3+p2T4 |
| 89 | C22 | 1−6T−53T2−6pT3+p2T4 |
| 97 | C22 | 1−T−96T2−pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.11037854145630395391381806303, −9.653612908057771892577354172587, −9.015294700930763744891030780614, −8.744369563981517876634704711525, −8.205699823767514146455640557572, −8.075290885194319396111210317419, −7.68951186471539957170931728713, −7.28234333246632456654464533604, −6.90395084743673578452748678067, −6.43419274011781789983994184229, −5.89901429984915536176116827754, −5.14221082664712962715647889333, −4.91619895746372605971117492610, −4.13137034474540840853394773361, −3.81420342988359060376885150845, −3.28750892510202225909780605845, −3.07575075472159134007379977860, −2.31352085574566267005931063868, −0.867481232918765214860434098757, −0.41478198035576836475555357687,
0.41478198035576836475555357687, 0.867481232918765214860434098757, 2.31352085574566267005931063868, 3.07575075472159134007379977860, 3.28750892510202225909780605845, 3.81420342988359060376885150845, 4.13137034474540840853394773361, 4.91619895746372605971117492610, 5.14221082664712962715647889333, 5.89901429984915536176116827754, 6.43419274011781789983994184229, 6.90395084743673578452748678067, 7.28234333246632456654464533604, 7.68951186471539957170931728713, 8.075290885194319396111210317419, 8.205699823767514146455640557572, 8.744369563981517876634704711525, 9.015294700930763744891030780614, 9.653612908057771892577354172587, 10.11037854145630395391381806303