Properties

Label 1134.2.h.a
Level 11341134
Weight 22
Character orbit 1134.h
Analytic conductor 9.0559.055
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(109,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1134=2347 1134 = 2 \cdot 3^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1134.h (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.055035589219.05503558921
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q2ζ6q43q5+(2ζ61)q7+q8+(3ζ6+3)q103q11+(4ζ6+4)q13+(ζ6+3)q14+(ζ61)q16++(3ζ65)q98+O(q100) q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} - 3 q^{5} + ( - 2 \zeta_{6} - 1) q^{7} + q^{8} + ( - 3 \zeta_{6} + 3) q^{10} - 3 q^{11} + ( - 4 \zeta_{6} + 4) q^{13} + ( - \zeta_{6} + 3) q^{14} + (\zeta_{6} - 1) q^{16} + \cdots + ( - 3 \zeta_{6} - 5) q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2q46q54q7+2q8+3q106q11+4q13+5q14q16+4q19+3q20+3q22+8q25+4q26q28+9q29+q31q32+13q98+O(q100) 2 q - q^{2} - q^{4} - 6 q^{5} - 4 q^{7} + 2 q^{8} + 3 q^{10} - 6 q^{11} + 4 q^{13} + 5 q^{14} - q^{16} + 4 q^{19} + 3 q^{20} + 3 q^{22} + 8 q^{25} + 4 q^{26} - q^{28} + 9 q^{29} + q^{31} - q^{32}+ \cdots - 13 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1134Z)×\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times.

nn 325325 407407
χ(n)\chi(n) ζ6-\zeta_{6} 1+ζ6-1 + \zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
109.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i −3.00000 0 −2.00000 1.73205i 1.00000 0 1.50000 2.59808i
541.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i −3.00000 0 −2.00000 + 1.73205i 1.00000 0 1.50000 + 2.59808i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.h.a 2
3.b odd 2 1 1134.2.h.p 2
7.c even 3 1 1134.2.e.p 2
9.c even 3 1 126.2.g.b 2
9.c even 3 1 1134.2.e.p 2
9.d odd 6 1 42.2.e.b 2
9.d odd 6 1 1134.2.e.a 2
21.h odd 6 1 1134.2.e.a 2
36.f odd 6 1 1008.2.s.n 2
36.h even 6 1 336.2.q.d 2
45.h odd 6 1 1050.2.i.e 2
45.l even 12 2 1050.2.o.b 4
63.g even 3 1 882.2.a.g 1
63.g even 3 1 inner 1134.2.h.a 2
63.h even 3 1 126.2.g.b 2
63.i even 6 1 294.2.e.f 2
63.j odd 6 1 42.2.e.b 2
63.k odd 6 1 882.2.a.k 1
63.l odd 6 1 882.2.g.b 2
63.n odd 6 1 294.2.a.d 1
63.n odd 6 1 1134.2.h.p 2
63.o even 6 1 294.2.e.f 2
63.s even 6 1 294.2.a.a 1
63.t odd 6 1 882.2.g.b 2
72.j odd 6 1 1344.2.q.v 2
72.l even 6 1 1344.2.q.j 2
252.n even 6 1 7056.2.a.bz 1
252.o even 6 1 2352.2.a.m 1
252.r odd 6 1 2352.2.q.m 2
252.s odd 6 1 2352.2.q.m 2
252.u odd 6 1 1008.2.s.n 2
252.bb even 6 1 336.2.q.d 2
252.bl odd 6 1 7056.2.a.g 1
252.bn odd 6 1 2352.2.a.n 1
315.u even 6 1 7350.2.a.cw 1
315.v odd 6 1 7350.2.a.ce 1
315.br odd 6 1 1050.2.i.e 2
315.bv even 12 2 1050.2.o.b 4
504.u odd 6 1 9408.2.a.bm 1
504.y even 6 1 9408.2.a.db 1
504.bi odd 6 1 1344.2.q.v 2
504.bt even 6 1 1344.2.q.j 2
504.cy even 6 1 9408.2.a.bu 1
504.db odd 6 1 9408.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.e.b 2 9.d odd 6 1
42.2.e.b 2 63.j odd 6 1
126.2.g.b 2 9.c even 3 1
126.2.g.b 2 63.h even 3 1
294.2.a.a 1 63.s even 6 1
294.2.a.d 1 63.n odd 6 1
294.2.e.f 2 63.i even 6 1
294.2.e.f 2 63.o even 6 1
336.2.q.d 2 36.h even 6 1
336.2.q.d 2 252.bb even 6 1
882.2.a.g 1 63.g even 3 1
882.2.a.k 1 63.k odd 6 1
882.2.g.b 2 63.l odd 6 1
882.2.g.b 2 63.t odd 6 1
1008.2.s.n 2 36.f odd 6 1
1008.2.s.n 2 252.u odd 6 1
1050.2.i.e 2 45.h odd 6 1
1050.2.i.e 2 315.br odd 6 1
1050.2.o.b 4 45.l even 12 2
1050.2.o.b 4 315.bv even 12 2
1134.2.e.a 2 9.d odd 6 1
1134.2.e.a 2 21.h odd 6 1
1134.2.e.p 2 7.c even 3 1
1134.2.e.p 2 9.c even 3 1
1134.2.h.a 2 1.a even 1 1 trivial
1134.2.h.a 2 63.g even 3 1 inner
1134.2.h.p 2 3.b odd 2 1
1134.2.h.p 2 63.n odd 6 1
1344.2.q.j 2 72.l even 6 1
1344.2.q.j 2 504.bt even 6 1
1344.2.q.v 2 72.j odd 6 1
1344.2.q.v 2 504.bi odd 6 1
2352.2.a.m 1 252.o even 6 1
2352.2.a.n 1 252.bn odd 6 1
2352.2.q.m 2 252.r odd 6 1
2352.2.q.m 2 252.s odd 6 1
7056.2.a.g 1 252.bl odd 6 1
7056.2.a.bz 1 252.n even 6 1
7350.2.a.ce 1 315.v odd 6 1
7350.2.a.cw 1 315.u even 6 1
9408.2.a.d 1 504.db odd 6 1
9408.2.a.bm 1 504.u odd 6 1
9408.2.a.bu 1 504.cy even 6 1
9408.2.a.db 1 504.y even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1134,[χ])S_{2}^{\mathrm{new}}(1134, [\chi]):

T5+3 T_{5} + 3 Copy content Toggle raw display
T11+3 T_{11} + 3 Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display
T23 T_{23} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
77 T2+4T+7 T^{2} + 4T + 7 Copy content Toggle raw display
1111 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
1313 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
3131 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
3737 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
4747 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
5353 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
5959 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
6161 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
6767 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
7171 (T6)2 (T - 6)^{2} Copy content Toggle raw display
7373 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
7979 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
8383 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
8989 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
9797 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
show more
show less