Properties

Label 1134.2.h.a
Level $1134$
Weight $2$
Character orbit 1134.h
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(109,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} - 3 q^{5} + ( - 2 \zeta_{6} - 1) q^{7} + q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} - 3 q^{5} + ( - 2 \zeta_{6} - 1) q^{7} + q^{8} + ( - 3 \zeta_{6} + 3) q^{10} - 3 q^{11} + ( - 4 \zeta_{6} + 4) q^{13} + ( - \zeta_{6} + 3) q^{14} + (\zeta_{6} - 1) q^{16} + 4 \zeta_{6} q^{19} + 3 \zeta_{6} q^{20} + ( - 3 \zeta_{6} + 3) q^{22} + 4 q^{25} + 4 \zeta_{6} q^{26} + (3 \zeta_{6} - 2) q^{28} + 9 \zeta_{6} q^{29} + \zeta_{6} q^{31} - \zeta_{6} q^{32} + (6 \zeta_{6} + 3) q^{35} - 8 \zeta_{6} q^{37} - 4 q^{38} - 3 q^{40} + 10 \zeta_{6} q^{43} + 3 \zeta_{6} q^{44} + (6 \zeta_{6} - 6) q^{47} + (8 \zeta_{6} - 3) q^{49} + (4 \zeta_{6} - 4) q^{50} - 4 q^{52} + (3 \zeta_{6} - 3) q^{53} + 9 q^{55} + ( - 2 \zeta_{6} - 1) q^{56} - 9 q^{58} + 3 \zeta_{6} q^{59} + ( - 10 \zeta_{6} + 10) q^{61} - q^{62} + q^{64} + (12 \zeta_{6} - 12) q^{65} + 10 \zeta_{6} q^{67} + (3 \zeta_{6} - 9) q^{70} + 6 q^{71} + (2 \zeta_{6} - 2) q^{73} + 8 q^{74} + ( - 4 \zeta_{6} + 4) q^{76} + (6 \zeta_{6} + 3) q^{77} + ( - \zeta_{6} + 1) q^{79} + ( - 3 \zeta_{6} + 3) q^{80} - 9 \zeta_{6} q^{83} - 10 q^{86} - 3 q^{88} + 6 \zeta_{6} q^{89} + (4 \zeta_{6} - 12) q^{91} - 6 \zeta_{6} q^{94} - 12 \zeta_{6} q^{95} + \zeta_{6} q^{97} + ( - 3 \zeta_{6} - 5) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 6 q^{5} - 4 q^{7} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - q^{4} - 6 q^{5} - 4 q^{7} + 2 q^{8} + 3 q^{10} - 6 q^{11} + 4 q^{13} + 5 q^{14} - q^{16} + 4 q^{19} + 3 q^{20} + 3 q^{22} + 8 q^{25} + 4 q^{26} - q^{28} + 9 q^{29} + q^{31} - q^{32} + 12 q^{35} - 8 q^{37} - 8 q^{38} - 6 q^{40} + 10 q^{43} + 3 q^{44} - 6 q^{47} + 2 q^{49} - 4 q^{50} - 8 q^{52} - 3 q^{53} + 18 q^{55} - 4 q^{56} - 18 q^{58} + 3 q^{59} + 10 q^{61} - 2 q^{62} + 2 q^{64} - 12 q^{65} + 10 q^{67} - 15 q^{70} + 12 q^{71} - 2 q^{73} + 16 q^{74} + 4 q^{76} + 12 q^{77} + q^{79} + 3 q^{80} - 9 q^{83} - 20 q^{86} - 6 q^{88} + 6 q^{89} - 20 q^{91} - 6 q^{94} - 12 q^{95} + q^{97} - 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(-\zeta_{6}\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i −3.00000 0 −2.00000 1.73205i 1.00000 0 1.50000 2.59808i
541.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i −3.00000 0 −2.00000 + 1.73205i 1.00000 0 1.50000 + 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.h.a 2
3.b odd 2 1 1134.2.h.p 2
7.c even 3 1 1134.2.e.p 2
9.c even 3 1 126.2.g.b 2
9.c even 3 1 1134.2.e.p 2
9.d odd 6 1 42.2.e.b 2
9.d odd 6 1 1134.2.e.a 2
21.h odd 6 1 1134.2.e.a 2
36.f odd 6 1 1008.2.s.n 2
36.h even 6 1 336.2.q.d 2
45.h odd 6 1 1050.2.i.e 2
45.l even 12 2 1050.2.o.b 4
63.g even 3 1 882.2.a.g 1
63.g even 3 1 inner 1134.2.h.a 2
63.h even 3 1 126.2.g.b 2
63.i even 6 1 294.2.e.f 2
63.j odd 6 1 42.2.e.b 2
63.k odd 6 1 882.2.a.k 1
63.l odd 6 1 882.2.g.b 2
63.n odd 6 1 294.2.a.d 1
63.n odd 6 1 1134.2.h.p 2
63.o even 6 1 294.2.e.f 2
63.s even 6 1 294.2.a.a 1
63.t odd 6 1 882.2.g.b 2
72.j odd 6 1 1344.2.q.v 2
72.l even 6 1 1344.2.q.j 2
252.n even 6 1 7056.2.a.bz 1
252.o even 6 1 2352.2.a.m 1
252.r odd 6 1 2352.2.q.m 2
252.s odd 6 1 2352.2.q.m 2
252.u odd 6 1 1008.2.s.n 2
252.bb even 6 1 336.2.q.d 2
252.bl odd 6 1 7056.2.a.g 1
252.bn odd 6 1 2352.2.a.n 1
315.u even 6 1 7350.2.a.cw 1
315.v odd 6 1 7350.2.a.ce 1
315.br odd 6 1 1050.2.i.e 2
315.bv even 12 2 1050.2.o.b 4
504.u odd 6 1 9408.2.a.bm 1
504.y even 6 1 9408.2.a.db 1
504.bi odd 6 1 1344.2.q.v 2
504.bt even 6 1 1344.2.q.j 2
504.cy even 6 1 9408.2.a.bu 1
504.db odd 6 1 9408.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.e.b 2 9.d odd 6 1
42.2.e.b 2 63.j odd 6 1
126.2.g.b 2 9.c even 3 1
126.2.g.b 2 63.h even 3 1
294.2.a.a 1 63.s even 6 1
294.2.a.d 1 63.n odd 6 1
294.2.e.f 2 63.i even 6 1
294.2.e.f 2 63.o even 6 1
336.2.q.d 2 36.h even 6 1
336.2.q.d 2 252.bb even 6 1
882.2.a.g 1 63.g even 3 1
882.2.a.k 1 63.k odd 6 1
882.2.g.b 2 63.l odd 6 1
882.2.g.b 2 63.t odd 6 1
1008.2.s.n 2 36.f odd 6 1
1008.2.s.n 2 252.u odd 6 1
1050.2.i.e 2 45.h odd 6 1
1050.2.i.e 2 315.br odd 6 1
1050.2.o.b 4 45.l even 12 2
1050.2.o.b 4 315.bv even 12 2
1134.2.e.a 2 9.d odd 6 1
1134.2.e.a 2 21.h odd 6 1
1134.2.e.p 2 7.c even 3 1
1134.2.e.p 2 9.c even 3 1
1134.2.h.a 2 1.a even 1 1 trivial
1134.2.h.a 2 63.g even 3 1 inner
1134.2.h.p 2 3.b odd 2 1
1134.2.h.p 2 63.n odd 6 1
1344.2.q.j 2 72.l even 6 1
1344.2.q.j 2 504.bt even 6 1
1344.2.q.v 2 72.j odd 6 1
1344.2.q.v 2 504.bi odd 6 1
2352.2.a.m 1 252.o even 6 1
2352.2.a.n 1 252.bn odd 6 1
2352.2.q.m 2 252.r odd 6 1
2352.2.q.m 2 252.s odd 6 1
7056.2.a.g 1 252.bl odd 6 1
7056.2.a.bz 1 252.n even 6 1
7350.2.a.ce 1 315.v odd 6 1
7350.2.a.cw 1 315.u even 6 1
9408.2.a.d 1 504.db odd 6 1
9408.2.a.bm 1 504.u odd 6 1
9408.2.a.bu 1 504.cy even 6 1
9408.2.a.db 1 504.y even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1134, [\chi])\):

\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{11} + 3 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{23} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 7 \) Copy content Toggle raw display
$11$ \( (T + 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$31$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$37$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$47$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$59$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$61$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$67$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$83$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$89$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$97$ \( T^{2} - T + 1 \) Copy content Toggle raw display
show more
show less